
Huffman Coding with Non-Sorted Frequencies

Shmuel T. Klein and Dana Shapira

Abstract. A standard way of implementing Huffman’s optimal code construc-
tion algorithm is by using a sorted sequence of frequencies. Several aspects
of the algorithm are investigated as to the consequences of relaxing the re-
quirement of keeping the frequencies in order. Using only partial order may
speed up the code construction, which is important in some applications, at
the cost of increasing the size of the encoded file.

1. Introduction

Huffman’s algorithm [8] is one of the major milestones of data compression, and
even though more than half a century has passed since its invention, the algorithm
or its variants find their way into many compression applications to this very day.
The algorithm repeatedly combines the two smallest frequencies, and thus stores
the set of frequencies either in a heap or in sorted form, yielding an Ω(n log n)
algorithm for the construction of the Huffman code, where n is the size of the
alphabet to be encoded.

Conditions under which Huffman’s algorithm yields some generalized opti-
mality properties have been studied in the past, see, e.g. [7, 12]. It is well known
that there is no uniqueness in two quite different senses: a given probability dis-
tribution might yield more than a single (optimal) Huffman tree, and different
distributions may on the other hand correspond to the same tree, see [11, 1].
Working with a sorted set of frequencies is indeed a sufficient condition to get
an optimal code, but the condition is not necessary. In certain cases, one can get
optimal results even if the frequencies are not fully sorted, in other cases the code
might not be optimal, but very closely so. On the other hand, relaxing the require-
ment of keeping the frequencies in order may yield time savings, as the generation
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of the code, if the frequencies are already given in order, or if their order can be
ignored, takes only O(n) steps.

One might object that since the alphabet size n can often be considered as
constant relative to the size of the text to be encoded, there is no much sense in
trying to improve the code construction process, and any gained savings will only
marginally affect the overall compression time. But there are other scenarios for
which the above mentioned effort may be justifiable: the ratio between the sizes of
the text and the code is not always very large; instead of using a single Huffman
code, better results are obtained when several such codes are used. For example,
when the text is considered as being generated by a first order Markov process,
one might use a different code for the successors of the different characters. When
dynamic coding is used, the code is rebuilt periodically, sometimes even after each
character read.

The loss incurred by not using an optimal (Huffman) code is often tolerable,
and other non-optimal variants with desirable features, such as faster processing
and simplicity have been suggested, for example Tagged Huffman codes [5], End-
Tagged Dense codes [3] and (s, c)-Dense codes [2]. Similarly, the loss of optimality
caused by moving to not fully sorted frequencies can also be acceptable in certain
applications, for example when based on estimations rather than on actual counts.
In a dynamic encoding of a sequence of text blocks B1, B2, . . ., block Bt is often
encoded on the basis of the character frequencies in B1, . . . , Bt−1. The encoder
could use the frequencies from block Bt itself, but deliberately ignores them be-
cause they are yet unknown to the decoder. By using the frequencies gathered
up to block Bt−1 only, decoding is possible without transmitting the code itself.
The accuracy, however, of these estimates is based on the assumption that block
t is similar to the preceding ones as to the distribution of its characters. If this
assumption does not hold, the code may be non-optimal anyway, so an additional
effort of producing an optimal code for a set of underlying frequencies that are not
reliable, may be an overkill.

In the next section, we investigate some properties of the Huffman process
on non-sorted frequencies. Section 3 then deals with a particular application, de-
signing an algorithm for the dynamic compression of a sequence of data packets,
and report on some experiments. In Section 4 we investigate whether a similar
approach may have applications to other compression schemes than Huffman’s.

2. Using non-sorted frequencies

The following example shows that working with sorted frequencies is not a neces-
sary condition for obtaining optimality. Consider the sequence of weights {7, 5, 3, 3,
2, 2}, yielding the Huffman tree in Figure 1a. If we start with a slightly perturbed
sequence {7, 5, 3, 2, 3, 2} and continue according to Huffman’s algorithm, we get
the tree in Figure 1b, which is still optimal since its leaves are on the same levels
as before, but it is not a Huffman tree, in which we would not combine 2 with
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3. The tree of Figure 1c corresponds to starting with the sorted sequence, but
not keeping the order afterwards, working with the sequence {7, 5, 6, 4} instead of
{7, 6, 5, 4} after two merges.
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Figure 1: Optimal trees

Obviously, not paying at all attention to the order of the weights can yield
very bad encodings. Consider a typical sequence of weights yielding a maximally
skewed tree, that is, a tree with one leaf on each level (except the lowest level,
on which there are two leaves). The Fibonacci sequence is known to be the one
with the slowest increasing pace among the sequences giving such a biased tree
[9], but for the ease of description we shall consider the sequence of powers of 2,
more precisely, the weights 1, 1, 2, 4, . . . , 2n, for some n.

Applying regular Huffman coding to this sorted sequence, we get

SHuf = (n+ 1) +
n∑

i=0

(n− i+ 1)2i = 2n+2 − 2

as total size of the encoded file. If one uses the same skewed tree, but assigns the
codewords in reverse order, which can happen if the initial sequence is not sorted
and the tree is built without any comparisons between weights, the size of the
encoded file will be

Srev = 1 +

n∑
i=0

(i+ 2)2i − 2n = (n+ 1)2n+1 − 2n + 1.

The ratio Srev/SHuf may thus increase linearly with n, the size of the alphabet.
We therefore turn to a more realistic scenario, in which some partial ordering

is allowed, but requiring an upper bound of O(n) order operations, as opposed to
θ(n log n) for a full sort. Indeed, the simplest implementation of Huffman coding,
after an initial sort of the weights, is keeping a sorted linked list, and repeatedly
removing the two smallest elements and inserting their sum in its proper position,
overall a θ(n2) process. Using two queues Q1 and Q2, the first for the initial weights
and the other for those created by adding two previous weights, the complexity
can be reduced to O(n) because the elements to be inserted into Q2 appear in
order [13]. If one starts with a sequence which is inversely sorted, the first element
to be inserted into Q2 will be the largest; hence if one continues as in the original
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algorithm by extracting either the two smallest elements of Q1, or those of Q2, or
the smallest from Q1 and that of Q2, the first element of Q2 will be used again
only after the queue Q1 has been emptied. The resulting tree is thus a full binary
tree, with all its leaves on the same level if n is a power of 2, or on two adjacent
levels if not. The depth of this tree, for the case n = 2k, will be k. Returning to
the above sequence of weights, the total size of the encoded file will thus be

Sfixed = log n

(
1 +

n∑
i=0

2i

)
= 2n+1 log n.

The ratio Sfixed/SHuf still tends to infinity, but increases only as logn as opposed
to n above.

One of the ways to get some useful partial ordering in linear time is the one
used in Yao’s Minimum Spanning tree algorithm [16]: a parameter K is chosen,
and the set of weights W is partitioned into K subsets of equal size W1, . . . ,WK ,
such that all the elements of Wi are smaller than any element in Wi+1, for i =
1, . . . ,K−1, but without imposing any order within each of the sets Wi. The total
time for such a partition is only O(n logK), using repeatedly an O(n) algorithm
for finding the median first of the whole set W , then of its two halves (the n/2
lower and the n/2 upper values), then of the quarters, etc. Starting with such a
partition and continuing with the help of two queues, one gets an overall linear
algorithm, since K is fixed. On the other hand, K can be used as a parameter of
how close the initial ordering should be to a full sort.

1-grams 2-grams 3-grams 4-grams
English 52 808 6026 21886
French 131 2965 18864 56078

Table 1: Alphabet sizes

To empirically test this partition approach, we chose the following input files
of different sizes and languages: the Bible (King James version) in English, and
the French version of the European Union’s JOC corpus, a collection of pairs of
questions and answers on various topics used in the arcade evaluation project [14].
To get also different alphabet sizes, the Bible text was stripped of all punctuation
signs, whereas the French text has not been altered. We then also considered
extended alphabets, consisting of bigrams, trigrams and 4-grams, that is, the text
was split into a sequence of k-grams, 1 ≤ k ≤ 4, and for fixed k, the set of the
different non-overlapping k-grams was considered as an alphabet. Table 1 shows
the sizes of the alphabets so obtained.

Each sequence of weights was then partitioned as explained above into K
equal parts, with K = 1, 2, 4, 8, . . ., where in each part the original lexicographic
order of the elements has been retained. Figure 2 plots the average number of bits
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Figure 2: Average number of bits per char as function of number of blocks in partition

needed to encode a single character as function of the number of partition parts
K. All the plots exhibit a decreasing trend and obviously converge to the optimum
whenK reaches the alphabet size, but it should be noted that the convergence pace
is quite fast. For example, for the 4-tuple alphabets, usingK = 1024 corresponding
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to 10 partition phases, there is a loss of only 1.1% for the English and 2.2% for
the French texts over the optimal Huffman code.

Another kind of partial ordering relates to a dynamic environment where the
Huffman trees to be used are constantly updated. An application of this idea to a
packet transmission system is discussed in the next section.

3. Dynamic compression of a sequence of data packets

Consider a stream of data packets P1, P2, . . . of varying sizes, which should be
transmitted in compressed form over some channel. In practice, the sizes have great
variability, ranging from small packets of several bytes up to large ones, spanning
Megabytes. Compression of packet Pt will be based on Pt−k, Pt−k+1, . . . , Pt−1,
where k could be chosen as t − 1 if one wishes to use the full history, or as some
constant if the compression of each packet should only depend on the distribution
in some fixed number of preceding packets.

Normally, after having processed Pt, the distribution of the weights should
be updated and a new Huffman tree should be built accordingly. The weights
of elements which did not appear earlier are treated similarly to the appearance
of new elements in dynamic Huffman coding. We suggest, however, to base the
Huffman tree reconstruction not on a full sort of the updated frequencies, but on a
partial one obtained from a single scan of a bubble-sort procedure. For the formal
description, let si, 1 ≤ i ≤ n, be the elements to be encoded. These elements
can typically be characters, but could also be pairs or triplets of characters as in
the example above, or even words, or more generally, any set of strings or more
general elements, as long as there is some unambiguous way to partition the text
into a sequence of such elements. Let f(si) be the frequency of si and note that
we do not require the sequence f(s1), f(s2), . . . to be non-decreasing. The update
algorithm to be applied after each block is:

Update after having read Pt:
for i ←− 1 to n

add frequency of si within Pt to f(si)
subtract frequency of si within Pt−k from f(si)

for i ←− 1 to n− 1
if f(si) > f(si+1) swap(si, si+1)

Build Huffman tree for sequence (f(s1), f(s2), . . . , f(sn)) using two queues

The gain of using only a single iteration of possible swaps is not only in
processing time. It also allows a more moderate adaptation to changing character
distributions in the case of the appearance of some very untypical data packets.
Only if the changed frequencies persist also in several subsequent packets, will the
Huffman tree gradually change its form to reflect the new distributions. On the
other hand, if the packets are homogeneous, the procedure will zoom in on the
optimal order after a small number of steps.
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To simulate the above packet transmission algorithm, we took the English
and French texts mentioned earlier, and partitioned them into sequences of blocks,
each representing a packet. For simplicity, the block size has been kept fixed. The
tests were run with single character and bigram alphabets. The following methods
were compared:

1. Blocked – Block encoding: each block uses the Huffman tree built for the
cumulative frequencies of all the preceding blocks to encode its characters.

2. Bubble – Using one bubble-sort iteration: each block uses the cumulative
frequencies of all previous blocks as before, but after each block, only a single
bubble-sort iteration is performed on the frequencies instead of sorting them
completely. Huffman’s algorithm is then applied on the non-sorted sequence
of weights.

3. Bubble-For-k – Forgetful variant of Bubble: each block uses the cumulative
frequencies not of all, but only the k previous blocks (k ≥ 0). The frequen-
cies of blocks that appear more than k blocks earlier are thus not counted for
building the Huffman tree of the current block. This allows a better adap-
tation in case of heterogeneous blocks, at the price of slower convergence in
the case of a more uniform behavior of the character distributions within the
blocks.

For the last case we considered both Bub-For-1 and Bub-For-5, using the
frequencies of the preceding block only and of the last five blocks, respectively.
The first block was encoded with a fixed length code using the full single character
or bigram alphabet. After each block read, the statistics were updated and a new
code was generated according to the methods above. The recorded time is that of
the average code construction time per block, not including the actual encoding
of the block.

Single characters
Block

Blocked Bubble
Bubble Bubble

size For-1 For-5

English

200 4.112 5.532 5.697 5.607
Compression 2000 4.114 5.532 5.553 5.541

10000 4.123 5.533 5.536 5.533
200 0.13 0.06 0.06 0.06

Time 2000 0.63 0.44 0.27 0.27
10000 2.56 1.32 1.13 1.26

French

200 4.699 6.020 5.901 5.875
Compression 2000 4.700 6.020 5.877 5.825

10000 4.705 6.022 5.834 5.865
200 0.27 0.09 0.09 0.11

Time 2000 0.49 0.30 0.30 0.31
10000 1.47 1.26 1.28 1.28

Table 2: Dynamic compression of data packets using single characters
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Bigrams
Block

Blocked Bubble
Bubble Bubble

size For-1 For-5

English

2000 3.805 5.061 5.061 5.061
Compression 10000 3.805 5.061 5.061 5.062

20000 3.806 5.062 5.062 5.062
2000 30.1 7.3 9.0 11.6

Time 10000 34.9 9.2 10.8 13.4
20000 37.4 11.1 12.9 15.2

French

2000 4.109 6.343 6.345 6.345
Compression 10000 4.109 6.342 6.344 6.344

20000 4.108 6.342 6.345 6.342
2000 286.2 9.9 11.3 14.0

Time 10000 286.6 11.1 12.9 16.1
20000 290.4 13.4 15.1 17.6

Table 3: Dynamic compression of data packets using bigrams

Table 2 brings the results for the single character alphabets and Table 3 the
corresponding values for the bigram alphabets. The block sizes used were 200, 2000
and 10000 for the single characters and 2000, 10000 and 20000 for the bigrams.
The compression figures are given in bits per character and the time is measured
in milliseconds.

As can be seen, there is a significant loss, on our data, in compression effi-
ciency, when using non-sorted frequencies. The block size seems not to have an
impact on the compression. For the bigrams, there is also no difference between the
forgetful variants and that using all the preceding data blocks, but for the smaller
single character alphabets, the compression using only the information of the few
last blocks is marginally better on the French text, and worse on the English one.
This can be explained by the different nature of the texts: The English Bible is
one homogeneous entity, and its partition into blocks is purely artificial. We may
thus expect that using more global statistics will yield better compression perfor-
mance. The French text, on the other hand, consists of many independent queries
and their answers, covering a very large variety of topics. Using the distribution of
one block to compress a subsequent one may thus not always yield good results, so
a variant which is able to “forget” a part of what it has seen, may be advantageous
in this case.

The loss in compression is compensated by savings in sorting time. These
savings are more pronounced for the larger bigram alphabets, but also noticeable
for the character alphabets. The time is increasing with the size of the blocks,
because a larger block gives more possibilities for a larger variability of the fre-
quencies. The exception here is for the bigrams of the French text: the alphabet in
this case is so large, that the block size has only a minor impact on the processing
time. On the other hand, it is in this case that the savings using partial order are
the most significant.
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4. Relevance of partial sort to other compression schemes

We check in this section whether the idea of not fully sorting the frequencies could
be applicable to other compression methods.

4.1. Arithmetic coding

In fact, for both encoding and decoding using an arithmetic coder [15], the weights
need not be in any specific order, as long as encoder and decoder agree upon the
same. This has the advantage for the dynamic variant, that the same order of the
elements can be used at each step, for example that induced by the lexicographic
order of the elements to be encoded. Partial ordering is thus not relevant here.

4.2. 256-ary Huffman codes, (s, c)-dense codes, Fibonacci codes

All these codes can be partitioned into blocks of several codewords having all the
same length. For 256-ary Huffman, the codeword lengths are multiples of bytes,
so that even for very large alphabets, it is very rare to get codewords longer than
3 or 4 bytes; the same is true for (s, c)-dense codes. It follows that, almost always,
all the codewords can be partitioned into 3 or 4 groups, so a full sort is not even
necessary. It suffices to partition the weights into these classes, as suggested above,
just that the sizes of the blocks of the partition are not equal, but rather derived
from the specific code.

For Fibonacci codes [6, 10], there are Fn codewords of length n+2, where Fi

are Fibonacci numbers, and this set is fixed, just as for (s, c)-codes. The number
of blocks here is larger, but even for an alphabet of one million characters, there
are no more than 29 blocks, and the partition can be done in 5 iterations.

4.3. Burrows-Wheeler Transform (BWT)

At first sight, partially sorting seems to be relevant to BWT [4], as the method
works on a string of length n and applies all the n cyclic rotations on it, yielding
an n× n matrix which is then lexicographically sorted by rows. The first column
of the sorted matrix is thus sorted, but BWT stores the last column of the matrix,
which together with a pointer to the index of the original string in the matrix lets
the file to be recovered. The last column is usually not sorted, but it often is very
close to be sorted, which is why it is more compressible than the original string.
The BWT uses a move-to-front strategy to exploit this nearly sorted nature of the
string to be compressed.

One could think that since the last column is anyway only nearly sorted,
then if the initial lexicographic sort of the matrix rows is only partially done, the
whole damage would be that the last row will be even less sorted, so we would
trade compression efficiency for time savings. However, the reversibility of BWT is
based on the fact that the first column is sorted, so a partial sort would invalidate
the whole method and not just reduce its performance.
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5. Conclusion

We have dealt with the simple idea of not fully sorting the weights used by Huff-
man’s algorithm, expecting some time savings in applications where the sort is
a significant part of the encoding process. This may include large alphabets, or
using several alphabets like in dynamic applications, or when encoding according
to a first order Markov chain. The tests showed that by using partial sorts, the
execution time can be reduced at the cost of some loss in compression efficiency.
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