Enhanced Context Sensitive
Flash Codes™

GiLAD BARucH!, SHMUEL T. KLEIN! AND DANA SHAPIRAZ

! Department of Computer Science, Bar Ilan University, Ramat-Gan 52900, Israel
?Department of Computer Science, Ariel University, Ariel 40700, Israel

Email: gilad.baruch@biu.ac.il, tomi@cs.biu.ac.il, shapird@g.ariel.ac.il

A major property of flash memory is that a 0-bit can be changed into a 1-bit, but
the symmetric task of switching from a 1-bit to a zero may only be performed in
blocks, and is therefore often prohibited. This led to the development of rewriting
codes using the same storage space more than once, subject to the constraint
that 0-bits can be changed into 1-bits, but not vice versa. Context sensitive
rewriting codes extend this idea by incorporating also information gathered from
surrounding bits. Several new context sensitive rewriting codes are presented and
analyzed, some of which are better than the state of the art for sparse input.
Empirical simulations show a good match with the theoretical results.

Received 00 Month 2020; revised 00 Month 2020

1. INTRODUCTION

Flash memory is one of the most popular storage media
today [2, 3]. They can be found in our computers,
cell phones and many other devices we use on a daily
basis. One of the distinctive features of flash devices is
that writing zeros or ones is not symmetrical: changing
a 0 into a 1 is cheap and can be performed for each
individual bit, whereas the switch from 1 to 0 is only
possible by erasing entire blocks (of size 0.5MB or
more), and is considered as being so expensive that one
tries to avoid it, or at least, delay it as much as possible,
contrarily to magnetic memory used so far.

This asymmetric behavior triggered the development
of so-called rewriting codes, see, for example, [4, 5],
which try to reuse the same storage space, after a block
of bits has already been used to encode some data in
what we shall call a first round of encoding. When new
data should be encoded in a second round, the question
is how to use the same bits again, without having to
erase the entire block before rewriting. The problem
can be generalized to three or more writing rounds, all
with the same constraint of changing only 0Os to 1s.

In fact, Rivest and Shamir [6] suggested a simple way
to use three bits of memory to encode two rounds of
the four possible values of two bits, long before flash
memory became popular. They called these special
codes Write-Once Memory (WoM), and we shall refer
to the Rivest-Shamir code below as RS-WOM.

The efficiency of a given rewriting code may be
measured by a compression ratio, referred to as sum-

* This is an extended version of a paper that has been
presented at the International Conference on Implementation and
Application of Automata (CIAA’19) in 2019, and appeared in its
proceedings [1].

rate in the rewriting codes literature. It is defined as
the number of provided information bits divided by the
number of actually used storage bits. The number of
information bits is in fact the information content of
the data, whereas the number of storage bits depends
on the way the data is encoded. For a standard binary
encoding, information and storage bits are equivalent,
giving a baseline of 1. For rewriting codes, we use the
combined number of storage bits of all (two or more)
writing rounds, thus the above mentioned RS-WOM-
code yields a ratio of % = 1.333. For two rounds, the
theoretical best possible ratio is log3 = 1.585, see [7],
and the best ratio achieved so far is 1.509 [8].

Many rewriting codes, and RS-WOM in particular,
treat each encoded element independently of those
preceding it. A new paradigm of context sensitive
rewriting codes was introduced in [9] and extended and
analyzed in [10], suggesting to use a Fibonacci encoding
in the first round. Such a binary encoding has the
property that it contains no adjacent 1-bits [11], which
means that every 1-bit must be followed by a zero. This
can then be exploited in a second round to store new
information in these 0-bits, which can be located using
their context. The resulting compression ratio, though,
was only 1.19 in the best case and 1.145 at average,
which is inferior even to the simple RS-WOM.

In fact, the features of Fibonacci codes have been
employed in a variety of other applications such
as the robustness to errors [12], direct access [13],
fast decoding, compressed matching [11, 14, 15],
and compressed data structures [16]. The present
work is yet another application of Fibonacci related
encodings. It introduces several new context sensitive

2 BARUCH, KLEIN AND SHAPIRA

rewriting codes and shows their performance either
analytically or by means of empirical tests. They
improve the previously known codes but still do not
always outperform RS-wOM. The main contribution
is the development of the new methods themselves,
showing several techniques how the Fibonacci based
rewriting codes can be extended. We did, so far, not
succeed in deriving a new method that consistently
outperforms the best state of the art compression ratios
for all possible data densities of the input, but other
researchers might find some new variants that do,
following similar ideas as those to be presented below.
For sparse data, that is, when the probability of a 1-bit
is low, several of our suggested new methods are better
than the non context sensitive state of the art.

The next section recalls some details of the Fibonacci
WOM codes. Section 3 presents enhanced context
sensitive flash codes. Experimental results are
presented in Section 4, and Section 5 concludes.

2. FIBONACCI WOM CODES

Any integer can be represented as a binary string in
many different ways. The standard representation uses
the powers of 2 as basis elements, whereas Fibonacci
codes are based on the famous Fibonacci sequence,
defined by F; = F;_1+F;_5 for 7 > 1, and the boundary
conditions Fy =1 and F_; =0.

Any integer x can be decomposed into a sum of
distinct Fibonacci numbers, and can therefore be
represented by a binary string c.c._1---cocy of length
r, called its Fibonacci or Zeckendorf representation [17],
such that = !, ¢;F;. The representation of
will be unique if one starts with the largest Fibonacci
number F,. smaller or equal to x and then continues
recursively with x — F;.. For example, 77 = 554+21+1 =
Fy+F7+F so its binary Fibonacci representation would
be 101000001. As a result of this encoding procedure,
there are never consecutive Fibonacci numbers in any of
these sums, or, equivalently, the corresponding binary
representation does not contain adjacent 1s.

Fibonacci WOM codes are constructed in three stages.
In the first step, the n bits of the block are transformed
into a block of size r = 1.44n by considering the n bits as
the standard binary representation of some integer and
recoding this integer into its Fibonacci representation.
The resulting block will be longer, since more bits
are needed, but generally also sparser, because of the
property of prohibiting adjacent 1s. When the data is
not needed anymore and can be overwritten, the next
essential step is to fill in a maximal number of 1-bits
without violating the non-adjacency property of the
Fibonacci encoding. This means that in a run of zeros
of odd length 2i + 1, every second zero is turned on,
and this is true also for a run of zeros of even length
2i, except that for the even length, the last bit is left
as zero, since it is followed by a 1. As a result of this
filling strategy, the data block still does not have any
adjacent 1s, but the lengths of the 1-limited zero-runs

are now either 1 or 2, and the length of the leading run
is either O or 1.

Finally, in the third step new data is encoded in the
bits immediately to the right of every 1-bit. Since it
is known that these positions contained only zeros at
the end of step 2, they can be used at this stage to
record new data, and their location can be identified.
It has been shown that the compression efficiency of
the Fibonacci woM code is 1.194, 1.028, and 1.145,
in the best, worst and average cases. In the following
sections we show how the compression performance can
be improved by extending the above idea.

3. ENHANCED CONTEXT
FLASH CODES

3.1. Fibonacci

SENSITIVE

+ 2—1

The storage penalty incurred by passing from the
standard binary representation to the Fibonacci
representation is a factor of log, 2 = 1.44, for any block
size n, where ¢ = 1.618 is the golden ratio obtained by
taking the ratio of two consecutive Fibonacci numbers
Fy11/Fy and letting kK — oo. Thus each of the n bits
in the first round represents, on the average, only ﬁ
of a data bit of the original data.

The best case of the wOM code suggested in
[10] occurs when every second bit in the Fibonacci
representation is a 1-bit, and therefore it is followed
by a 0-bit that can serve as a data bit. In this case %
data bits can be written in the second round, giving a

total compression ratio of

1 1 1

The following simple method achieves the same ratio,
but not only on a single best case input, but for all
possible outcomes of the first writing round, which, as
before, is based on writing the data in its Fibonacci
representation. The second step, however, treats
every non-overlapping pair of successive bits separately.
There are only three kinds of possible pairs: 00, 01 and
10. If one wishes to write 0, the pair is left unchanged,
that is, 00, 01 and 10 all represent the value 0 in the
second round. In case one wishes to output a 1, the
pair is overwritten by the pair 11.

Each bit in the second round is thus encoded using 2
of the n bits, which again yields the same compression
ratio as in (1).

3.2. Ternary + 2—1

A further improvement may be based on the awareness
that the above method does not take advantage of
the fact that the pair 01 is never followed by 10,
suggesting to relax the requirements of the Fibonacci
representation used in the first round. Instead
of prohibiting the appearance of the substring 11
altogether, which is equivalent to using a Fibonacci

CONTEXT SENSITIVE FLASH CODES 3

encoding, we forbid the occurrence of the pattern 11
only at even indices in the string (indices are numbered
starting with 0), but allow 11 to appear at odd indices.
In other words, if we parse the string in pairs and
therefore consider only pairs starting at even indices,
01 may be followed by 10, since in this case the 11
formed by the concatenation of 01 and 10 occurs at an
odd index and is therefore permitted. In fact, using this
encoding, every number is now represented in a ternary
code using the symbols 00, 01 and 10, and this is an
improvement over the Fibonacci encoding.

In the second round, the bit stream is parsed
into pairs of bits just as in the second round of
the Fibonacci + 2 — 1 method of the previous
subsection, so that the second round again adds %
to the compression ratio. To calculate the improved
contribution of the first round, note that a string of
k trits (ternary digits) can be used to store numbers
between 0 and 3*¥ — 1 in ternary representation. If
each trit is encoded by two bits, an n-bit number in
binary representation uses log(3%) = 5 logy 3 = 1'528" =
0.792n bits in the first round. The total compression
ratio is thus

1 1
—(0.792n + Zn | = 1.292. 2

3.3. Fibonacci + Lookahead

We revert back to the Fibonacci encoding for the
first round, and suggest a different way to exploit our
knowledge that 01 is not followed by 10. The idea is to
apply a lookahead technique to the currently processed
bit, and act according to both its value and the value
of the new bits we wish to write.

The second round starts again by parsing the bit
stream into bit-pairs, having only three possibilities 00,
01 and 10. As in the Ternary +2 — 1 method, we shall
encode a 1-bit in the second round by 11, and a 0-bit
by either 00, 01 or 10. In addition, we now identify
and exploit certain bits that can be used as data-bits
because of their context, thereby increasing the total
number of bits we are able to write in the second round.

Denote the current pair to be overwritten by A. If it
is a 0-bit that needs to be written, the following cases
are considered:

1. if A = 10: the pair is left unchanged, and no
further bits can be treated in this iteration.

2. if A = 01: 01 is used to represent 0, but we use
the fact that the following bit is a 0, so it can be
used, alone, as a data bit (and be left as a 0 or be
turned into a 1);

3. if A= 00: in this case, we may look even further,
and consider the following two bits after A, denote
them as B.

(a) If B =00, the current pair A is left as 00, and
the two bits of B can be used as data bits.

(b) if B = 01, the current pair A is turned from 00
into 01, which brings us back to case 2., and
the next 0-bit is a single data bit. Note that
in this case, the 1-bit of B will be processed
again in the next iteration.

(¢) if B = 10, the current pair A is turned from
00 into 10, corresponding to case 1. above.
We then already know that the following pair
is also 10, but this one will be treated only in
the next iteration.

The decoding, accordingly, mainly parses bit-pairs: if
the pair is 11 or 10, the output is 1 and 0, respectively;
if the pair is 01 or 00, the output is 0, and it is followed,
respectively, by one or two data-bits, each of which may
contain O or 1, independently from their context. This
decoding procedure for the second round is summarized
in the automaton presented in Figure 1. The decoded
values are given in rectangles, and the decoding starts
at the initial state, identified by the gray node on the
left. An outgoing edge, labeled by d, is used to identify
a data bit: this means that the current bit, either 0 or
1, serves itself as output, and not just as a codeword.

FIGURE 1. Fibonacci + Lookahead decoding automaton

As example, assume that in the first round we are in-
terested in storing the value 4,340. The corresponding
Fibonacci representation, 100000010000100010, ap-
pears on the top line of Figure 2. The bits considered
in lookahead mode (two bits after 00 and a single bit
after 01) are overlined. Data bits are boxed. Note in
particular the second appearance of 00: two bits are ex-
amined by lookahead, but only the first is actually used
as a data bit, and the second is processed again in the
next iteration.

Suppose the new data to be stored is the number
1,325 in its standard binary form, that is 10100101101,
presented on the second line. The third line of Figure 2
are the bits that are actually stored in the second round.

As a decoding example, consider the binary
stream 110010011011111011. Following the decoding
automaton, the input is parsed as 11 0010 011 011
11 10 11 in which spaces are inserted for clarity each
time the automaton returns to its initial state, and the
decoded output is 1 010 01 01 1 0 1.

In the best case, the output of the first round is a
string consisting only of zeros, and we wish to write data

BARUCH, KLEIN AND SHAPIRA

1*round 1 0 0 0 [0] [0] o 1 [o] o0 0o o] 1 0o 0o 0o 1 o

S—— ——— —
1 0 1 0 0 1 0 1 1 0 1
— — =

27 round 1 1 0

o [1] [o] o 1

[1] o 1 [1] 1 1 1 0o 1 1

FIGURE 2. Fibonacci + Lookahead encoding example

in the second round in which the bits in all positions
with index 1+ 3k for & > 0, are zeros. The string of
zeros will then be parsed in quadruples, where each pair
00 is translated into one bit, and then the following two
zeros are encoded as individual data bits. Thus, every 4-
tuple gives rise to three data bits. The ratio is therefore
1/(logy2) + 3/4 = 1.444.

In the worst case, the output of the first round
is a string of alternating ones and zeros of the form
101010---. In this case, the parsing will be into
a sequence of 10 pairs, each of which will be left
unchanged to encode a 0-bit, or changed into 11 to
encode a 1-bit. The ratio is therefore, as seen before,
1/(log,2) +1/2 = 1.194.

For the average case, we need to know the
distribution of the pairs 00, 01 and 10 in a Fibonacci
encoded strings. Denote the probability of occurrence
of these pairs by pgg, po1 and p1g, respectively. Consider
the parsing into pairs of an infinite stream of bits that
has been generated under the Fibonacci constraint that
no adjacent 1’s appear. If we shift the parsing by a
single bit, all 10 pairs turn into 01 pairs and vice versa.
On the other hand, such a shift should not affect the
overall probabilities of the occurrences of the different
pairs, so we may conclude that pg; = p1o. However,
since every 1-bit is followed by 0, pio is equal to pq,
the probability of a single 1, which has been shown in

[18] to be py = 3 (1 - %) = 0.2764. We can thus also

derive pgg = 1 — 2p; = 0.447.

To evaluate the average compression ratio, we assume
that the data we wish to write has a 1-bit density of g,
with 0 < ¢ < % For random data, ¢ = %, which is not
unrealistic, as this will be the case for most compressed
or encrypted files. If ¢ > %, we may just encode the
1’s complement of the data. Following the encoding
details above, the contribution of the second round to

the average compression ratio will be

2 2 3 4 3 2
= 0.617 — 0.117q.

1 1 2 3 2 1
—q+ |pros+Ppo1=+Poo | Poo— +poig +pioz || (1—q)

In particular, for g = %, we get an average compression
ratio of

Viog, 2 + 0.558 = 1.253. (5)

3.4. Fibonacci + Inspect

We now take the previous idea of one step forward,
and propose to combine the lookahead with the 2 —
1 technique, which actually simplifies the processing,
because no data bits are interleaved. Denote the value
of the currently processed bit by C.

As above, if it is a 1-bit that needs to be written
in the second round, the following pair of bits, whose
value is either 00, 01 or 10, is turned into 11. If, on the
other hand, we wish to write a 0-bit, then if C' = 0, this
single bit suffices for the encoding. If C' = 1, it must be
followed by a zero, so the pair 10 can be used to encode
the 0 value. Decoding of the second round is according
to the automaton of Figure 3.

FIGURE 3. Fibonacci + Inspect decoding automaton.

As example, assume that in the first round we are
interested in storing the value 112. The corresponding
Fibonacci representation, 1001000010, appears on the
top line of Figure 4. Suppose the new data to be stored
is the number 38 in its standard binary form, that is
100110, presented on the second line. The third line
of Figure 4 are the bits that are actually stored in the
second round.

For decoding, consider the binary stream output of
the second writing round, 1101011110, of Figure 4,
which is parsed as 11 0 10 11 11 0 by the automaton
of Figure 3, yielding the decoded output 1 0011 0, as
expected.

In the worst case, every bit to be written in the second
round will require two bits, either because a 1 is to be
written, or because the currently seen pair is 10, so we
get a ratio of 1.19 as already shown.

For the average case, we use the same notation as
above to denote the distribution of the pairs 00, 01 and

CONTEXT SENSITIVE FLASH CODES 5

1%t round 1 O 0

1

0 0 0 01 O

e T N N N — =~

1 0

0

1 1 0

— N = A A A

2nd round 1 1 0

1

o0 1.1 1 1 O

FIGURE 4. Fibonacci + Inspect encoding example

10 in a Fibonacci encoded strings, and assume again a
1-bit density of ¢, with 0 < ¢ < %, for the data in the
second round.

The decoding of the second round is done by
iterations processing either a single bit or a pair of bits.
We first need to know the probability of the event F,
that the first bit of a given decoding iteration is a 0-
bit. This will be evaluated by conditioning on the bits
written in the preceding iteration. Let G stand for the
event that the last bit written in the previous iteration
of the second round was a 0. We have that

P(F) = P(F|G) P(G) + P(F|G) P(G).

But G occurs if and only if the bit written in the
previous iteration was a 0, so we know that P(G) = 1—¢
and P(G) = q.

If at the end of the second round, the previous bit
was a 0, this was also true at the end of the first round,
since 1s can not be turned into zeros. Therefore, the
event F|G is equivalent to having seen a 0-bit after a
0-bit in the Fibonacci encoding, and using our previous
notation, we get that the probability pg-o of this event
is

Doo 1-2p;

po-0 = P(F|G) = =
o0 (FI&) Doo + Po1 1—p
1 1 1

=— =10.618.
¢

= /Bl
AR

P(F|G) is the probability of writing now a zero
bit knowing that the last bit written in the previous
iteration of the second round was a 1. We thus know
that the bit value written in the second round was
a 1 and has been encoded by overwriting either 00,
01 or 10 by the pair 11. Denote by R the value of
the bit pair which has been overwritten. If R = 01,
the following bit must be a zero, so the probability
P(F|G A (R = 01)) = 1. In the other cases, R = 00
and R = 10, and the last bit written was a 0, we thus
get that P(F|G A (R = 00V R = 10)) = po-o, the
probability of writing a 0 after a 0. Putting it together,
we derive

P(F) = po-o(1 —q) + <p01 14 (p1o +p00)po—0) q
= 0.618 +0.105¢.

To calculate the expected number of bits E(N) to be
written in the second round, note that we write a single

bit only if the current bit was a 0 at the end of the first
round, and we wish to write a 0-bit. Denote this event
as Y, then we have P(Y) = P(F)(1 — ¢). In fact, F
has been defined relative to the second round, but as
mentioned, a zero in some bit position at the end of
the second round implies that this bit was also a 0 at
the end of the first round. If Y does not occur, two
bits will be written, so the expected number of bits is
P(Y)+2(1—-P(Y)) =2— P(Y), and substituting the
values above, we get

E(N)=2-(0.61840.105¢)(1 — q)
=0.105¢ 4+ 0.513 ¢ + 1.382.

Though this is a quadratic equation, its graph is, on
the given range [0, 3], very close to a straight line and
thus well approximated by a linear equation E(N)
0.5655 ¢ + 1.377. This yields as average compression
ratio 1/(log,2) +1/E(N), and in particular, for ¢ = %,
we get 1.295, and for ¢ — 0, the ratio approaches 1.418,
which is better than rRS-woOM.

~

3.5. Fibonacci + 3 —2

We now extend the methods by treating larger blocks.
Instead of encoding single bits by pairs, we aim at
encoding bit-pairs by triplets, as done in the RS-wWOM
code. Each such triplet is interpreted as one of the four
possible bit pairs: 00, 01, 10 or 11, and is transformed
into another bit triplet representing the following bit
pair to be written in the second round.

The first round of RS-WOM encodes the four possible
pair values by either 000, 001, 010 or 100. We use
again the standard Fibonacci encoding, which yields
one more possible triplet: 101. For the second round,
the data is parsed into packages of three consecutive
bits, and the translation from the given to the newly
generated triplet is done according to graph given in
Figure 5. We use a color code to help the reader, where
red, blue, yellow and green nodes represent the pairs
00, 01, 10 and 11. To enable viewing the differences on
non-colored output, we also label the nodes with the
initials R, B, Y and G of their colors. Any permutation
could be used to match colors and pairs, as long as it is
fixed throughout.

The nodes on the left hand side of Figure 5 represent
the possible triplets resulting from the Fibonacci
encoding of the first round. A transformation from
triplet x to triplet y is indicated by a directed edge

6 BARUCH, KLEIN AND SHAPIRA

(z,y), and all these transformations are according to the
flash memory constraint that a 0 can be turned into a 1,
but not a 1 into a 0. The white node, representing 000,
has four outgoing edges, one to each color. The yellow
node, representing 100, has only three outgoing edges,
to the three colors which differ from yellow. Thus if
we want to represent the yellow pair, the corresponding
triplet is left unchanged, which is similar to the second
round encoding of RS-wWOM. Similarly, the green and
blue nodes, representing 010 and 001, have also only
three outgoing edges, to their complementing colors.

FIGURE 6. Decoding automaton for the second round of
Fibonacci + 3 — 2 encoding.

If the input triplet is 101, it needs a special treatment,
which is why the corresponding node appears as an
octagon in Figure 5 rather than as a circle. The problem
is that it is the sole possible triplet having only a single
0-bit, so there are only two options for encoding in
the second round: either leave the triplet as 101, or
transform it into 111. To overcome this difficulty, since
we need 4 options to be encoded, we inspect and use
some of the consecutive bits. Denote the three bits
immediately following the triplet 101 as by,bs and bs,
and consider the following cases:

1. If the color we wish to encode is red, 101 is turned
into 111;

2. otherwise, if the color we wish to encode is green,
101 is turned into 1011, that is, the following bit
b1, which can be either 0 or 1, is set to 1. The
reason that b; could also be 1 is that the origin of
the triplet 101 might be the encoding of yellow as
100 in the first round.

3. otherwise (yellow or blue), we know that at the end
of the first round, the block was 101, implying that
b1 = 0, which will be left unchanged. If the color we
wish to encode is yellow, inspect the following bit
bs, which can be either O or 1. If b5 = 0, leave it and
use this to indicate that yellow has been chosen. If
ba = 1, then we know that b3 = 0. Therefore

(a) If the color we wish to encode is yellow, leave
bs = 0;
(b) otherwise (blue), turn b3 « 1.

Note that if we see 101 at the end of the second round,
its origin is either (1) a 101 triplet already at the end of
the first round, or (2) it may have been obtained from a
transformation of 100 or 001 to encode the color green.
In both cases, we need to inspect the following bits. For
case (2), only one more bit is necessary, for case (1), we
need one, two or three additional bits.

The decoding automaton corresponding to this
encoding can be seen in Figure 6. The initial state is
the gray node at the root of the tree, and the back edges
from the leaves to the initial state have been omitted.
The special node 101 and the path leading to it are
emphasized. We omit the analyses of the methods of
this and the following sub-section, but bring empirical
test results in the experimental section thereafter.

3.6. Fibonacci + 5—3

A further extension of this 3 — 2 approach to deal with
even larger blocks can be to conceive a 5 — 3 method
that will process blocks of 5 bits of the output of the
first round in order to encode each of the 8 possible
triplets of the new data to be written in the second
round. Only 13 of the 32 possible 5-bit strings comply
with the Fibonacci constraint of avoiding adjacent 1s,
and Figure 7 is one of the possible transition graphs
similar to the one of Figure 5, but treating eight instead
of just four colors: magenta, violet, cyan, yellow, red,
green, blue and ochre, indicated in the figure and
below by their initials M, V, C, etc., and representing,
respectively, the triplets 000,001,...,111. Of course,
any other assignment of the colors to the triplets could
be used.

The elements in the gray rectangle in the center
of Figure 7 are the 13 possible 5-tuples that can be
obtained after having used a Fibonacci encoding in the
first round. Similar to the case of the triplet 101 for
the 3-to-2 method, there is again a special case, the
5-tuple 10101, which is the only one with just two
zeros. It can thus only produce four out of the eight
required possibilities for the second round, and we need,

CONTEXT SENSITIVE FLASH CODES 7

000 001 010 011 100 101 110 111

00000

|

00010
0010 01001 01010 10011

00100

01000

0100 01110 000 11100
10000

\‘?

X
—

0100000000

0 10111 0110 01111

FIGURE 7. Transitions for Fibonacci + 5 — 3 encoding.

as above, an alternative treatment for this case. Like
before, this case is visually distinguished by being the
only one represented in a hexagonal shaped box and
with black background.

There are 22 possible 5-tuples at the end of the
second round, including the 7 lower elements of the
middle column in the gray rectangle, and they are
organized here in eight columns, each corresponding to
one of the colors. There are thus several alternatives
to encode a color, for example, both 11010 and 11101
will represent Yellow. Magenta is only represented
by 11111; no alternative is needed in this case, since
every 5-tuple can be transformed into 11111 without
violating the flash memory constraint. From each of
the elements in the middle column, there are eight
outgoing edges, one to each of the possible colors. These
edges describe the encoding possibilities. For example,
if the input block contains 01001, then if we want to
encode magenta, the output will be 11111; if we want
to encode violet, the output will be 01011; similarly, the
six remaining transitions are to 11001 for cyan, 11101
for yellow, 11011 for red, 01001 for green (that is, the
input block remains unchanged), 01101 for blue and
01111 for ochre. Note that all these transitions comply
with the constraint of changing only zeros to 1s and
never 1s to 0s, and this is true also for all the other
transitions represented by the edges in Figure 7.

The special case 10101 can change to 10111 (green),

11101 (yellow) or 11111 (magenta). It could also be
left as is to encode violet, but this will not be enough.
In fact, the 5-tuple 10101 has two distinctive roles: on
the one hand, it serves as one of the alternatives to
encode the color violet in the second round if the 5-
tuple in the first round was 00100, 10100, 10001, 00101
or 10101 itself; on the other hand 10101 could be one of
the possible 5-tuples of the first round, and then we have
to enable transitions to all 8 colors. In particular, there
are missing transitions emanating, in Figure 7, from
the black node corresponding to 10101, those to colors
cyan, red, blue and ochre, and they are indicated by
edges to small circles at the bottom of the corresponding
columns.

This problem is solved by again inspecting the
following bits as we did for the 3 — 2 encoding; up
to 7 additional bits, denoted by to b, will be necessary
to deal with all the possibilities. Figure 8 displays the
relevant part of the corresponding decoding automaton.
The coding alternatives rely on the fact that if a 1-bit
is encountered, we know that the following bit must be
zero, so it can be used as data-bit. The branchings
corresponding to such data bits are emphasized in
Figure 8 as boldfaced, broken arrows, and are labelled
by green 0s and 1s.

Refer as example to the root of the subtree,
representing the element 10101. It has outgoing edges
labelled both 0 and 1, because 10101 could have been

8 BARUCH, KLEIN AND SHAPIRA

0101 00 &)

FIGURE 8. Part of the decoding automaton for the second round of Fibonacci + 5 — 3 encoding.

obtained from a transition from 10100 or 00100, so the
following bit is not necessarily a zero. If by = 1, we use
the entire string 101011 including b; to represent V; if
b1 = 0, we also inspect by: if by = 0, the string 1010100
including b1bs is used to represent R; if by = 1, then we
know that b3 = 0. In this case, we can decide about the
value of the next bit according to the color we wish to
encode. If it is R, we leave b3 = 0, otherwise, to encode
one of the remaining colors B, C or O, we set b3 = 1.
The decisions at other internal nodes in Figure 8 are
derived similarly.

Note that as a result of the additional bits we have
to inspect in order to accommodate all the coding
alternatives, the color violet will be encoded by 6
bits 101011 and not just by 5 when the origin of the
transition is one of the 5-tuples 00100, 10100, 10001,
00101 or 10101 itself. This is the reason for the different
representation of 101011 in the column of the color
violet in Figure 7.

3.7. 2.5-ary + Inspect

The following variant generalizes the Fibonacci ap-
proach for the first round and can then be combined
with any of the suggested encodings for the second
round, 2 — 1, 3 — 2, 5 — 3, Inspect, or Lookahead.
The idea is to enforce the non-adjacency property of
1-bits by simply inserting a 0-bit after each 1-bit. In
other words, we encode, in the first round, a 0 by it-
self, but a 1 by the pair 10. The output is then a bit
sequence with the same property as the Fibonacci en-
coding, but we gain the additional property that there
is no need to handle entire blocks, and the data can be
processed as a stream, similar to the RS-WOM code.
This first round can then be combined with any of
the above mentioned schemes for the second round, and
we present the best combination, using the Lookahead
method described in Section 3.4 in the second round.
That is, if a 1 bit is to be written in the second round,
the following pair of bits is turned into 11, and if a 0

bit is to be written, it is encoded as 0 if the following
bit is already a 0 and as 10 if the following bit is a 1.

Since the ternary approach processes 2 bits to get 3
values and a binary approach processes one bit to get 2
values, the current method which processes one or two
bits to get 2 values is some compromise, so we call it
2.5-ary. At first sight, this 2.5-ary approach seems to be
disadvantageous, because the storage overhead incurred
by passing from the standard binary representation to
this variant is a factor of 1.5 for an evenly distributed
bit-stream, instead of only 1.44 for the Fibonacci
encoding. However, the probability of a 1 bit may
vary, and it is not necessarily equal to % as for random,
compressed or encrypted data. A case in point would
be the MNIST database® of handwritten digits that is
commonly used in the Machine Learning and Computer
Vision communities; the average 1-bit probability in
MNIST is about 0.11.

For evenly distributed inputs the worst case is, again,
when every bit to be written in the second round
requires two bits and the ratio is % (1—15n + %n) = 1.167.
However, the situation is much better for the average
case.

The compression ratio is evaluated as a function of
two parameters: the probabilities of a 1-bit in the input
stream of the first round, pf, and in the input stream
of the second round, ps. We need, however, also the
probability p2'* at the output of the first round. The
number of 1s at the output of the first round remains
the same as for its input, but the expected length of the
encoding has changed: by substituting a 1 by two bits
and a 0 by a single bit, the expected expansion was by
a factor of 1(1 — pr) + 2ps = 1 + pr, so we conclude that

pt = %‘p(, and the contribution of the first round to
the compression ratio of the 2.5-ary method is ——

i 1+ps”
As to the second round, two bits are overwritten

for writing a 1-bit, and when writing a 0-bit in the
second round, two bits are overwritten only in case 10

3http://yann.lecun.com/exdb/mnist/

CONTEXT SENSITIVE FLASH CODES 9

2 —
e (3.1) Fib + 2 5 1 —o— (3.6) Fib + 5 — 3
m== (3.2) Ternary +2 — 1 —— (3.7) 2.5 + Inspect
1.8 1 —=— (3.3) Fib + Lookahead === Rivest Shamir
—— (3.4) Fib + Inspect === State of the Art
2 (3.5) Fib + 3 — 2
~
g 16
2
2
8
g
3
© 144
1.2 H

0.1 0.2

T
0.3 0.4 0.5

1-bit probability

FIGURE 9. Compression performance on rando

mly generated data as a function of 1-bit probabilities.

1.8 === (3.3) Fib + Lookahead — Theory —— Fib + Lookahead
(3.4) Fib + Inspect — Theory ——Fib + Inspect
5 me (3.7) 2.5 + Inspect — Theory ——2.5 + Inspect
£ 1.6
=
=
Z
o
=
5 14
o
1.2

0.1 0.2

T
0.3 0.4 0.5

1-bit probability

FIGURE 10. Random with Theory.

is encountered, and just a single bit otherwise. This
sums up to an expected number of bits Ny written in
the second round of

E(Ng) =2ps + (1 —ps) (2P?Ut +1(1 _pfOUt))
1+ 2p¢
=2ps+ (1 —ps) (T)

The compression ratio of the 2.5-ary + Inspect
method is thus 1/1+p; + 1/E(N,). For example, if we
assume random data with pr = ps = %, we get % + % =
1.267. However, if the data of both rounds is taken from

the MNIST dataset with pr = ps = 0.11, the achieved
compression ratio is 1.735.

4. EXPERIMENTAL RESULTS

We have run the following simulation tests to check
our theory. For each value i, 4 < i < 50, we have
randomly generated 100 independent bitvectors with

probability ¢ = ﬁ for the occurrence of a 1-bit.
The number of bits in each of the vectors was set
as % = 694. Considering each vector as a binary

number of 694 bits, each number was transformed

10 BARUCH, KLEIN AND SHAPIRA

1 01 10 00

3.2 3.3 3.4 3.5 3.6 3.7

F2-1 T-2-1 F-L F-I F-32 F-53 251

Theoretic |0.2764 0.2764 0.2764 0.447| 1.194

1.292 1.253 1.295 - - 1.267

Simulated [0.2759 0.2758 0.2761 0.448 | 1.194 1.291 1.257 1.293 1.322 1.319 1.309

TABLE 1: Comparing theoretic and simulated probabilities and compression ratios.

into its Fibonacci encoding, simulating a 1000 bit
output of a first encoding round. We then applied the
various second round encodings of the previous section,
again on randomly generated data, and recorded the
actual number of written bits. The numbers were
then averaged for each value of ¢, which yields the
results plotted in Figure 9 for values of ¢ € [0.04, 3].
There is one plot for each of the methods presented in
Sections 3.1 to 3.7, the first two of which are straight
lines, since their performance does not depend on the
1-bit probability of the input. For comparison, lines
indicating the methods of Rivest and Shamir (at 1.333)
and the state of the art (1.509) have also been added.

Figure 10 repeats the plots of those methods, of
sections 3.3, 3.4 and 3.7, for which the theoretical
analysis has been given, and shows them together with
the curves of the corresponding functions which appear
as thicker lines. We see that for Fibonacci 4+ Lookahead
or Inspect, there is a perfect overlap, and for 2.5ary +
Inspect, there is a good match.

Table 1 compares the analytically derived probabili-
ties with the empirical occurrence probabilities on the
simulated data. The first columns show the probabili-
ties of a 1-bit, and of the pairs 00, 01 and 10, and the
next columns give the performance of the seven new
methods. For the methods depending on varying 1-bit
probabilities, the numbers given correspond to ¢ = %
for 3.3 to 3.6, and pf = ps = % for 3.7. The similarity of
the two lines of the table supports the accuracy of the
model assumed in our analysis.

The performance has also been tested on some real,
not randomly generated, data. We took the first bits of
each of the six categories of the Pizza & Chili Corpus?
and partitioned them into 100 blocks so as to let each

4http://pizzachili.dcc.uchile.cl /texts.html

3.3 3.4 3.5 3.6 3.7
1-bits| F-L F-I F-3-2 F-5-3 2.5-1
dblp 0.493 [1.257 1.292 1.318 1.308 1.252

english 0.458 |1.260 1.299 1.322 1.310 1.306
pitches | 0.432(1.259 1.304 1.321 1.313 1.304
proteins | 0.397 |1.269 1.317 1.319 1.315 1.348
sources | 0.396 |1.263 1.306 1.323 1.312 1.295
dna 0.374 |1.270 1.325 1.326 1.325 1.378
MNIST 0.111 |1.330 1.456 1.459 1.406 1.731
Average |[0.380|1.272 1.328 1.341 1.327 1.373
Theoretic| 0.380 | 1.268 1.323 — - 1.370

TABLE 2: Real data compression ratios.

block produce a string of 600 storage bits in a first round
encoding. In addition, we added also a sample of the
same size from the MNIST database mentioned earlier.
For Fibonacci encoding, a block was of length 417 =
600/1.44 data bits. The bits immediately following
those used for the first round were then considered as
the data to be written in the second round, and we
counted the number of these data bits that could be
encoded.

Table 2 brings the compression ratios for each of
these files, as well as their average. The methods of
RS-WOM and of sections 3.1 and 3.2 are omitted from
the table, as they do not depend on the probability of
occurrence of 1-bits. The files are sorted by decreasing
1-bit probability, which is given in the first column.
We again get a very good match with the Theoretic
values, obtained by plugging the average 1-bit density
q = pr = ps = 0.380 into the corresponding formulee.
We see that the ratios for the dblp file, whose 1-bit
probability 0.493, are close to those achieved in the
simulations of Table 1, as if the data had been randomly
generated.

wo?d

317

\ssa.1d

opey uot

<

FIGURE 11. Compression ratio of 2.5-ary + Inspect as
a function of the 1-bit probabilities in the first and second
rounds.

Figure 11 is a 3-D plot illustrating the compression
ratios for the 2.5-ary + Inspect method of Section 3.7.

CONTEXT SENSITIVE FLASH CODES 11

To derive it, we randomly generated data with the
desired probabilities for the first and second rounds and
checked the resulting compression performance. Each
pair of probabilities (pf,ps) was tested 100 times and
the results were averaged. The input probabilities are
given on the z- and y-axes, and the corresponding
compression ratios appear according to the scale on the
z-axis. The green plane corresponds to state of the art
compression ratio, z = 1.509, and the black bold line
crossing the surface is its intersection with the plane
defined by x = y, corresponding to a scenario in which
Pr = ps, that is, the probabilities of a 1-bit are identical
in both rounds.

5. CONCLUSION

We have presented several new techniques for extending
context sensitive rewriting codes. Their performances
are better than those of the methods of [10], but are
still below the best known alternatives in the state of
the art. Contrarily to other rewriting codes that are
designed to yield a good compression ratio regardless of
the 1-bit density of the input stream, some of the new
methods presented herein take advantage of a possible
non-uniformity of the input data, as may be the case
for certain applications. Therefore, even though some
of the compression ratios calculated above are higher
than 1.509 and even than the information-theoretic
upper bound of 1.585, we obviously do not claim having
improved on the state of the art, since another model
has been used.

It should, however, be noticed, that our challenge
here is different from a situation that arises quite often
in the development of new algorithms, where much
effort is invested to improve a given technique, known to
be currently the best. We do not try to ameliorate the
performance of one of the state of the art methods, but
suggest altogether different approaches. We thus see
our contribution in the development of the techniques
themselves. Being independent from the currently
better state of the art methods, similar ideas to those we
suggested may possibly lead to improved performances
that could be better than the presently best known ones.

DATA AVAILABILITY STATEMENTS

The data underlying this article are available in the
Pizza & Chili Corpus at http://pizzachili.dcc.uchile.cl/
texts.html and in the MNIST database at http://
yann.lecun.com/exdb/mnist/.

REFERENCES

[1] Gilad Baruch, Shmuel T. Klein, and Dana Shapira,
“New approaches for context sensitive flash codes,”
in Implementation and Application of Automata -
2/th International Conference, CIAA 2019, Kodice,
Slovakia, July 22-25, 2019, Proceedings, 2019, pp. 45—
57.

[2] Mahmud Assar, Siamack Nemazie, and Petro Estakhri,
“Flash memory mass storage architecture,” 1995, US
Patent 5,388,083, issued Feb. 7, 1995.

[3] Eran Gal and Sivan Toledo, “Algorithms and data
structures for flash memories,” ACM Comput. Surv.,
vol. 37, no. 2, pp. 138-163, 2005.

[4] Anxiao Jiang, Vasken Bohossian, and Jehoshua Bruck,
“Rewriting codes for joint information storage in flash
memories,” IEEE Trans. Information Theory, vol. 56,
no. 10, pp. 5300-5313, 2010.

[5] Brian M. Kurkoski, “Rewriting codes for flash memo-
ries based upon lattices, and an example using the E8
lattice,” in IEEE Globecom Workshop on Applications
of Communication Theory to Emerging Memory Tech-
nologies, ACTEMT 2010, Miami, Florida, 6-10 Decem-
ber 2010. 2010, pp. 1861-1865, IEEE.

[6] Ronald L. Rivest and Adi Shamir, “How to reuse a
‘write-once’ memory,” Information and Control, vol.
55, no. 1-3, pp. 1-19, 1982.

[7] Amir Shpilka, “New constructions of WOM codes using
the Wozencraft ensemble,” IEEE Trans. Information
Theory, vol. 59, no. 7, pp. 4520-4529, 2013.

[8] Yeow Meng Chee, Han Mao Kiah, Alexander Vardy,
and Eitan Yaakobi, “Explicit and efficient WOM codes
of finite length,” IEEE Trans. Inf. Theory, vol. 66, no.
5, pp. 2669-2682, 2020.

[9] Shmuel T. Klein and Dana Shapira, “Boosting the
compression of rewriting on flash memory,” in Data
Compression Conference, DCC 2014, Snowbird, UT,
USA, 26-28 March, 2014, 2014, pp. 193-202.

[10] Shmuel T. Klein and Dana Shapira, “Context sensitive
rewriting codes for flash memory,” Comput. J., vol. 62,
no. 1, pp. 20-29, 2019.

[11] Shmuel T. Klein and Miri Kopel Ben-Nissan, “On the
usefulness of Fibonacci compression codes,” Comput.
J., vol. 53, no. 6, pp. 701-716, 2010.

[12] Alberto Apostolico and Aviezri S. Fraenkel, “Robust
transmission of unbounded strings using Fibonacci
representations,” IFEE Trans. Information Theory,
vol. 33, no. 2, pp. 238-245, 1987.

[13] Shmuel T. Klein and Dana Shapira, “Random
access to Fibonacci encoded files,” Discrete Applied
Mathematics, vol. 212, pp. 115-128, 2016.

[14] Shmuel T. Klein and Dana Shapira, “Compressed
matching for feature vectors,” Theor. Comput. Sci.,
vol. 638, pp. 52-62, 2016.

[15] Shmuel T. Klein and Dana Shapira, “Compressed
pattern matching in JPEG images,” Int. J. Found.
Comput. Sci., vol. 17, no. 6, pp. 1297-1306, 2006.

[16] Ekaterina Benza, Shmuel T. Klein, and Dana Shapira,
“Smaller compressed suffix arrays,” to appear in
Computer Journal, vol. 63, 2020.

[17] Edouard Zeckendorf, “Représentation des nombres
naturels par une somme des nombres de Fibonacci ou
de nombres de Lucas,” Bull. Soc. Roy. Sci. Liége, vol.
41, pp. 179-182, 1972.

[18] Shmuel T. Klein, “Should one always use repeated

squaring for modular exponentiation?,” Inf. Process.
Lett., vol. 106, no. 6, pp. 232-237, 2008.

