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Abstract

A skeleton Huffman tree is a Huffman tree from which all full subtrees of depth
h ≥ 1 have been pruned. Skeleton Huffman trees are used to save storage and en-
hance processing time in several applications such as decoding, compressed pattern
matching and wavelet trees for random access. A reduced skeleton tree prunes the
skeleton Huffman tree further to an even smaller tree. The resulting more compact
trees can be used to further enhance the time and space complexities of the corre-
sponding algorithms. However, it is shown that the straightforward ways of basing
the constructions of a skeleton tree as well as that of a reduced skeleton tree on a
canonical Huffman tree does not necessarily yield the least number of nodes. New
algorithms for achieving such trees are given.

Keywords: Data compression, Huffman tree, skeleton tree, reduced
skeleton.

1. Introduction

One of the most popular static data compression methods is still Huff-
man coding [10], even more than sixty years after its invention. A Huffman
code is a minimum redundancy code, subject to the constraint that each
codeword is composed of an integral number of bits. Given are an alphabet
Σ = {a1, . . . , an} and a probability distribution P = {p1, . . . , pn} for the oc-
currences of its characters. Huffman’s algorithm assigns lengths {`1, . . . , `n}

∗This is an extended version of a paper that has been presented at the 24th Interna-
tional Symposium on String Processing and Information Retrieval (SPIRE) in 2017, and
appeared in its proceedings [14].
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to the codewords, so that the average codeword length
∑n

i=1 pi`i is mini-
mized. The algorithm for the construction of the code repeatedly combines
the two smallest probabilities and may be implemented in time O(n log n).
A useful way to represent the code is by means of a binary tree called a
Huffman tree. The leaves of the tree are associated with the elements of the
alphabet. Edges in the tree pointing to a left or right child are labeled by
0 or 1, respectively, and the concatenation of the labels on the path from
the root to a given leaf yields the corresponding codeword. In a more gen-
eral setting, integer frequencies or even arbitrary positive numbers called
weights W = {w1, . . . , wn} are used instead of probabilities, and it is the
weighted average

∑n
i=1 wi`i that is minimized. The algorithm remains the

same. A tree minimizing this sum is called optimal ; Huffman’s method pro-
duces optimal trees, but not all optimal trees can be obtained directly by
the Huffman algorithm.

It should be noted that the set of lengths {`1, . . . , `n} produced by Huff-
man’s algorithm for a given distribution {w1, . . . , wn} is not necessarily
unique. In fact, there are distributions for which the number of different
such lengths-sets might be exponential [8].

A data structure called a skeleton tree, or sk-tree for short, has been
introduced in [12], which is especially suited for fast decoding of Huffman
encoded texts. An sk-tree is a Huffman tree in which all disjoint full subtrees
have been replaced by their respective roots (precise definitions are given
below). The storage requirements of sk-trees are much lower than those of
traditional Huffman trees. The latter have 2n−1 nodes, whereas the former
need only O(log2 n) nodes for trees of depth O(log n). The motivation for
the definition of an sk-tree is to accelerate the decoding of a file compressed
by means of a Huffman code. This is achieved by allowing the processing of
the compressed file, one bit at a time, until a leaf of the sk-tree is reached,
where the length of the current codeword w is already determined. This will
often be the case before having read all the bits of w. Then several bits,
from the one following the current position to the end of the codeword w, are
processed in a single operation. Decoding may be faster since a part of the
bit-comparisons and manipulations necessary for the conventional Huffman
decoding may be saved. Empirical results on large real-life distributions
show an average reduction of up to half and more in the number of bit
operations [12].

There are several applications for which Huffman trees may be replaced
by sk-trees in order to speed up processing time and/or save space, for exam-
ple, to accelerate compressed pattern matching, as shown in [22]. Another
application for which sk-trees are used to improve the time and space com-
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plexities is wavelet trees. A wavelet tree (WT), suggested by Grossi et al.
[9], is a data structure which reorders the bits of the compressed file into
an alternative form, thereby enabling direct access, as well as other efficient
operations. WTs can be defined for any prefix code, and the tree structure
associated with this code is inherited by the WT.

The internal nodes of the WT are annotated with bitmaps. The root
of the WT holds the bitmap obtained by concatenating the first bit of each
of the sequence of codewords in the order they appear in the compressed
text. The left and right children of the root hold, respectively, the bitmaps
obtained by concatenating, again in the given order, the second bit of each
of the codewords starting with 0 and starting with 1, respectively. This
process is repeated similarly on the next levels: the grand-children of the root
hold the bitmaps obtained by concatenating the third bit of the sequence of
codewords starting, respectively, with 00, 01, 10 or 11, if they exist at all,
etc.

Various manipulations on the bitmaps of the WT are based on fast im-
plementations of operations known as rank and select. These are defined for
any bit b ∈ {0, 1} as

rankb(B, i) – number of occurrences of b in B up to and including position
i; and

selectb(B, i) – position of the ith occurrence of b in B.

Efficient implementations for rank and select are due to Jacobson [11], Ra-
man et al. [19], Okanohara and Sadakane [18], Barbay et al. [1] and Navarro
and Providel [17], to list only a few. WTs can be seen as extensions of rank
and select operations to a general alphabet.

Recently, Baruch et al. [2] suggested to replace a Huffman shaped WT
by a skeleton tree shaped WT in order to support faster random access
and save storage, at the price of less effective rank and select operations.
The general idea is to apply some pruning strategy on the internal nodes
of the WTs, so that the overhead of the additional storage, used by the
data structures for processing the stored bitmaps, is reduced. Moreover, the
average path length corresponding to the codewords is also decreased, and
so is also the average time spent for traversing the paths from the root to
the desired leaf, which is the basic processing component used to evaluate
random access. The suggestion of [2], combining wavelet with skeleton trees
has been extended in [5], where it was empirically shown that reordering
the sk-tree may enhance the direct access via WTs. The pruning idea was
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also applied on WTs corresponding to Fibonacci codes [15], rather than to
Huffman codes based WTs.

The current paper is organized as follows. We recall the details of sk-trees
in Section 2. In Section 3, we develop our method for designing enhanced
sk-trees with a minimal number of nodes, and prove its optimality. Sec-
tion 4 deals with reduced skeleton trees. Finally, Section 5 presents some
experimental results.

2. Skeleton Trees

Since the codes we consider herein consist of codewords corresponding
to the leaves of trees, all the codes are prefix-free. The trees are binary
trees, although one could easily extend the ideas to more general k-ary trees
with k > 2. The level (also called depth) of a node v in a given tree is the
number of edges one has to traverse to get from the root to v. The height
of a (sub)tree is the largest depth of one of its nodes. A full tree is a tree
all of whose leaves are on the same level, as in Figure 3(a). A complete tree
is a tree in which every internal node has exactly two children, a left and
a right one1. A tree all of whose leaves are on two adjacent levels will be
called almost full . The trees in Figure 1 are complete; they are not full,
but they are almost full. The tree in Figure 2(a) is not almost full, but
its subtree rooted at the node labeled 3 is almost full. A compact way to
describe a complete tree is by means of its quantized source 〈n1, n2, . . . , nk〉
or q-source for short, as defined in [6], where ni is the number of codewords
of length i, for 1 ≤ i ≤ k, and k is the longest codeword length. Note
that

∑k
i=1 ni = n. The q-source does not uniquely identify a given tree, for

example, the q-source of both trees in Figure 1 is 〈0, 2, 4〉, as for both there
are no codewords of length 1, two codewords of length 2, and four codewords
of length 3. Nevertheless, it is convenient to use the q-source for Huffman
trees, since their shape is generally of no matter, and all trees belonging to
same q-source share the same codeword lengths.

A well-known property of complete trees is that they satisfy the Kraft
equality , see, e.g., [13, Chapter 4]: if `1, `2, . . . , `n are the lengths of the

1We are aware of the fact that there is, unfortunately, no consensus for these defini-
tions, and that some authors prefer to invert them, e.g., [4]. We advocate, however, our
definition, which can be found, among others, in [20], because of the obvious connection
to complete codes.

4



codewords, or equivalently, the depths of the leaves in the tree, then

n∑
j=1

2−`j =
k∑

i=1

ni2
−i = 1. (1)

In fact, the Kraft equality is often used as a characteristic of a complete
code, in the sense that if a sequence of numbers `1, `2, . . . , `n satisfies eq. (1),
then a complete tree can be constructed whose leaves are at the given depths.

Given a complete binary tree T , pruning a subtree T ′ of T is a process
that can be applied if T ′ is a full subtree. It consists of eliminating all the
nodes of T ′ except its root. For example, in Figure 1(b), the rightmost
subtree of height 2 could be pruned, leaving only its root (labeled 9) in the
tree.

Lemma 1: Pruning a subtree from a complete binary tree results in a com-
plete binary tree itself.

Proof: Actually, an even stronger property could be claimed, namely, that
the replacement by its root of any subtree of a complete tree, not just for
full subtrees, does not change the fact that all internal nodes still have two
children. Thus the resulting tree is also complete.

We may thus repeatedly prune subtrees from a given Huffman tree, and
this will not affect the completeness of the remaining tree. Our goal is to
prune several disjoint subtrees from optimal trees for some given weight
distribution, so that the number of nodes remaining in the tree is minimal.
An sk-tree is what remains after having pruned all the possible full subtrees
of a complete binary tree. The size and shape of an sk-tree does, however,
depend on the shape of the complete tree we started from. The trees in
Figure 1 show different sk-trees derived from trees with different shapes, yet
both optimal. As mentioned, Huffman trees are optimal, however, not all
optimal trees can be attained directly via Huffman’s algorithm. Consider
for example the sequence of frequencies {7, 5, 3, 3, 2, 2}, yielding the Huffman
tree in Figure 1(a). The tree in Figure 1(b) is still optimal as the codeword
lengths remain the same as the ones in Figure 1(a), but it is not a Huffman
tree: Huffman’s algorithm would not combine the weights 6 and 4, since
there is a weight 5 between them, and the algorithm adds the two smallest
weights in each iteration.

For a given set of weights, there may be many equivalent Huffman trees,
as it is possible to build up to 2n−1 different Huffman trees by interchanging
the left and right subtrees of some internal node. The number of different
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(a)   Huffman tree. (b)   Optimal non-Huffman tree.
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Figure 1: Optimal trees for weights {7, 5, 3, 3, 2, 2}.

Huffman trees can be even larger in case the set of weights W contains
ties, or even when the sequence of weight sums, that are considered during
Huffman’s algorithm, contains ties.

A tree is called canonical [21] if, when scanning its leaves from left to
right, they appear in non-decreasing order of their depth. Thus the tree
in Figure 1(b) is canonical, but that in Figure 1(a) is not. Another way
for defining canonicity is that when the codewords are sorted in decreasing
order by the frequencies of their corresponding symbols, they are ordered
lexicographically. This second definition is stronger, but the difference does
not affect the discussion below. To build a canonical tree, Huffman’s algo-
rithm is only used for generating the optimal lengths `i of the codewords,
and then the i-th codeword is defined as the first `i bits immediately to the
right of the “binary point” in the infinite binary expansion of

∑i−1
j=1 2−`j , for

1 ≤ i ≤ n [7]. Turpin and Moffat [23] use canonical codes, with a symmetri-
cally equivalent definition, to enhance decoding in Huffman encoded texts,
so that more than a single bit can be processed in one machine operation.

Canonical trees gather all codewords of the same length consecutively,
motivating the idea of pruning such trees. Although canonical trees reduce
the number of different Huffman trees dramatically, there are still weight
distributions for which even the canonical tree is not unique. For example,
consider the frequencies {2, 1, 1, 1}, yielding the Huffman trees in Figure 2.
Huffman’s algorithm does not impose any strict order on the nodes in each
level, nor any preference on connections between equal values and specific
nodes. In the second step of the construction of the Huffman tree for our
example, the tree has 3 leaves, with weights 1, 2 and 2. The value 2 thus
appears both on level 1 (the level of the root being defined as 0) and on
level 2. The third and last step of the construction is then to create two new
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nodes with weight 1 each, and define them as being the children of one of the
leaves with weight 2. Choosing the leaf on the lowest level yields the tree in
Figure 2(a), choosing the leaf on level 1 yields the tree in Figure 2(b). Both
choices give the weighted sum 2·1+1·2+1·3+1·3 = 1·2+1·2+1·2+2·2 = 10,
so both trees are Huffman trees and thus optimal.

2

21

1 1

3

5

2

1 1 1 2

3

5

(a) (b)

Figure 2: Different optimal canonical trees for the frequencies {2, 1, 1, 1}.

Figure 3 generalizes this example to show that weight distributions giving
more than a single canonical Huffman tree may be found for every alphabet
size. Consider the set of n = 2h frequencies {2, 1, . . . , 1}, for h ≥ 2. As in
the previous example, there are two choices for splitting a node with weight
2 in the last step of the construction. While Figure 3(a) chooses to locate
this node on level h − 1 of the tree, Figure 3(b) selects the only node with
value 2 on level h.

1 11 1

2 2

1 11

2

2

3

. . .

(a) (b)

1 1

2 2

1 11

2 3

. . .

1 1

2

Figure 3: Canonical trees are not unique.

The original definition of the skeleton tree in [12] uses an underlying
canonical Huffman tree, which here and below, refers to a canonical tree
built for optimal codeword lengths for a given probability distribution, even
if the specific canonical layout cannot be obtained directly by Huffman’s
algorithm, as, for example, the tree in Figure 1(b). Formally, an sk-tree is a
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canonical Huffman tree from which all full subtrees of depth h ≥ 1 have been
pruned. Thus, a path from the root to a leaf of an sk-tree may correspond to
a prefix of several codewords of the original Huffman tree. The prefix is the
shortest necessary in order to identify the length of the current codeword. A
leaf, v, of the sk-tree contains the height, h(v), of the subtree that has been
pruned (h(v) = 0 for leaves that were also leaves in the original Huffman
tree), as well as a list of symbols belonging to that subtree. In the examples
in Figure 1, as well as in the subsequent ones, we shall follow the convention
that the nodes of the sk-trees appear in gray or black (the use of black nodes
will be explained later). The values h(v) appear in boldface to the right of
the leaves of the sk-trees in Figure 1.

Figure 3 shows that different canonical trees constructed for the same
set of weights may result in different sk-trees, as can be seen by inspecting
the nodes highlighted in gray. Moreover, the example also shows that the
difference in the number of nodes of different sk-trees for the same set of
weights may not be bounded by a constant: the number of nodes in the
sk-tree of Figure 3(b) is 2 +

∑h−1
i=0 2i = 2h + 1 = n + 1, whereas it is just

1 in the sk-tree of Figure 3(a), as the entire tree, except the root, may be
pruned.

Since one of the goals of using sk-trees is saving space, it makes sense
not to restrict the trees to be pruned only to those generated by Huffman’s
algorithm, but to consider the larger set of optimal trees for a given weight
distribution. Figure 1(b) is an example that such a strategy may reduce
the number of nodes in the sk-tree, from 7 to 3 in this example. Intuitively,
canonical Huffman trees seem then to be a good choice in order to achieve
smaller sk-trees, because the canonical structure collects all the leaves ap-
pearing on the same level together. However, we show in the following
section that this intuition may be misleading.

3. Optimal Pruned Trees

The challenge is to find a way to produce the most compact pruned tree
possible. An optimal sk-tree is defined as an sk-tree having the minimum
number of nodes among all sk-trees obtained by pruning an optimal tree for
a given weight distribution. If the canonical tree in Figure 4(a) is optimal
for some given distribution, then so is the non-canonical tree in Figure 4(b);
yet the sk-tree of the latter is smaller, by 2 nodes, than that of the former.

For a general example of a non-optimal sk-tree based on a canonical tree,
consider the canonical Huffman tree for n = 2h codewords given in Figure 5,
with h ≥ 3. This tree is of height h+ 1, has its two rightmost leaves on level
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(a)  sk-tree from canonical tree. (b)  better sk-tree from non-canonical tree.

Figure 4: Optimal pruned tree.

h + 1, a single leftmost leaf on level h − 1 and the remaining n − 3 leaves
on level h. Figure 4(a) is the particular case h = 3. As a result, every node
(except the two lowest) on the path from the root to the rightmost leaf, is
the root of an asymmetric subtree which is not full: its right subtree is one
level deeper than its left one. Similarly, the same is true also for the nodes
on the path from the root to the leftmost leaf. In particular, the roots of
the two largest full subtrees, which appear in the center of the figure, are
not children of the same node. The number of nodes in the corresponding
sk-tree is 4h− 3: four nodes on each level, except for that of the root (with
a single node), and the first and the lowest levels, having two nodes each.

... ...

Figure 5: A non-optimal sk-tree for n ≥ 8 codewords.

On the other hand, the tree given in Figure 6 has the same codeword
lengths as that in Figure 5, but the locations of the nodes are different,
resulting in a non-canonical tree. Nevertheless, there are fewer nodes in the
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corresponding pruned tree. There are now two nodes on each level, except
that of the root, which has only one node, for a total of 1+2(h−1) nodes. The
difference between the number of nodes in the two sk-trees is thus 2(h− 1),
therefore this example shows that sk-trees of canonical Huffman trees might
produce Ω(log n) extra nodes as compared to pruning some non-canonical
optimal tree. Therefore, not only does a canonical tree fail to provide the
best possible sk-tree for n leaves, but moreover, the difference in the number
of nodes between an sk-tree based on pruning a canonical tree and the best
possible sk-tree might not even be bounded by a constant.

...

Figure 6: Optimal pruned tree for the tree of Figure 5.

Our search for an optimal sk-tree will be guided by the following re-
flexions. Since there might be no obvious connection between the shape of
the optimal tree to start with and the fact that the corresponding sk-tree
has a minimal number of nodes, as we have seen in the examples above,
we shall circumvent the problem of finding the best possible optimal tree to
be pruned by generating directly the requested sk-tree. This can be done
by working with the q-source N = 〈n1, n2, . . . , nk〉 of an optimal code for
the given weight distribution, rather than with one of its many possible
corresponding optimal trees. If a small number of different q-sources are
possible for a given frequency distribution and an optimal sk-tree for the
distribution is sought, all corresponding q-sources can be processed. If, on
the other hand, the number of possible q-sources is large, a polynomial al-
gorithm to find the optimal sk-tree for the given distribution has recently
been published in [16].

Starting with N , we shall produce the q-source M = 〈m1,m2, . . . ,mk′〉
of the optimal sk-tree, where k′ ≤ k. Any complete binary tree having M as
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q-source will be an optimal sk-tree, and we could, for example, choose the
canonical tree as representative. We shall also indicate how to get from the
optimal sk-tree to the optimal tree for the original n weights.

Lemma 2: Full subtrees having their leaves on different levels can be pruned
independently.

Proof: Full subtrees involve only leaves appearing on the same level. In
other words, if a subtree has leaves on different levels, it cannot possibly
be a full subtree and is therefore not a candidate for being pruned. Any
pruning may thus be applied to the leaves of a given level, without taking
leaves on other levels into consideration.

Consider level i and suppose there are ni leaves on this level. The largest
possible savings for this level can obviously be attained when ni is a power
of 2, say, ni = 2h, in which case, an entire full subtree of height h, having
its leaves on level i, may be pruned. That is, it seems at first sight that
an additional constraint has to be fulfilled, namely that the 2h leaves all
belong to the same subtree of height h, or in other words, they should all be
adjacent. Referring to Figure 1(a), there are n3 = 4 = 22 leaves on level 3,
but they do not belong to a single subtree of height 2. Nevertheless, we
show that the additional constraint is not needed.

Lemma 3: Given the number ni of leaves on level i, let 2h be the largest
power of 2 not larger than ni, that is, h = blog2 nic. Then an entire subtree
of height h may be pruned.

Proof: Consider the Kraft sum
∑k

j=1 nj2
−j . According to Lemma 1, re-

moving the 2h leaves on level i and adding a leaf on level i − h yields a
new q-source that also satisfies the Kraft equality. The new q-source thus
corresponds to a complete binary tree R. One can therefore choose any leaf
on level i − h of R and turn it to the root of a subtree of height h. The
resulting tree has ni leaves on level i belonging all to the same subtree.

It follows from Lemma 3 that even though the 2h leaves do not always
belong to the same subtree, as in Figure 1(a), it is still true that there
exists an optimal tree for which these nodes are clumped together, as in the
example of Figure 1(b). As another example for which ni is not a power of
2, the tree in Figure 4(a) has n3 = 5, but does not allow the pruning of a
subtree of height 2; but there exists an equivalent tree with leaves on the
same levels, e.g., the tree in Figure 4(b), for which four of the leaves on level
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3 are consecutive and part of the same subtree rooted at level 1.
The effect of the pruning on the q-source is materialized by updating the

value of ni to ni − 2h and incrementing ni−h by 1, reflecting the fact that
2h leaves have been removed from the tree and a new leaf has been added.
According to Lemma 1, the current q-source is again one of a complete tree,
so the same argument as above can be repeated for the new value of ni.
Ultimately, what one gets is a decomposition of ni into a sum of powers
of 2, that is, the standard binary representation of ni. For example, if
ni = 47, one could prune consecutively subtrees with 32, 8, 4 and 2 leaves
on level i, after which, a single leaf will remain on this level.

While the different levels can be treated independently, the order by
which to process them should not be arbitrary. Care has to be taken that
only original leaves are considered when looking for a subtree to prune,
and not newly added leaves resulting from a previous pruning action. This
suggests to consider the levels top down, from level 1 to level k. Since when
treating level i, nodes are only added at levels i−h, for h ≥ 1, the additional
nodes are inserted at levels that have been treated in previous iterations and
will thus not be processed any more.

Summarizing, we propose a greedy algorithm that considers, in order
for every 1 ≤ i ≤ k, the ni leaves corresponding to each codeword length i
individually, and repeatedly prunes full trees having their number of leaves
equal to 2h, for the largest possible h ≥ 1. The construction in [5] is similar,
but presented as a heuristic improving the use of wavelet trees.

Algorithm 1 gets as input parameter the q-source 〈n1, n2, . . . , nk〉 of an
optimal code for a given weight distribution and constructs a corresponding
optimal sk-tree after having generated its q-source 〈m1,m2, . . . ,mk′〉. We
have chosen here the canonical form for this optimal sk-tree, but any other
form could be used. The algorithm maintains a list L in which the pairs
(i, h) are inserted, each identifying a pruned subtree T , with i being the
index of the level of the leaves of T , and h being its height, implying that
the number of its leaves is 2h. Once the optimal sk-tree is constructed, the
elements in L are used to assign the correct values h(v) to its leaves v. The
list L can be implemented as queue or stack or any other way, as long as it
permits to process all of its elements in some order.

The algorithm can also be adapted to produce an optimal tree for the
given weight distribution, whose corresponding sk-tree is optimal. All one
needs to do is to replace the last line by

replace the leaf v by the root of a full subtree of height h
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Algorithm 1: Optimal Pruning Algorithm

OptimalPruning(〈n1, n2, . . . , nk〉)
for i← 1 to k do

mi ← ni

while mi ≥ 2 do
h← blog2 mic
mi ← mi − 2h

mi−h ← mi−h + 1
add the pair (i, h) to the list L

k′ ← max{i | 1 ≤ i ≤ k,mi > 0}
build canonical tree for 〈m1,m2, . . . ,mk′〉 and set h(v)← 0 to all its

leaves v
for each pair (i, h) ∈ L do

choose a leaf v on level i− h for which h(v) = 0
h(v)← h

Theorem 1: The sk-tree constructed by Algorithm 1 is optimal for the
given q-source.
Proof: The claim follows from the above discussion. Lemma 1 implies
that the structure of a complete tree may be maintained after each pruning
action. Lemma 2 justifies that each level is treated separately and Lemma 3
suggests the greedy approach. Since at each step, the number of eliminated
nodes is the largest possible, the size of the remaining tree at the end of the
process is minimal.

Applying Algorithm 1 on the q-source 〈0, 1, 5, 2〉 results in the q-source
〈1, 1, 2〉; a possible optimal tree yielding this optimal sk-tree is the one in
Figure 4. Applying Algorithm 1 on the h-tuple q-source 〈0, . . . , 0, 1, n−3, 2〉
corresponding to Figure 5 results in the (h− 1)-tuple q-source 〈1, . . . , 1, 2〉;
a possible optimal tree yielding this optimal sk-tree is the one in Figure 6.

4. Reduced Skeleton Trees

The pruning of Huffman trees can be extended even further to a reduced
tree that prunes the skeleton Huffman tree at some internal node at which
the length of the current codeword may only be partially determined. Specif-
ically, when getting to a leaf of a reduced skeleton tree, it is not necessarily
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possible to deduce the exact length of the current codeword, but some par-
tial information is already available: the length of the codeword belongs to a
set of size at most 2. We shall refer to a subtree of the Huffman tree that is
rooted by a leaf of the reduced tree as being almost full. More formally, each
node v of the skeleton tree stores two values lower(v) and upper(v), which
are computed recursively as follows. If v is a leaf, lower(v) and upper(v) are
given the depth of v. Otherwise, lower(v) is given the minimum of lower
values of its children, and upper(v) is given the maximum of upper values
of its children. The reduced tree is defined as the smallest subtree of the
skeleton tree for which all the leaves correspond to a range of at most two
consecutive codeword lengths, i.e., upper(w) ≤ lower(w) + 1. Figure 7(a)
presents a canonical Huffman tree where nodes belonging to the correspond-
ing reduced tree are highlighted in black, while those of the skeleton tree
include also the gray nodes in addition to the black ones.

5

6
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8

4

3

2

1

0

(a) Reduced tree derived from a
canonical Huffman tree.
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4

3
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1

0

(b) Reduced tree with fewer nodes,
derived from a non-canonical tree.

Figure 7: Reduced canonical tree for the q-source 〈0, 0, 2, 2, 8, 16, 0, 32〉 (m = 2).

The decoding for reduced trees is similar to that of skeleton Huffman
trees. When a leaf w is reached during the traversal of the reduced tree, the
current codeword is initialized as having length lower(w). As the codewords
assigned to the leaves on a given level of the reduced tree are consecutive
binary numbers, verifying whether the codeword for w is of length lower(w)

14



or lower(w) + 1 just needs one more comparison2.

4.1. Greedy attempts to find optimal reduced skeleton trees

Extending the work of Section 3, we consider the problem of finding the
reduced tree with a minimum number of nodes. An exhaustive search, gen-
erating all possible Huffman trees and then constructing the corresponding
reduced skeleton trees to choose the one with a minimal number of nodes,
is obviously impractical. A first attempt that comes to mind is to start the
pruning process from a canonical tree, as suggested in [12] for sk-trees, but
this is not always optimal: Figure 7(b) presents a Huffman tree with the
same codeword lengths as in Figure 7(a) in which the resulting reduced tree
has fewer nodes, 7 instead of 9. Note that there is also a difference in the
number of nodes of the corresponding skeleton trees in this case, which is
13 and 9, respectively, depicted by the black and gray nodes.

As a second attempt, we try pruning the optimal skeleton tree derived
from Algorithm 1. However, referring to Figure 4, a reduced tree obtained
by pruning the optimal skeleton tree in Figure 4(b) yields five nodes, while
the non-optimal skeleton tree given in Figure 4(a) yields only three nodes
(as usual, colored in black).

Figure 8: Example of the partition of leaves on a given level into three different sets.

The construction of optimal reduced trees faces a more involved challenge
than that of skeleton trees, for which one could operate on a single level at
a time, according to Lemma 2. In reduced trees, one has to consider two
adjacent levels, and choose, among their leaves, those that will be joined

2Actually, in the special case when lower(w) = upper(w), even this comparison may
be saved, see [12].
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into the same almost full subtrees. For example, Figure 8 gives a specific
tree in which the set of leaves on level 5, colored in light gray, is partitioned
into three subsets of leaves belonging to different almost full subtrees: the
square leaf is adjoined to level 6, the almost full subtree including the eight
hexagon leaves has its leaves on levels 4 and 5, and the four octagon leaves
belong to a full, rather than only almost full, subtree rooted by a leaf of the
reduced skeleton tree.

Consider the possibility of extending the optimal algorithm developed in
the previous section for sk-trees. We would then process pairs of adjacent
levels whose numbers of leaves are ni and ni+1, and try to generate repeat-
edly the largest almost full subtrees having their leaves on levels i and i+ 1.
Formally, we are looking for

max{x + y | x ≤ ni, y ≤ ni+1, ∃h 2x + y = 2h}, (2)

to prune a subtree with x leaves on level i and y leaves on level i + 1. This
raises then the question of the order in which the levels are to be processed:
contrarily to Algorithm 1, in which each level is treated independently, the
pair of levels (i, i + 1) affects both pairs (i− 1, i) and (i + 1, i + 2).

Greedy algorithms, that try to identify the largest almost full subtrees
for every pair of adjacent levels in our quest for optimal reduced skeleton
trees, do not necessarily yield optimal solutions. In particular:

1. joining pairs of adjacent levels in a top-down scan of the tree;

2. joining pairs of adjacent levels in a bottom-up scan of the tree; and

3. joining, at each step, the levels yielding the largest possible subtree to
be pruned.

Counterexamples showing the non-optimality of these approaches are
the q-sources 〈0, 0, 6, 2, 4〉, 〈0, 1, 1, 5, 8, 2, 0, 8〉 and 〈0, 0, 2, 8, 2, 7, 9, 2〉, respec-
tively, and the corresponding tree pairs can be seen in Appendix A.

4.2. Dynamic Programming Solution

This section presents a dynamic programming (DP) solution for finding
the optimal reduced skeleton tree, based on finding an optimal partition of
the leaves of the tree according to equation (2). We first extend the notion
of a q-source as follows: a string 〈m1,m2, . . . ,mi〉 is called a sub-q-source,
or sq-source for short, if there exists a q-source 〈n1, n2, . . . , nk〉 such that

i ≤ k, ∀j < i mj = nj and mi ≤ ni, (3)
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that is, the elements of an sq-source are a prefix of some q-source, the first
i− 1 numbers being identical, and the last one being smaller or equal. For
example 〈0, 0, 6, 1〉 is an sq-source, because 〈0, 0, 6, 2, 4〉 is a q-source. Note
that while any q-source satisfies the Kraft equality of eq. (1), an sq-source
satisfies

∑i
j=1 mj2

−j ≤ 1, with equality only if the sq-source is a q-source,
that is, i = k and mk = nk.

This extension to sq-sources is needed because the DP process incre-
mentally builds an optimal solution basing itself on previously calculated
optimal solutions of sub-problems. However, in our case, the sub-problems
correspond to prefixes of the given q-source in the sense defined by equa-
tion (3), but these sq-sources do not describe full binary trees.

The idea is therefore to consider the problem formally as finding an
optimal partition of the elements described by some sq-source, according to
some criteria. It is only at the final stage of the DP, when the input sq-source
is in fact the original q-source, that the optimal partition corresponds to an
optimal reduced skeleton tree.

The criterion for the partition is the following. Consider the number mj

in the given sq-source 〈m1,m2, . . . ,mi〉 as the number of leaves on level j
in some part of a binary tree. In a process we shall call partitioning the
q-source, we try to group adjacent leaves together when they can be the
leaves of full or almost full binary trees, and seek such a grouping which
yields the smallest possible number of trees. More precisely, given that
there are m1 + m2 + · · ·+ mi leaves in total, we try to partition them into
the smallest possible number h of disjoint subsets G1 ∪G2 ∪ . . .∪Gh, called
classes, such that each Gj consists of leaves satisfying one of the following
constraints:

1. either all the w leaves in Gj belong to the same level, and w is a power
of 2;

2. or the leaves in Gj belong to two adjacent levels, say x leaves from the
mt on level t and y leaves from the mt+1 on level t + 1, and 2x + y is
a power of 2.

For example, Figure 9 gives the optimal partitions for the sq-sources
〈0, 0, 3, 3〉, 〈0, 0, 3, 4〉 and 〈0, 0, 3, 5〉. The black squared nodes represent the
roots of full or almost full binary trees of the possible optimal partitions.
For the rightmost tree, G1 includes all the m3 = 3 = x leaves, and y = 2
of the m4 = 5 leaves, and indeed 2x + y = 8 = 23; G2 includes w = 2 of
the remaining m4 − 2 leaves and G3 is the remaining singleton. There is
another optimal partition for 〈0, 0, 3, 5〉, in which the number of leaves in

17



G1, G2 and G3 are 1 (from level 3), 6 (2 from level 3 and 4 from level 4)
and 1 (from level 4), respectively.

G

G

G

1

2

3

Figure 9: The optimal partitions for the sq-sources 〈0, 0, 3, 3〉, 〈0, 0, 3, 4〉 and 〈0, 0, 3, 5〉.

A DP solution uses a table of size k × max{ni}ki=1 named PT . The
value PT [i, y] denotes the minimum number of classes Gj into which the
sq-source 〈n1, n2, . . . , ni−1, y〉 can be partitioned. For example, if the input
is the q-source 〈0, 0, 3, 7, 5, 2〉, the calculated values of PT [4, 3], PT [4, 4] and
PT [4, 5] are 2, 2 and 3, respectively.

The value of PT [i, y] is obtained by inspecting the currently last levels i−
1 and i and splitting the ni−1 leaves of level i−1 into two parts of x and ni−1−
x leaves, for all possible values of x. For the sq-source 〈n1, n2, . . . , ni−2, x〉,
the optimal solution can then be found in PT [i − 1, x]. What is left is to
partition the ni−1−x remaining leaves of level i−1 and the y leaves of level
i into the minimum number of classes.

In Algorithm 1, for a given number z of leaves, the minimal number M
of full subtrees in the decomposition was found by repeatedly decreasing z
by the largest possible power of two; equivalently, M is N1B(z), the number
of 1-bits in the standard binary representation of z, which is often called
popcount(z). Similarly, in our case dealing with almost full subtrees with z
leaves on level i − 1 and y leaves on level i, the minimal number of classes
will be N1B(2z + y), according to eq. (2).

We can thus summarize the DP construction in the formal algorithm
below. Recall that a full binary tree with x leaves has 2x − 1 nodes, thus
the number of nodes in an optimal reduced tree is calculated in line 6 using
the answer retrieved from cell PT [k, nk] for the entire q-source. From the
above discussion, we conclude the following.

Theorem 2: The size of the reduced sk-tree computed by Algorithm 2 is
optimal for the given q-source.

An example of the execution of the DP algorithm can be found in Fig-
ure 10. The time complexity of the algorithm is clearly bounded by O(kn2),
where n = max{n1, . . . , nk}. The necessary space for storing the full DP
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Algorithm 2: Optimal Reduced Skeleton Trees

SizeOfOptimalReduced(〈n1, n2, . . . , nk〉)
1 PT [0, 0]← 0
2 PT [i, y]←∞ 0 ≤ i ≤ k, 0 ≤ y ≤ ni

3 for i← 1 to k do
4 for y ← 0 to ni do
5 PT [i, y]← min

0≤x≤ni−1

(
PT [i− 1, x]+ N1B(2ni−1 − 2x + y)

)
6 return 2 · PT [k, nk]− 1

table is O(kn). However, if we are only interested in the size of the reduced
tree, it suffices to store only two last rows of the table (i.e., PT [i− 1, y] and
PT [i, y] for all y), which decreases the space complexity to O(n).

Reconstructing an optimal reduced tree together with the underlying
Huffman tree requires some more effort. First of all, a standard technique
of storing parents of states of the DP should be used. More precisely, in
addition to PT [i, y], we store parent[i, y] that is equal to an index x that
yields the minimum in line 5 of the algorithm. Then the algorithm can
go back from PT [k, nk] to PT [0, 0] using these values, as shown by arrows
in Figure 10. On the way it restores, for every pair of levels i − 1 and i,
the numbers of leaves at these levels that are to be combined together into
classes, that is, full or almost full subtrees; when going from PT [i, y] to
PT [i−1, x] with x = parent[i, y], we get y leaves at level i and z = ni−1−x
leaves at level i− 1.

Assume that z leaves at level i − 1 and y leaves at level i are to be
partitioned into subtrees. Let u = 2z + y. From the above discussion
we know that these leaves can be partitioned into N1B(u) classes Gj which
correspond to full or almost full binary trees. For every p = blog2 uc, . . . , 0, if
the standard binary representation of the integer u has the bit corresponding
to 2p set, then the reduced tree has a leaf at level i − p. In the underlying
Huffman tree there is a full or an almost full subtree with root at level i−p.
We can create the subtree by using w1 = min(2p−1, z) leaves at level i − 1
and w2 = 2p − 2w1 leaves at level i and then decrease z by w1 and y by w2.
For example, if there are z = 3 leaves at level 3 and y = 5 leaves at level 4
to be partitioned into subtrees, we have u = 2 × 3 + 5 = 11 = (1011)2, so
the values for p are 3, 1 and 0. This corresponds to subtrees with roots at
levels 1, 3 and 4, as shown on the rightmost example of Figure 9. For the
subtree that corresponds to p = 3, we take all the w1 = 3 leaves from level
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Figure 10: An example of the execution of the DP algorithm for the q-source
〈0, 0, 3, 7, 5, 2〉. The values in the cells represent PT [i, x].

Figure 11: An optimal reduced tree for the q-source 〈0, 0, 3, 7, 5, 2〉; see also Figure 10.

3 and w2 = 2 leaves from level 4.
Finally, all the leaves of the reduced tree need to be joined together to

form the tree. To this end we can construct a canonical full binary tree with
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this set of leaves. Note that the leaves of subtrees can be sorted by depths
in O(k + n) time using counting sort.

As an example, an optimal reduced tree and the corresponding Huff-
man tree for the q-source 〈0, 0, 3, 7, 5, 2〉 are shown in Figure 11. They are
constructed according to the path of parents (see Figure 10):

• parent[6, 2] = 2, z = 3, y = 2 and u = 8 imply an almost full subtree
in the Huffman tree that contains 3 leaves at depth 5 and 2 leaves at
depth 6; the root of this subtree has depth 3;

• parent[5, 2] = 2, z = 5, y = 2 and u = 12 imply a full subtree that
contains 4 leaves at depth 4 and an almost full subtree that contains
1 leaf at depth 4 and 2 leaves at depth 5; the roots of these subtrees
have depths 2 and 3, respectively;

• parent[4, 2] = 0, z = 3, y = 2 and u = 8 imply an almost full subtree
that contains 3 leaves at depth 3 and 2 leaves at depth 4; the root of
this subtree has depth 1.

When the reduced tree is constructed, the subtrees are ordered by the depths
of their roots so that the reduced tree has a canonical form. Let us note
that in this case the underlying Huffman tree is not necessarily in a canonical
form. Let us also note that the reduced tree is generated according to the
set rather than the sequence of depths. For example, if one would try to
adhere to the order of depths as they were recovered above (i.e., with depths
of roots 3, 2, 3, 1), no corresponding tree could be constructed.

4.3. Reduced trees derived from canonical Huffman trees

We saw already in Section 4.1 that starting the pruning process from
a canonical Huffman tree does not necessarily lead to a smallest possible
reduced tree. Next we show that not only does this approach not yield an
optimum, but the difference in the number of nodes between an optimal
reduced tree and a reduced tree that has been derived from a canonical
Huffman tree may even not be bounded by a constant.

We start with a special case seen at the beginning of this section: Fig-
ure 7(a) presents the eight nodes reduced tree derived from a canonical
Huffman tree for the q-source 〈0, 0, 2, 2, 8, 16, 0, 32〉, whereas Figure 7(b) is
an improved reduced tree for the same q-source with only six nodes. The
q-source for the generalisation of this example to a tree of height 3m + 2,
with m ≥ 2, is given in Figure 12. The upper line lists the indices of the
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1 2 · · · m m+1 m+2 m+3 m+4 m+5 m+6 m+7 · · · 3m−2 3m−1 3m 3m+1 3m+2

0 0 · · · 0 2 2 23 24 26 27 29 · · · 23m−5 23m−3 23m−2 0 22m+1

Figure 12: q-source for the general case of the trees in Figure 13 and 14.

levels i above the corresponding ni values for the number of leaves. The
corresponding generalized canonical Huffman tree is presented in Figure 13.

The canonical tree is constructed so that the lowest level, indexed 3m+2,
is two levels deeper than the adjacent level with leaves, indexed 3m, so that
these levels cannot be combined in the reduced tree; their common ancestor
x, on level m− 1, as well as all ancestors of x itself, should thus also belong
to the reduced tree. The remaining levels of the tree can only be partially
combined: The leaves on levels i ∈ {m + 3,m + 4, . . . , 3m} are arranged
so that the ni = 2` leaves on level i are partitioned between an increasing
number of subtrees. Specifically, the 8 nodes on level m+ 3 are divided into
two subtrees with number of leaves 4 and 4, and the 16 nodes on level m+4
are divided into two subtrees with number of leaves 8 and 8. The leaves on
the following two levels (64 leaves on level m + 5 and 128 leaves on level
m + 6) are each partitioned into three subtrees, with number of leaves 16,
32, 16 and 32, 64, 32, respectively. The leaves on the following two levels
(512 leaves on level m + 7 and 1024 leaves on level m + 8) are partitioned
into four subtrees with number of leaves 64, 256, 128, 64 and 128, 512, 256,
128, and so on. Figure 7 is the special case for m = 2.

Counting the number of nodes in the reduced tree, there are: a single
node, the root, on level 0; two nodes on level 1; four nodes on level 2; and six
nodes on each of the levels 3, 4, . . . ,m − 1. There are two additional nodes
on level m, so the total number of nodes in the reduced tree is 6m− 3, and
they appear in black in Figure 13.

A better reduced tree for the same q-source is presented in Figure 14.
There are two nodes on each of the levels 1 to m + 1, for a total of 2(m +
1) + 1 = 2m + 3 nodes, including the root. The difference in the number
of (black) nodes in the reduced trees of Figure 13 and Figure 14 is, thus,
4m− 6, which is a function of their height, and bounded below by Ω(log n).

Note that the number of (gray or black) nodes in the skeleton tree of
Figure 13 is 2m(m+ 1) + 1, for m > 1, which also shows that the number of
nodes in the reduced tree can improve on that of the corresponding skeleton
tree by a factor of m.
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Figure 14: Non-constant improvement of reduced skeleton Huffman trees.

5. Experimental Results

We considered four texts of different languages and alphabet sizes. ebib
is the Bible (King James version) in English, in which the text was stripped
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of all punctuation signs; ftxt is the French version of the European Union’s
JOC corpus, a collection of pairs of questions and answers on various topics
used in the arcade evaluation project [24]; sources is formed by C/Java
source codes obtained by concatenating all the .c, .h and .java files of the
linux-2.6.11.6 distributions; and English is the concatenation of English text
files selected from etext02 to etext05 collections of the Gutenberg Project,
from which the headers related to the project were deleted so as to leave just
the real text. In addition, we considered also Zipf’s law [25] on |Σ| = 200
elements, which is a theoretical distribution rather than a real-life dataset.
The law is believed to govern the distribution of the words in a large natural
language text, and is defined by the weights pi = 1/(iH|Σ|), for 1 ≤ i ≤ |Σ|,
where Hn =

∑n
j=1(1/j) is the n-th harmonic number.

Table 1 presents some information on the data files involved. The second
and third columns present the original file sizes in MB and millions of words,
and the fourth column gives the size of the encoded alphabet, |Σ|.

File size # of words |Σ|
(MB) (in millions)

ebib 3.5 0.6 53

ftxt 7.6 1.2 127
sources 200.0 25.8 208
English 200.0 37.0 217
Zipf – – 200

Table 1: Information about the used datasets.

The experimental results are summarized in Table 2. Columns 2, 3 and
4 list, respectively, the number of nodes in a Huffman tree (Huff), in an
sk-tree based on pruning a canonical Huffman tree (can), as advocated in
[12], and in an optimal sk-tree (opt), according to Algorithm 1. The column
headed rdcd is the number of nodes in an optimal reduced sk-tree obtained
by further pruning the canonical sk-tree using the proposed DP solution
presented in Algorithm 2. There is a gain of 12–24% for the given example
files.

The last four columns of the table give the average number of necessary
bit comparisons for the decoding of a single codeword. Averages are evalu-
ated by using a model that assigns a probability of 2−m to a leaf of depth m.
Note that such a dyadic distribution is a good approximation of the actual
probabilities, as it yields the same Huffman tree. For a Huffman tree, the
number of comparisons is the codeword length, and for the skeleton trees,
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these numbers are smaller since no additional bit comparisons are needed
once the codeword length is known, that is, a leaf of the sk-tree has been
reached. Since decoding time should be roughly proportional to the number
of processed bits, these averages can be seen as estimates for the average
decoding times.

The improvement in the average number of bit comparisons of the opti-
mal over the canonical sk-tree is, for our examples, of about 4–11%. We see
that, in spite of the already significant savings in both time and space of the
canonical sk-tree versus Huffman trees, passing to the non-intuitive optimal
sk-trees may still yield some additional gain. In all cases, using reduced trees
rather than only skeleton trees decreases the number of nodes by additional
38% to 65%, implying an improvement of 13-33% on the average depth of
the leaves.

File number of nodes avrg # bit comparisons

Huff can opt rdcd Huff can opt rdcd

ebib 105 57 47 29 4.22 3.35 2.97 2.00
ftxt 253 89 77 45 4.59 3.14 3.02 2.19
English 433 129 113 57 4.48 3.22 3.00 2.00
sources 415 93 71 45 5.55 3.42 3.17 2.25
Zipf 399 49 37 13 6.15 4.09 3.61 2.75

Table 2: Comparing tree sizes and average number of bit comparisons.

6. Conclusion

Skeleton and reduced skeleton trees have been introduced as data struc-
tures improving both the space and time complexities of the decoding of
texts encoded by optimal prefix codes such as Huffman’s. The originally
suggested construction of skeleton and reduced trees is based on canonical
Huffman trees, clustering leaves on each level together, according to the
assumption that this should increase the number of nodes in the pruned
subtrees. This paper shows, however, that this intuition is misleading, as
pruning a canonical tree does not always yield a tree with a minimal num-
ber of nodes. Algorithms for creating such an optimal skeleton tree and
an optimal reduced tree are presented. We also showed that several sim-
ple approaches to construct reduced trees do not always result in optimal
ones. Our algorithms work for a given q-source. If the number of different
q-sources for the same distribution is too large to allow processing each on
its own, one can use the polynomial-time solution proposed in [16].
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Note that sk-trees and reduced trees are just one of the possibilities
to enhance decoding: while some prefix of each codeword is processed bit
by bit, several bits forming its suffix may be dealt with as a single unit.
Alternatively, other methods use lookup tables prepared in a preprocessing
stage, to decode prefixes or other substrings of codewords, or even several
codewords together, as a bulk [3].
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Appendix A

(a) Non-optimal reduced tree. (b) Better reduced tree.

Figure A.1: Top-down counterexample with q-source 〈0, 0, 6, 2, 4〉.

(a) Non-optimal reduced tree. (b) Better reduced tree.

Figure A.2: Bottom-up counterexample for the q-source 〈0, 1, 1, 5, 8, 2, 0, 8〉.

(a) Non-optimal reduced tree. (b) Better reduced tree.

Figure A.3: Maximum possible counterexample using the q-source 〈0, 0, 2, 8, 2, 7, 9, 2〉.
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