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Abstract
Given a file T , we suggest a data structure based on pruning a Huffman shaped Wavelet tree
(WT) according to the underlying skeleton Huffman tree that enables direct access to the i-th
element of T . This pruned WT is especially designed to support faster random access and save
memory storage, at the price of less effective rank and select operations, as compared to the original
Huffman shaped WT. We give empirical evidence that when memory storage is of main concern, our
suggested data structure outperforms other direct access techniques such as those due to Külekci,
dacs and sampling, with a slowdown as compared to dacs and fixed length encoding.

1. Introduction

Research in Lossless Data Compression was originally concerned with finding a good balance
between the competing efficiency criteria of compressibility of the input, processing time and
additional auxiliary storage for the involved data structures. Working directly with com-
pressed data is now a popular research topic, including not only classical text but also various
useful data structures, and with a wide range of possible applications. A common operation
used in text processing is Random Access, which enables direct access to any element of the
encoded text. Efficient random access to an encoded file may lead to effective range decod-
ing, in which only a portion of the file bounded by two indices has to be decompressed, and
may also improve parallel decoding, as different threads will decode disjoint ranges of the file
in parallel. If the text is encoded by using some standard fixed length codes (FLC), random
access to the ith codeword is straightforward for any i. However, FLC are wasteful from
the storage point of view, and have therefore been replaced in many applications by vari-
able length codes. This may improve the compression performance, but at the price of losing
some features. For example, with variable length codes (VLC), random access becomes more
involved, because the beginning position of the ith codeword is the sum of the lengths of all
the preceding ones. In this paper we are interested in data structures supporting random
access in efficient time, while using a compact representation.

∗This is an extended version of a paper that has been presented at the Prague Stringology Conference
(PSC’15) in 2015, and appeared in its Proceedings, 67–77, and a paper that has been presented at the Data
Compression Conference (DCC’16) in 2016, and appeared in its Proceedings 63-72.



A Wavelet tree (WT), suggested by Grossi et al. [13], is a data structure which reorders
the bits of the compressed file into an alternative form, thereby enabling direct access, as
well as other efficient operations. Wavelet trees can be defined for any prefix code, and
the tree structure associated with this code is inherited by the WT. The internal nodes of
the WT are annotated with bitmaps. The root of the WT holds the bitmap obtained by
concatenating the first bit of each of the sequence of codewords in the order they appear in
the compressed text. The left and right children of the root hold, respectively, the bitmaps
obtained by concatenating, again in the given order, the second bit of each of the codewords
starting with 0, respectively with 1. This process is repeated similarly on the next levels:
the grand-children of the root hold the bitmaps obtained by concatenating the third bit of
the sequence of codewords starting, respectively, with 00, 01, 10 or 11, if they exist at all,
etc.

Various manipulations on the bitmaps of the WT are based on fast implementations of
operations known as rank and select. These are defined for any bit vector B and bit b ∈ {0, 1}
as:

rankb(B, i) – number of occurrences of b up to and including position i; and

selectb(B, i) – position of the ith occurrence of b in B.

Efficient implementations for rank and select are due to Jacobson [14], Raman et al. [24],
Okanohara and Sadakane [23], Barbay et al. [1] and Navarro and Providel [22], to list only
a few. Wavelet trees can be seen as extensions of rank and select operations to a general
alphabet.

In this paper we suggest a pruning method based on pruning a Huffman tree shaped WT
according to the underlying skeleton Huffman tree [15]. This pruned WT is especially de-
signed in order to support faster random access and save memory storage, at the price of less
effective rank and select operations, as compared to the original Huffman shaped WTs. The
general idea is to apply some pruning strategy on the internal nodes of the WTs, so that
the overhead of the additional storage, used by the data structures for processing the stored
bitmaps, is reduced. Moreover, the average path lengths corresponding to the codewords
is also decreased, and so is also the average time spent for traversing the paths from the
root to the desired leaf, which is the basic processing component used to evaluate random
access. We present experimental results comparing our method to the state of art, showing
that skeleton tree based WTs are superior to Huffman shaped WTs, which suggests that if
direct access based operations are done much more often than rank and select, the former
trees may be a better choice. In addition, the space savings by our compact data structure
outperforms other direct access based solutions used in practice, such as dacs and fixed
length coding, while the penalty in processing time is reasonable.

Our paper is organized as follows. Section 2 discusses previous research dealing with random
access to files encoded using variable length codes. Section 3 deals with random access to
Huffman encoded files, using WTs especially adapted to Huffman compressed files. Section 4
improves the self-indexing data structure by pruning the WT using a skeleton Huffman tree.
Section 5 evaluates the savings induced by the proposed data structure. Section 6 further
improves the overhead storage by pruning the Wavelet tree even further by means of a
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reduced skeleton tree. Section 7 then compares our suggested data structures to the state of
art, and presents some experiments demonstrating that our data structures are competitive.
Finally, Section 8 concludes.

2. Related Work

The choice of a code will be guided by the intended application and expected properties. Thus
in many situations, FLC are used despite their storage inefficiency, because of the simplicity
of processing encoded data. In other cases, although FLC are possible, it is preferable to
use VLC for storage efficiency when storage is of main concern. This paper focuses on data
structures supporting random access in efficient time, while using a compact representation
of the underlying data.

Two famous VLC codes are due to P. Elias [6] who developed universal codes for encoding
positive integers, known as Elias-γ and Elias-δ codes. To encode an integer x > 1 using
Elias-γ, its standard binary representation without leading zeros, B(x), is used. The length
of B(x) is ⌊log x⌋+1 bits. B(x) without its leading 1-bit is preceded by the unary encoding of
its length (the unary code is composed of the codewords {1, 01, 001,...}). Thus, to represent
a number x, Elias-γ uses 2⌊log2(x)⌋ + 1 bits. For example, the number 23 is encoded as
00001 0111 (the space, here and below, is inserted for clarity), since B(23) = 10111.

The Elias-γ code is used as a building block for the Elias-δ code. To represent an integer x,
Elias-δ precedes B(x) without its leading 1-bit by the Elias-γ encoding of its length, for a
total of ⌊log2(x)⌋ + 2⌊log2(⌊log2(x)⌋ + 1⌋+ 1 bits. For example, the number 23 is encoded
as 00101 0111, as the Elias-γ encoding of 5, the number of bits in B(23), is 00101. Elias-δ
is asymptotically shorter than Elias-γ, however, for the first numbers, Elias-γ codewords are
shorter, so for many distributions, especially when the first probabilities are significantly
larger than the last ones, Elias-γ might give better compression performance.

Another VLC which serves as an alternative to Elias codes is based the on Fibonacci numbers
as follows. The Fibonacci sequence is defined as

F (0) = 1, F (1) = 2, and F (n) = F (n− 1) + F (n− 2) for n ≥ 2.

Any integer B can be represented by a binary string of length r, crcr−1 · · · c0, such that B =
∑r

i=0 ciF (i). Constructing a unique representation for a given integer x is done by finding
the largest Fibonacci number F (r) smaller or equal to x, and then continuing recursively
with B − F (r). For example, 31 = 21 + 8 + 2, so its binary Fibonacci representation would
be:

21 13 8 5 3 2 1

1 0 1 0 0 1 0

As a result of this encoding procedure, there are never consecutive Fibonacci numbers in
any of these sums, implying that in the corresponding binary representation, there are no
adjacent 1s. This property can be exploited to devise an infinite code whose set of codewords
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consists of the Fibonacci representations of the integers: to assure the code being UD, each
codeword is prefixed by a single 1-bit, which acts like a comma and permits to identify
the boundaries between the codewords. To facilitate the decoding, the codewords are then
reversed to yield a prefix code: {11, 011, 0011, 1011, 00011, 10011, . . .}.

The Fibonacci codeword for a integer n is about 44% longer than the minimal log2 n bits
needed for the standard binary representation using only the significant bits, but it is shorter
than the 2 log2 n bits needed for the corresponding Elias-γ code.

Rice coding depends on a parameter k. To encode a number x, x−1
2k

is unary encoded, and
followed by the k least significant bits of the binary representation of x− 1. For example, if
k = 2, x = 9 is encoded by 110 00, as the unary encoding of 8

2
= 2 is 110, and the 2 lower

bits of the binary representation of x − 1 = 8 are 00. If most of the numbers are small,
fairly good compression can be achieved. Rice coding is generally used to encode entropy in
codecs for audio and video.

A possible solution to allow random access to VLCs is to divide the encoded file into blocks
of size b codewords, and to use an auxiliary vector to indicate the beginning of each block.
The time complexity of random access depends on the size b, as we can begin from the
sampled bit address of the i

b
th block to retrieve the ith codeword. This method, known as

sampling , thus suggests a processing time vs. memory storage tradeoff, since direct access
requires decoding i− ⌊ i

b
⌋b codewords, i.e., less than b.

Ferragina and Venturini [7] replace every fixed length block of symbols by a codeword of a
Huffman code built according to the frequency of occurrence of the blocks. Their idea is
to represent T of size n as a sequence of ⌈n

ℓ
⌉ macro-symbols over the macro-alphabet Σℓ,

where ℓ =
⌈

log|Σ| n

2

⌉

. To guarantee constant time direct access to the encoding of the blocks,

they use a two level storage scheme for the starting positions: absolute ones every Θ(log n)

contiguous blocks, and relative ones for the rest. Their representation uses O
(

n log logn
(log|Σ| n

)

bits.

Teuhola [26] extends Moffat and Stuiver’s work [20] on Interpolative coding , so that direct
access and finding the position in which the prefix sum exceeds some threshold are both
achieved in O(logn) time. They consider the successive gaps in the sequence as basic ele-
ments, and build a complete binary tree of pairwise sums with the elements as leaves. Each
internal node is the sum of its children, and the root has the total sum. In addition to
the root, only the left children need to be encoded, because the right ones are obtained by
subtraction. The root of the tree is encoded using some universal code. The encoding of
other nodes is based on the knowledge that the node value is between 0 and the parent
value. Thus, fixed-length binary coding, truncated to the code length of the parent value,
can be used. The space is at most n log(1+ s

n
)+O(n) where s is the sum of the non-negative

integers.

Brisaboa et al. [2] use a variant of a Wavelet tree on Byte-Codes. This induces an n-ary tree
rather than a binary one, and the root of the Wavelet tree contains the first byte, rather than
the first bit, of all the codewords, in the same order as they appear in the original text. The
second level nodes then store the second byte of the corresponding codewords, and so on. The
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reordering of the compressed text bits becomes an implicit index representation of the text,
which is empirically shown in [2] to be better than explicit main memory inverted indexes
built on the same collection of words, when little extra space on top of the compressed text
is available.

In another work, Brisaboa et al. [3] introduced directly accessible codes (DACs) by inte-
grating rank data structures into variable lengths codes. Their method is based on Vbyte

coding [30], in which the codewords represent integers. The Vbyte code splits the ⌊log xi⌋+1
bits needed to represent an integer xi in its standard binary form into blocks of b bits and
prepends each block with a flag-bit as follows. The highest bit is 0 in the extended block
holding the most significant bits of xi. and 1 in the others. Thus, the 0 bits acts as a comma
between codewords. For example, if b = 3, and xi = 25, the standard binary representation
of xi, 11001, is split into two blocks, and after adding the flags to each block, the codeword
is 0011 1001. In the worst case, the Vbyte code loses one bit per b bits of xi plus b bits for an
almost empty leading block, which is worse than Elias-δ encoding. DACs can be regarded as
a reorganization of the bits of Vbyte, plus extra space for the rank structures, that enables
direct access to it. First, all the least significant blocks of all codewords are concatenated,
then the second least significant blocks of all codewords having at least two blocks, and so
on. Then the rank data structure is applied on the flag bits for attaining log(M)

b
direct access

processing time, where M is the maximum integer to be encoded. The authors improve the
space requirements by choosing different values of b for each level, possibly introducing more
levels, and thus slower access time. They suggest different constructions of DACs taking into
account trade offs of space and access time.

Külekci [19] suggested the usage of Wavelet trees for Elias and Rice variable length codes.
The method is based on handling separately the unary and binary parts of the codeword
in different strings so that random access is supported in constant time. As an alternative,
the usage of a WT over the lengths of the unary section of each Elias or Rice codeword is
proposed, while storing their binary section, allowing direct access in time log r, where r is
the number of distinct unary lengths in the file, which is bounded by log logM .

Klein and Shapira [17] applied a pruning strategy to WTs based on Fibonacci Codes, so
that in addition to supporting improved rank, select and random access to the corresponding
Fibonacci encoded file, the size of the Fibonacci based WT is reduced. The idea is based on
the property of the Fibonacci code that all codewords, except the first one 11, terminate with
the suffix 011. These suffixes are necessary to ensure the prefix property of the Fibonacci
code, but some of the corresponding nodes in the Fibonacci Wavelet Tree are redundant. As
the binary tree corresponding to the Fibonacci code is not complete, and we can eliminate
all the nodes which are single children of their parents. The bitmaps corresponding to the
remaining internal nodes of the pruned tree are the only information needed in order to
achieve constant random access.

However, for any finite probability distribution, the compression by a prefix of the Fibonacci
code will always be inferior to what can be achieved by a Huffman code. For small alphabets,
like a typical distribution of English characters, the excess of Fibonacci versus Huffman
encoding can be about 17% [8], and may be less, around 9%, on much larger alphabets
[16]. It would therefore be interesting to apply a similar pruning approach to Huffman based
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WTs and evaluate its compression and processing time savings, which motivated the current
research.

Our research follows this trend of adapting the Wavelet tree to various coding schemes, but
aims at improving both the time and space complexities, and we concentrate on Huffman
codes. The expected improvement is based on exploiting specific features of these codes,
which permit to reduce the size of the associated Wavelet trees. In the following sections, we
bring some technical details on the necessary operations, as well as on skeleton trees, which
will be useful for the understanding of the ideas below.

3. Skeleton shaped Wavelet trees

The binary tree TC corresponding to a prefix code C is defined as follows: we imagine that
every edge pointing to a left child is labeled 0 and every edge pointing to a right child is
labeled 1; each node v is associated with the bit string obtained by concatenating the labels
on the edges on the path from the root to v; finally, TC is defined as the binary tree for
which the set of bit strings associated with its leaves is the code C.

A binary tree is called canonical if, when scanning its leaves from left to right, they appear
in non-decreasing order of their depth. Labeling an edge pointing to the left or right child
by 0 or 1, respectively, as mentioned above, this definition is equivalent to the property that
when the codewords are sorted by the frequency of the symbols they encode, they are ordered
lexicographically. To build a canonical tree, Huffman’s algorithm is only used for generating
the optimal lengths ℓi of the codewords, and the ith codeword then consists of the first ℓi bits
immediately to the right of the “binary point” in the infinite binary expansion of

∑i−1
j=1 2

−ℓj ,
for 1 ≤ i ≤ n [10]. Canonical codes are used to save space and enhance processing time.
Turpin and Moffat [27] use canonical codes to improve decoding in Huffman encoded texts,
so that more than a single bit can be processed in one machine operation.

A full subtree is a subtree all of whose leaves are on the same level. Pruning canonical trees
will refer here to the process of eliminating all the nodes which have an ancestor that is the
root of a full subtree. The resulting pruned tree is called a skeleton tree [15], or sk-tree for
short. More formally, an sk-tree is a canonical Huffman tree from which all full subtrees
of depth h ≥ 1 have been pruned. Thus, a path from the root to a leaf of a sk-tree may
correspond to a prefix of several codewords of the original Huffman tree. The prefix is the
shortest necessary in order to identify the length of the current codeword. A leaf, v, of
the sk-tree contains the height, h(v), of the subtree that has been pruned or h(v) = 0 for
leaves that were also leaves in the canonical Huffman tree. Skeleton trees have been used to
accelerate compressed pattern matching in [25].

As mentioned above, the nodes of the WT are annotated by bitmaps. These bitmaps can be
stored as a single bit stream by concatenating them in order of any predetermined top-down
tree traversal, such as depth-first or breadth-first. No delimiters between the individual
bitmaps are required, since we can restore the tree topology along with the bitmaps lengths
at each node once the size n of the text is given in the header of the file. Figure 1 depicts the
canonical Huffman tree for the example text T = A--HUFFMAN--WAVELET--TREE--MATTERS.
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0001111101001010101001100001011011

10010011100110011

111000010

1100011110010001

11100100

0011

010110001

01100 0110

100 10 10 10

0

0 1

1 3
-

E A T

F M

R H L N S U V W

Figure 1: The WT induced by the canonical Huffman

tree built for T = A--HUFFMAN--WAVELET--TREE--MATTERS,

corresponding to the frequencies {8,5,4,4,2,2,2,1,1,1,1,1,1,1} of

{-,E,A,T,F,M,R,H,L,N,S,U,V,W}, respectively, assigned to the

leaves, left to right.

The WT of our running example is the entire figure including the annotating bitmaps. The
sk-tree nodes are colored in gray, and the numbers h(v) are given in the leaves of the sk-tree.
It should be noted that the shape of the traditional WT is not restricted to the underlying
canonical Huffman tree. For any distribution, there are many different Huffman trees, and
for some distributions, there might even exist Huffman trees of different depths. Different
topologies would imply different WTs and for convenience, we refer to the canonical one for
the discussion in the next sections.

The algorithm for extracting the i-th element of the text T by means of a Huffman WT
rooted by vroot is given in Algorithm 1, using the function call extract(vroot,i). Bv denotes
the bitmap belonging to vertex v of the WT, and · denotes concatenation. Computing the
new index in the following bitmap is done by the rank operation in lines 2.1.3 and 2.2.3. The
decoding of the codeword cw in line 3 by means of the decoding function D can be done by
a preprocessed lookup table.

4. Enhanced Direct Access

The shape of the proposed WT is the sk-tree, for which the leaves contain the lengths of
the corresponding remaining codeword suffixes. The internal nodes of the skeleton Huffman
WT, which we shall call sk-WT, store the same bitmaps as the original WT. A leaf v of
the sk-WT, for which h(v) ≥ 1, stores the binary string obtained by the concatenation of
the suffixes of length h(v) of the codewords corresponding to v. That is, each such suffix
appears the same number of times as the number of occurrences in T of the corresponding
alphabet symbol σ ∈ Σ. Eliminating some additional nodes has a direct effect on improving
both time and space performance.
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extract(v, i)
1 cw ←− ǫ
2 while v is not a leaf
2.1 if Bv[i] = 0 then
2.1.1 v ←− left(v)
2.1.2 cw ←− cw · 0
2.1.3 i←− rank0(Bv, i)
2.2 else
2.2.1 v ←− right(v)
2.2.2 cw ←− cw · 1
2.2.3 i←− rank1(Bv, i)
3 return D(cw)

Algorithm 1: Extracting the i-th element of T from a WT rooted
at v.

0

1

1

0

3

0001111101001010101001100001011011

10010011100110011 1100011110010001

111001001 1 1 0 0 0 0 1 0

0 0 1 1

001  101  011  111  110  010  000  000  100

Figure 2: Pruned Huffman WT for the text

T =A--HUFFMAN--WAVELET--TREE--MATTERS

Continuing with the running example, the resulting pruned WT is given in Figure 2. The leaf
labeled 3 corresponds to the codewords {11000, 11001, 11010, 11011, 11100, 11101, 11110,
11111}, all sharing the same prefix 11. The list of their suffixes of length 3, in the order they
appear in T , is 001 101 011 111 110 010 000 000 100, and their concatenation is the bitmap
stored in the leaf labeled 3. A similar idea to this collapsing strategy is applied on suffix
or position trees in order to attain an efficient compacted suffix trie [5], and has also been
applied on Fibonacci Wavelet trees [17].

The algorithm for extracting the i-th element of T from a pruned Huffman WT requires some
adjustments for concatenating the pruned parts. Algorithm 2 is the suitable extract function
which is done as follows: first, the extracted codeword is initialized by the empty string, and
the tree traversal starts at the root, going the way down until a leaf is reached. Branching
left or right depends on whether the bit b at position i of the bitmap B in the current node is
0 or 1, respectively. At each such iteration, i is updated according to the value of rankb(B, i),
and b is concatenated to the end of the codeword. When a leaf is eventually reached in line
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3.1, the fixed length suffix of size h(v) bits is concatenated to the end of the codeword. The
correct suffix can be accessed directly using the computed index i by simply extracting the
substring of Bv starting at position h(v)i and ending at position h(v)(i+1)− 1. We use the
notation B[x : y] to denote the substring from position x to, and including, position y of a
bit-string B.

extract(v, i)
1 cw ←− ǫ
2 while v is not a leaf
2.1 if Bv[i] = 0 then
2.1.1 cw ←− cw · 0
2.1.2 i←− rank0(Bv , i)
2.1.3 v ←− left(v)
2.2 else
2.2.1 cw ←− cw · 1
2.2.2 i←− rank1(Bv , i)
2.2.3 v ←− right(v)
3 if h(v) > 0 then
3.1 cw ←− cw · Bv

[

h(v)i : h(v)(i + 1)− 1
]

4 return D(cw)

Algorithm 2: Extracting the i-th element of T from the pruned
Huffman Wavelet Tree.

Taking a closer look at our suggested data structure, the nodes that store the values h(v)
induce a partition of the alphabet into several equivalence classes. Some of these classes are
singletons, while the others are of size 2k for some k > 0. The skeleton Huffman tree does not
have the ability to distinguish between elements of the same class. The following discussion
refers to the select operation, however, a similar, yet easier approach could be applied in
order to process the rank operation, which is shortly discussed later. Even though random
access can be improved using sk-WTs rather than Huffman WTs, only partial information is
attained when applying select(x, i) for retrieving the ith occurrence of x on our pruned data
structure. Instead of returning the ith occurrence of x, x becomes a representative of its
class, and the ith occurrence of elements which are in the same class as x is returned.

However, the classes are formed according to the probabilities of their elements, which does
not necessarily imply any other connection. Nevertheless, whereas the exact values cannot be
calculated using the original select(x, i) algorithm, this algorithm can still be used to derive
a lower bound on the index of the ith occurrence of x. If select(x, i) = j, then the index of the
ith occurrence of x is ≥ j. It is equal to j if all occurrences of elements belonging to the class
of x correspond only to occurrences of x itself. If extract(vroot, j) 6= x, a larger lower bound
can be computed by applying select again with increasing i, until extract(vroot, j) = x.

Although the select query cannot be answered in time proportional to the length of the
codeword using the pruned WT, the exact value can still be derived iteratively. For example,
finding the index of the first occurrence of x can be done in the following way: if select(x, 1) =
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j and extract(vroot, j) = x, the first occurrence of x is found at index j. If extract(vroot, j) 6= x,
but select(x, 2) = k and extract(vroot, k) = x, the first occurrence of x is found at index k.
Otherwise the process continues until there exists some ℓ for which select(x, ℓ) = m and
extract(vroot, m) = x. For larger i, the select(x, i) query on pruned WTs, Skeleton rank, can
be computed as follows:

Skeleton select(x, i)
1 counter ←− 0; ℓ←− 1; m←− 0;
2 while counter < i and m ≤ n
3 m←−select(x, ℓ);
3.1 if extract(vroot,m) = x
3.1.1 counter++
3.2 ℓ++
4 return m

Algorithm 3: select(x, i) on pruned WTs.

The rank operation on pruned WTs, Skeleton rank, also suffers from slower processing time
as compared to the rank on regular WTs. When computing the traditional rank(x, i) on a
skeleton WT, the number of occurrences of all members of the class associated with x, up
to and including position i, is attained. To get the exact number, one should scan linearly
the fixed length suffixes, and count the number of occurrences of a known suffix of x in the
bit vector associated with x, as shown in Algorithm 4. We use suff(x, ℓ) to denote the suffix
of x of length ℓ. At line 2, the traditional rank is applied on the Skeleton WT, and the rank
and the leaf it terminated at, is returned in variables num and v, respectively. The node v

is used to determine the bit vector, Bv, that should be scanned, as well as the length of the
suffix, h(v), of x that all suffixes in Bv (of length h(v) as well) should be compared to.

Skeleton rank(x, i)
1 counter ←− 0;
2 (num, v)←−rank(x, i);
3 for j = 0 to num do
3.1 if Bv[j] =suff(x, h(v))
3.1.1 counter++
4 return counter

Algorithm 4: rank(x, i) on pruned WTs.

Let h denote the height of the skeleton WT. For a given i (1 ≤ i ≤ n), the asymptotic pro-
cessing time for extract(v, i) is O(h), for Skeleton rank(x, i) is O(h+ i), while the asymptotic
time for Skeleton select(x, i) is O(h × i). Empirical evaluation of these processing times is
given in Section 7.

It should be noted that the negative impact of using the pruned WT on the rank and select

queries is not as bad as it might seem on the first sight. The equivalence classes of the code-
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words that have been pruned may be quite large, as can be seen, for example, in Figure 3
below, but the large classes correspond to the smaller probabilities. There is, of course, no
knowledge about which elements will have to be retrieved, and we might be asked to per-
form a Skeleton rank(x, i) or Skeleton select(x, i) query for any x. Nonetheless, a reasonable
assumption would be to assume that the appearance of codewords x in such queries will be
according to their probability of occurrence in the text. In that case, the weighted average
size of the equivalence classes will be quite small, so that an iterative search as suggested
above is not such a burden. An indication for this asymmetric behavior of skeleton trees can
be found by comparing the savings they imply on the space and time complexities: while the
number of nodes can be reduced by 95% or more on large distributions, the weighted average
path length for the same distributions is only shortened to about half, again because the
short codewords correspond to the leaves with the higher probability. For example, in [15]
a file of 500 MB (87 million words) of the Wall Street Journal [21] was considered. It was
shown that while the total number of nodes in the Huffman tree was 289,101 and reduced
to only 425 nodes in the corresponding skeleton tree, the average codeword length was only
reduced from 11.2 to 5.7.

The extract operation is much easier to apply on fixed length codes than on variable length
codes. In our pruned data structure, nodes v with h(v) > 0 store fixed length suffixes, hence,
the improvement of the extract operation on our data structure over WTs for Huffman codes
is clear. However, this is not the case when processing fixed length codes in order to locate
and count the occurrences of a given codeword. Counting occurrences or locating the ith

occurrence of a given codeword in the pruned data structure requires to perform a rank or
select operation on the fixed length suffixes stored in the leaves of the pruned WT. It seems,
that if no auxiliary structure is used, then the rank and select queries must be performed
sequentially, and the advantage of using fixed length suffixes disappears.

One could ask, therefore, whether rank and select queries can be done in a more efficient
way for fixed length than for variable length codes. If this is the case, we can apply such a
strategy on the fixed length suffixes of our data structure and support efficient rank and select

queries as well, gaining faster processing time since the lengths of many of the codewords
are shortened.

It is important to stress that our proposed data structure only reorders the bits in the
bitmaps, implying the same bit counts in the full and pruned WTs, excluding auxiliary
indexes. In our example, the 18 bits appearing in boldface in Figure 2 in the subtree rooted
by the node labeled 3 are the same bits as those appearing in the bitmaps of the nodes in
the corresponding subtree of Figure 1, that has been pruned. The savings of the sk-WT as
compared to Huffman WTs of Section 2 stem thus from the fact that the rank and select

data structures corresponding to the nodes are not all necessary for gaining the ability of
direct access, because the bits corresponding to codeword suffixes are stored explicitly, and
need not be extracted from bitmaps. The processing time is improved by accessing a smaller
number of nodes.
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5. Savings Analysis

To evaluate the savings induced by the pruning (restricting the analysis only to the rank

function), we introduce the following notations. For an internal node v of the canonical
Huffman tree, define pref(v) as the largest common prefix of all the codewords corresponding
to this node. So, pref(root) = Λ, denoting the empty string, and in Figure 2, if t is the
node on level 3 annotated by the bitmap 0011, then pref(t) = 101. Let C be the set of all
the codewords. For a codeword c ∈ C denote by x(c) the corresponding character of the
alphabet, and let freq(x(c)) be the number of occurrences of x in the text. The length of the
bitmap Bv stored at node v of the Wavelet Tree is then given by

|Bv| =
∑

{c∈C | pref(v) is a prefix of c}

freq
(

x(c)
)

.

In particular, if v is the root, we get that |Bv| is the sum of the frequencies of all the elements
of the alphabet, which is equal to the length of the text in characters.

Summing the lengths of all the bitmaps in the WT gives the size, in bits, of the compressed
file:

Size of compressed file = lengths of all bitmaps =
∑

{v | v is an internal node}

|Bv|.

Let R(n) denote the size of the data structures required by the rank function for a bitmap of
size n. This could be O(n log logn

logn
) using Jacobson’s implementation to allow constant time,

and although this size is o(n), it is still not negligible, even for very large n For example, if
the size of the bit vector is n = 232, then the overhead is 0.66n using the following calculation:
The rank answers are stored every log2 n = 1024 bits using logn = 32 bits per sample, for
a total of 227 bits. The second level stores relative rank answers every logn

2
= 16 bits using

2 log log n = 10 bits per subsample, using in total 10
16
232 bits. The table, in this case, has 216

entries, one for each of the possible 16-bit strings. For example, the entry indexed 42072 will
contain 6, which is the the number of 1-bits in the binary representation 1010010001011000
of this index; the table entries are stored using log 16 = 4 bits per entry for a total of
216 · 4 = 218 bits, only for the exhaustive table. As alternative, R(n) can be reduced to
0.0625n using Vigna’s implementation, at the price of increased processing time. The overall
size, RSW, required by the rank structure of the original Wavelet Tree is thus

RSW =
∑

{v | v is an internal node}

R(|Bv|).

When using the pruned version, the rank structures for the bitmaps corresponding to pruned
subtrees are not needed, as well as the rank structures for the leaves of the skeleton tree.
Denote by Tw the subtree rooted at the node w and by SKL the set of leaves of the sk-tree.
The number of bits saved for the rank structures by the pruning process, RSW’, is given
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by

RSW’ =
∑

{w | w∈SKL ∧ h(w)≥1}

∑

{v | v∈Tw}

R(|Bv|).

For example, for the tree in Figure 2, the outer summation refers to all the leaves of the
sk-tree, which are the gray nodes labeled by the numbers h(v). The inner summation goes
over all the internal nodes, including the root of the subtree, which is left in the sk-tree.

It follows that the savings depend on the shape of the canonical tree and the corresponding
sk-tree. In the worst cases, the skeleton tree yields no savings at all, but this happens only
for highly skewed distributions implying a depth of Ω(|Σ|) for the Huffman tree, which is
extremely rare for large alphabets. In general, the number of pruned nodes is substantial,
and the overhead for the rank structures, RSW−RSW’, will be significantly smaller for the
pruned version of the WT. Examples of numerical values on our data files are given below
in the experimental section.

6. Reduced skeleton trees

Extending the pruning idea, we wish to prune the Huffman tree even more, possibly sug-
gesting a tradeoff between space efficiency and processing time. However, it is not clear that
processing time would be hurt by this further reduction, since less internal nodes will be
processed. The idea is replacing the Skeleton tree topology of the WT by a Reduced Skeleton

tree suggested in [15]. The Reduced Skeleton tree prunes the Skeleton Huffman tree at some
internal node at which the length of the current codeword may only be partially determined.
That is, when getting to a leaf of a Reduced Skeleton Tree, it is not necessarily possible to
deduce the exact length of the current codeword, but some partial information is already
available: the possible consecutive lengths belong to a set of size at most 2. The black nodes
of Figure 2 are those from the Reduced Skeleton Tree of the WT presented in Figure 1.

Figure 3: Canonical Huffman tree, sk-tree (bold, red and blue) and reduced sk-tree
(broken lines, blue) for 200 elements of a Zipf distribution, defined by the weights

pi = 1/(iHn), for 1 ≤ i ≤ n, where Hn =
∑n

j=1(1/j) is the n-th harmonic number.

As another example consider the canonical Huffman tree given in Figure 3. It corresponds to
the probability distribution of n = 200 elements implied by Zipf’s law [31], which is believed
to govern the distribution of the most common words in a large natural language text. The
bold (red or blue) edges are the corresponding sk-tree, and the subset of the bold edges,
those with broken lines (blue), are the reduced sk-tree. For instance, when one gets to the
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leaf of the reduced sk-tree corresponding to 110, one already knows that the codeword will
be of length 8 or 9, so a single comparison suffices to decide it.

The algorithm for extracting the i-th element of T when the WT is constructed according to
the reduced skeleton tree is similar to the algorithm presented earlier in Algorithm 2, and is
given in Algorithm 5. We now need a flag field for each leaf v, with flag(v) = 0 if v is also a
leaf in the skeleton Huffman tree (i.e., the length of the codeword is known when getting to
this leaf while traversing the tree with an encoded string starting at the root; note that no
leaf of the reduced sk-tree in Figure 3 has this property, but for other distributions, as the
one presented in Figure 2, such leaves do exist), and flag(v) = 1 otherwise. In the latter
case, the suffixes rooted at v are not of the same length, and we adjust the shorter suffixes
to be of the length of the longer ones by padding them at their right end with a single 0.
We then concatenate all these equal sized reconstructed suffixes in the same order as they
appear in the text, as in skeleton WTs. The value h(v) now stores the length of the suffix
of the longer codeword if v is a leaf.

Random access to reduced sk-WTs is performed in a similar way to that of sk-WTs. When
a leaf v is reached, the current suffix is initialized as having length h(v). This is the correct
setting when flag(v) = 0. Otherwise, the retrieved suffix is appended to the currently
constructed codeword cw, and the value j represented by cw is compared with that of the
first codeword of length |cw|. If j is smaller or equal, we know that the length of the codeword
should be |cw| − 1, hence we remove the trailing 0 from the current codeword.

· · ·
4 else // h(v) 6= 0

4.1 cw ←− cw ·Bv

[

h(v)i : h(v)(i + 1)− 1
]

4.2 if flag(v) = 1 then
4.2.1 if cw ≤ first codeword of length |cw| then
4.2.1.1 remove trailing 0 from cw
5 return D(cw)

Algorithm 5: Extracting the i-th element of T from a WT based

on a reduced skeleton tree.

7. Experimental Results

We considered six texts of different languages and alphabet sizes, encoded as sequences of
words rather than of characters, so that our alphabets — and the corresponding Huffman
trees — are quite large. More precisely, to create our vocabulary, we split the text into
words (a maximal sequence of non whitespace characters) where white spaces were the only
separators. We have not performed any additional pre-processing on the text. The datasets
were as follows:

ebib is the Bible (King James version) in English, in which the text was stripped of all
punctuation signs; Einstein is the collection of all the versions of the Wikipedia page about
Albert Einstein in English; ftxt is the French version of the European Union’s JOC corpus, a
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collection of pairs of questions and answers on various topics used in the arcade evaluation
project [28]; sources is formed by C/Java source codes obtained by concatenating all the .c, .h
and .java files of the linux-2.6.11.6 distributions; English is the concatenation of English text
files selected from etext02 to etext05 collections of the Gutenberg Project, from which the
headers related to the project were deleted so as to leave just the real text; and EnWiki-sml

is formed by downloading a dump of a prefix of the English Wikipedia. Our implementation
used the Succinct Data Structure Library [11], which is an open-source library implementing
succinct data structures efficiently in C++.

Table 1 presents some information on the data files involved. The second and third columns
present the original file sizes in MB and millions of words. The fourth column gives the size
of the alphabets in thousands of (different) words.

File size # of words |Σ|

ebib 3.5 0.6 11
Einstein 446.0 62.3 23

ftxt 7.6 1.2 75
sources 200.0 25.8 2436
English 200.0 37.0 836

EnWiki-sml 65.1 12.7 282

Table 1: Information about the used datasets

Table 2 presents the numerical values which were analytically derived in Section 4. The sec-
ond column shows the lengths of all the bitmaps in theWT which is equal to

∑

{v | v is an internal node} |Bv|.

The third and forth columns give the sizes of the rank structures using Vigna’s [29] and Gog’s
[12] implementations, respectively. Each column presents the sizes of the rank structures for
the original WT, RSW, and the size saved by the pruning process, RSW’. All figures are
given in MBs. As can be seen, the pruning yields about 50% gain due to the saving in the
rank structures, which supports our theoretical evaluation.

File
∑

v(|Bv |) v v5
RSW RSW’ RSW RSW’

ebib 0.6 0.16 0.09 0.04 0.02
Einstein 77.5 19.38 9.55 4.85 2.39
ftxt 1.5 0.37 0.19 0.09 0.05
sources 40.7 10.17 4.37 2.54 1.09
English 50.5 12.62 6.37 3.15 1.59
EnWiki-sml 16.5 4.12 2.08 1.03 0.52

Table 2: Numerical values of our theoretical evaluation given in Section 5

Figure 8(a-f) depicts, for each of the methods, the compression ratio and processing time
as a single dot in a two-dimensional space. Compression is measured as the relative size, in
percent, of the compressed file, including all necessary data structures, relative to the original
file. The processing time is given in microseconds, averaging the time for retrieving a single
word at 100,000 randomly chosen locations using the different methods. The experiments
were conducted on a machine running 64 bit Linux Ubuntu with an Intel Core i7-4720 at
2.60GHz processor, 6144K L3 cache size of the CPU, and 4GB of main memory.
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Several variants, usually based on different implementations, were checked for each method.
To facilitate the reading of the results, each method is represented by a different symbol, the
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variants of a given method are represented by the same symbol, and identical symbols are
connected in a systematic way. The following methods were compared, where the symbol
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used to visualize the method in the graphs is given in parentheses:

1. DACs (oval): using the best parameter b;
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2. fixed (square): fixed length codes, without any Wavelet tree structure;

3. HWT (rhombus): the Huffman Wavelet Tree, implemented by using the Wavelet
matrix [4];

4. Külekci (plus): given for both Elias-γ and Rice codings, for which the unary and
binary parts of the codewords are treated separately;

5. reduced (star): reduced sk-WTs;

6. skeleton (triangle): regular sk-WTs;

7. VLC (pentagon): uses fixed size blocks of 128 symbols, encoded using self delimiting
variable length codes.

For the methods which use rank (DACs, HWT, Skeleton, Reduced), three different imple-
mentations are used: the first and second approach of Vigna [29] and Gog and Petri’s method
[12] called interleaving, all providing a 64-bit implementation and producing different trade-
offs between time and space. The results appear from left to right (Gog, Vigna1, Vigna2)
in the graphs for these four methods. The four variants for Külekci are, from left to right,
Elias-γ with compressed bitmaps, Rice with compressed bitmaps, Elias-γ and Rice. The
three variants of VLC are, from left to right, Fibonacci, Elias-δ coding and Elias-γ.

These implementations were adjusted to our sk-WT in order to support direct access alone.
We therefore eliminated the data structures associated with the select operation; we also
removed two pointers that are not needed when only going top-down the tree. In order to
produce a fair comparison, we also removed the same elements from the Wavelet matrix used
to implement HWT. Unlike the regular implementation of the WTs that associates each leaf
with a single symbol of the alphabet, we have adjusted the implementation so that a leaf
corresponds to several symbols. We used the property that each such leaf corresponds to
several symbols, for which their corresponding fixed length suffixes are stored sequentially,
and arranged the pruned symbols in an array sorted left to right. The symbol stored in a leaf
that refers to a pruned subtree was then replaced by the starting index of the corresponding
pruned characters of this array. This strategy could not be extended to the reduced sk-WT
variant, since the extra 0 bit which was added to the shorter codewords caused the existence
of nodes having only a single child, rather than all internal nodes having both children, as
in the original implementation. We therefore shifted all leaves to the left, filling in the holes
so they are consecutive.

As can be seen, the Skeleton Wavelet tree consistently achieves a significant compression
improvement relative to the HWT, and always improves on the other two methods, which
give only direct access. The time complexity is cut to about a third relative to Huffman,
always better than the Külekci variants, but is of course slower than DACs and fixed length
codes.

Although our pruned data structures are especially suited for enhancing direct access, it is
interesting to empirically evaluate their processing times for rank and select, as discussed in
Section 4. The results, in milliseconds, are presented in Table 3. Each result is the average
of 100 runs. At each run a character, w, (a word in our case), and index i, were randomly
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chosen, whereas w was uniformly picked from the text, and i was uniformly chosen over the
amount of occurrences of w. The first column is the data file’s name, followed by 4 columns
for the rank and 4 columns for the select timing results. For each operation we present the
performance of the traditional rank and select on a regular WT (WT), the performance of
Algorithms 3 and 4 (Ours), the exhaustive rank and select applied on skeleton WTs (Ex-
Sk), which checks each location sequentially for an occurrence, and rank and select on the
appropriate fixed length code (FLC), which again performs a linear search starting from the
first index and up to i.

As can be seen, the results are as expected. Regular WTs are superior to all methods
when rank and select are considered. Obviously, FLC are better than exhaustive rank and
select over WTs because of its constant direct access, unlike the O(logΣ) direct accesses in
skeleton WTs. Nevertheless, Algorithms 3 and 4 are much faster than trivial rank and select

performed by exhaustive searches on the pruned WT.

File rank select
WT Ours Ex-SK FLC WT Ours Ex-SK FLC

ebib 0.002 0.018 3.126 0.242 0.004 46.098 251.94 12.087
Einstein 0.006 0.021 303.492 14.837 0.011 4033.133 18775.47 922.26

ftxt 0.002 0.004 0.2 0.012 0.005 74.674 438.521 20.394
sources 0.002 0.016 31.153 0.953 0.016 1086.177 9587.363 391.588
English 0.002 0.099 273.343 9.976 0.01 2197.97 15726 600.648

EnWiki-sml 0.002 0.074 30.06 1.543 0.009 704.922 3763.243 178.57

Table 3: rank and select processing times comparison

8. Conclusion

We have presented new data structures for reducing the space overhead of a Huffman shaped
WT when used to support extract queries to the underlying text by means of a Skeleton
Huffman tree, and their reduced variants. We give empirical evidence that the running time
and compression performance is significantly improved as compared to the running time of
the traditional HWT, since shorter paths from the root down to the leaves are processed.
When storage is of main concern, our suggested data structure outperforms other direct
access techniques such as those due to Külekci, dacs and sampling, with a slowdown as
compared to dacs and fixed length encoding.

Acknowledgement: We would like to thank Simon Gog and M. Oguzhan Külekci for their
help and for providing their implementations.
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