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Abstract: It seems reasonable to expect from a good compression method that its output should not
be further compressible, because it should behave essentially like random data. We investigate this
premise for a variety of known lossless compression techniques, and find that, surprisingly, there
is much variability in the randomness, depending on the chosen method. Arithmetic coding seems
to produce perfectly random output, whereas that of Huffman or Ziv-Lempel coding still contains
many dependencies. In particular, the output of Huffman coding has already been proven to be
random under certain conditions, and we present evidence here that arithmetic coding may produce
an output that is identical to that of Huffman.
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1. Introduction

Research on lossless data compression has evolved over the years from various encoding variants,
for instance [1–7], passing by more advanced challenges such as compressed pattern matching in texts [8,9],
in images [10,11] and in structured files [12,13], and up to compact data structures [14–17].

The declared aim of lossless data compression is to recode some piece of information into fewer
bits than given originally. This is often possible because the standard way we use to convey information
has not been designed to be especially economical. In particular, natural language texts contain many
redundancies that might enrich our spoken or written communication, but are not really necessary for
the data to be complete and accurate. Many of these redundancies are kept for historical reasons,
like double letters in many languages, or multiple letters representing a single sound, like sch in
German or aient in French. There are also more subtle redundancies, like encoding all the characters
with some fixed length code, whereas some letters are more frequent than others, which could be
exploited by assigning them shorter codewords. Indeed, Huffman calls the code he designed in his
seminal paper [1] a minimum-redundancy code.

It is therefore natural to assume that once as much redundancy as possible has been removed,
the remaining text should be indistinguishable from random data, for if some more regularities can be
detected, they could be targeted in an additional round of compression. Indeed, Fariña et al. [18] focus
on byte-oriented word based compressors for natural languages, and show that such compressed
files can be further compressed using any general purpose compressor such as gzip. They note that
the frequencies of the byte values generated by a byte-oriented, word based, compressor, are far
from uniform, as opposed to the output of arithmetic coding. They show how re-compressing word
based encodings by standard compressors can be extended to compressed self-indices, because any
character based self-index, such as compressed suffix arrays [19–21], can be directly constructed over
the byte-oriented word based compressed file, without modification.
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This paper extends this work and investigates several known compression techniques from the
point of view of the randomness of their output. As will be shown, the a priori assumption that
compressed output is perfectly random, is not necessarily true in all cases.

Beside the theoretical value of this research, it may have some important practical implications.
Consider, for example, the possibility to use a compression scheme also as an encryption method, based
on the fact that both compression and encryption try to eliminate redundancies, albeit for different
reasons [22]. If compressed output is then indeed random, then any compression method could, in
principle, also be used for data encryption, if the parameters on which the decoding depends, can be
hidden from the decoder [23].

For instance, a Huffman encoded file will not be very useful unless the decoder knows how
each of the characters has been encoded. If the encoding, and moreover, the set itself of the elements
that have been encoded, can be kept secret, decoding might be difficult, as it would be equivalent to
breaking the code, that is, guessing the codewords [24,25].

Another implication of a non-uniform output would be the possibility to apply another layer of
compression to the compressed output itself. Consider the following simple example. Suppose a file
F has been compressed into C(F), which is not random because, say, the probability of a 1-bit in it
is p 6= 1

2 . We could then apply an arithmetic coder to the individual bits of C(F); arithmetic coding
reaches the entropy so that the average number of bits required to encode a bit of C(F) would be
−p log2 p− (1− p) log2(1− p), which is strictly smaller than 1 for p 6= 1

2 . For example, if p = 0.56,
the entropy would be 0.99, so the additional compression is able to reduce the size of the already
compressed file by an additional percent.

The question of how to measure randomness has been treated in many different areas, in particular
to check the validity of pseudo-random number generators. Many tests have been devised, for example,
in Reference [26], to mention just a software library containing a collection of such tests. Chang et al.
report on a series of experiments in References [27,28]. We shall rely on the notion of a binary sequence
being m-distributed, due to Knuth [29, Section 3.5, Definition D], meaning that the probability of
occurrence of every subtring of the input of length m is equal to 2−m. Knuth then goes on to define,
in Definition R1, a sequence to be “random” if it is ∞-distributed, that is, m-distributed for all m ≥ 1,
and we shall approximate this with values m ≤ 8.

In the next section, we consider several known compression methods and discuss the randomness
of their output. Section 3 then reports on some empirical tests, and Section 4 concludes.

2. Randomness of Compression Methods

2.1. Huffman Coding

One of the oldest compression methods is due to Huffman [1]. Given an alphabet A = {a1, . . . , an}
and a probability distribution P = {p1, . . . , pn} of its letters, the problem is to find a prefix code with
codewords lengths L = {`1, . . . , `n} such that the weighted average length of a codeword, ∑n

i=1 pi`i,
is minimized. Huffman’s algorithm finds a set L which is optimal under the constraints that the `i
are all integers, and that the partition of the file to be compressed into elements to be encoded, or,
equivalently, the alphabet A, is known and fixed throughout the process.

At first sight, a file compressed by means of a Huffman code seems to be very far from what
one could consider as a random string. The code is a finite set of short binary strings which remain
fixed once the code is chosen, and which serve as building blocks to construct the compressed file by
concatenating the same strings time and again, though in varying order. One might therefore expect
that the probability of occurrence of the strings representing codewords is larger than the probability of
other strings of the same length. For example, a Huffman code could be C = {00, 01, 100, 101, 110, 111},
and it is not self evident that a long string obtained by repeated concatenations of elements of the small
set C will contain, say, the substring 00000 with probability 2−5.
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Nevertheless, it has been shown in Reference [30] that the compressed file is random if the
appearances of the elements in the text are independent of each other, and the probability distribution
P is dyadic, that is, all the pi are powers of 1

2 . In other words, even though the distribution of binary
strings of different lengths within the set of codewords is often very far from uniform, one has to take
into account the probabilities of the occurrences of these strings, and these exactly counterbalance
the apparent bias. In fact, even if the conditions are only partially met, the resulting file seems quite
close to random in empirical tests. Indeed, suppose Huffman’s algorithm is applied on a non-dyadic
distribution P, resulting in a length vector L. Then P′ = {2−`1 , . . . , 2−`n} is a dyadic distribution
yielding the same Huffman tree as P, which means that P and P′ are "close" to each other in a certain
sense. A measure of this closeness has been proposed in Reference [31].

As to the independence assumption, it is quite clear that if just a simple model is used, this
assumption does not always hold, especially for natural text. For instance, it is not true that there is no
dependence between the occurrence of consecutive single characters, say, in English texts: q is almost
always followed by u, and the bigram ea is much more frequent than ae. However, such obvious
dependencies can be circumvented, by incorporating them into an extended alphabet, as proposed
in Reference [32]. Thus, if one encodes, for example, words or even phrases instead of individual
characters, the elements will be less dependent, and moreover, compression will be improved.

Therefore, even though the strict mathematical conditions required for proving the randomness
of the output of Huffman coding in Reference [30], as well as that of arithmetic coding in the following
section, seem to be unlikely to occur in practice, they are nevertheless approximated in many real
situations, as supported by our empirical results.

2.2. Arithmetic Coding

If one relaxes the constraint that all the codeword lengths `i have to be integers, then an optimal
assignment of lengths, given the same problem as above with a probability distribution P as input,
would be `i = − log pi, and the average codeword length would then be −∑n

i=1 pi log pi, called the
entropy. This can be reached by applying arithmetic coding [33].

Arithmetic coding represents the compressed text by a real number in a sub interval [`, h) of
[0, 1). The interval is initialized by [0, 1), and each symbol ai narrows the current interval with respect
to its probability. Formally, the interval [`, h) is partitioned into n subintervals, each corresponding
to one of the characters ai ∈ A. The size of a subinterval is proportional to the probability pi of the
corresponding character ai. For example, if A = {a, b, c} and the probabilities are P = {0.2, 0.5, 0.3},
then one possible partition could be {[0, 0.2), [0.2, 0.7), [0.7, 1)}; if the text to be compressed is bcb, then
the output interval is successively narrowed from [0, 1) to I1 = [0.2, 0.7), to I2 = [0.55, 0.7) and finally
to I3 = [0.58, 0.655). Any real within this last interval can be chosen, for example 0.625 whose binary
representation 0.101 is the shortest.

The claims concerning the randomness of the output of arithmetic coding are similar to those
relating to Huffman coding. In fact, in the special case of a dyadic distribution, arithmetic and Huffman
coding are very similar. For general distributions, one of the main differences is that while a Huffman
encoded string can be partitioned into individual codewords corresponding each to one of the input
characters, for arithmetic coding the entire compressed file encodes the entire input.

However, in the special case of a dyadic distribution, the partition of the interval I0 can be such
that any character of the input that appears with probability 2−t adds exactly the same t bits for
each of its occurrences to the output file. Moreover, these t bits can be chosen to match exactly the
corresponding codeword of one of the possible Huffman codes, so that in this case, arithmetic coding
is almost identical to Huffman coding.

The following example will clarify this claim. Consider the alphabet A = {a, b, c, d} with dyadic
probabilities P = { 1

2 , 1
8 , 1

8 , 1
4}, respectively, and suppose the partition of the interval I0 is in this given

order, that is, the boundaries of the subintervals are 0, 1
2 , 0.625, 0.75 and 1, or 0, 0.1, 0.101, 0.11 and 1 in

the standard binary representation.
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• If the first letter to be encoded is a, the interval will be narrowed to I1 = [0, 1
2 ), and whatever the

final interval will be, we know already that it is included in I1, so that the first bit of the encoding
string must be a zero.

• If the first letter of the input is b, the interval I0 will be narrowed to I1 = [0.1, 0.101) (in binary);
any real number in I1 that can be identified as belonging only to I1 must start with 0.100 · · · ,
which contributes the bits 100 to the output file. Note that 0.1 or 0.10 also belong to I1, but there
are also numbers in other subintervals starting with 0.1 or 0.10, so that the shortest representation
of 1

2 that can be used unambiguously to further sub-partition the interval is 0.100.
• Similarly, if the first letter to be encoded is c, I0 will be narrowed to I1 = [0.101, 0.11), which

contributes the bits 101 to the output file, and for the last case,
• if the first letter is d, the new interval will be I1 = [0.11, 1), contributing the bits 11.

Summarizing these cases, we know already, after having processed a single character, that the
first bits of the output must be 0, 100, 101 or 11, according to whether the first character is a, b, c or d,
respectively. In any case, arithmetic coding then rescales the interval and restarts as if it were [0, 1)
again, which means that also the second, and subsequent, character(s) will contribute 0, 100, 101 or 11,
according to whether they are a, b, c or d. But {0, 100, 101, 11} is one of the possible Huffman codes for
the given probability distribution, so that in this case, both algorithms generate bit sequences that are
not only of the same length, but they produce exactly the same output. This connection is visualized
in Figure 1. For example, if one wishes to encode the string bcbad, the output could be the number
0.586669921875 = 0.100101100011, just as if the above Huffman code had been used, which yields
100-101-100-0-11.

0

11

100 101

0 10.5 0.750.625

0.0 0.100 0.101 0.11 1.0

0

0

0

1

1

1

a

b c

d

Figure 1. Connection between Huffman and arithmetic coding on dyadic probabilities.

This example can be generalized to any dyadic distribution, as formulated in the following lemma.

Lemma 1. If the elements of an alphabet A = {a1, . . . , an} in a text T occur with a dyadic probability
distribution p1, . . . , pn, then it is possible to partition the interval [0, 1) in such a way that an arithmetic
encoding of T produces a compressed file which is identical to one of the possible binary encodings using a
Huffman code.

Proof. The proof is by induction on the size n of the alphabet A, and inspired by the proof of the
optimality of Huffman coding [34]. For n = 2, there is only one possible dyadic distribution, with
p1 = p2 = 1

2 , and a Huffman code assigns the codewords 0 and 1 to the elements a1 and a2 (or vice
versa), respectively. The corresponding partition of the interval [0, 1) is into [0, 1

2 ) and [ 1
2 , 1). If the

following character is a1 (resp., a2), the current interval used in arithmetic coding is narrowed to its
left (resp., right) half, so that the following bit has to be 0 (resp., 1), which is identical to the following
bit generated by the Huffman code.
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Assume now the truth of the lemma for n− 1 and consider an alphabet A = {a1, . . . , an} of size n.
Without loss of generality, let an be a character with smallest probability pn = 2−`. There must be at
least one more character having the same probability 2−`, otherwise the probabilities can not possibly
sum up to 1; this is because only pn would then have a 1-bit in the `-th position to the right of the
binary point of its binary representation. Again without loss of generality, one other character with
probability 2−` could be an−1.

Consider now the alphabet A′ = {a1, . . . , an−2, x}, obtained from A by eliminating the characters
an−1 and an, and by adjoining a new character x to which we assign the probability 2−` + 2−` = 2−`+1.
The alphabet A′ is of size n− 1 and its elements have a dyadic distribution, so we may apply the
inductive hypothesis. In particular, there is a partition of [0, 1) in which the sub-interval corresponding
to the character x is [a, b), and such that the `− 1 first bits to the right of the binary point of the binary
representation of a form the codeword assigned by the Huffman code to the character x. Denote this
string of `− 1 bits by α. Figure 2a schematically depicts this situation: the branch of the Huffman
tree leading to the leaf corresponding to x is shown, as well as the associated interval [a, b). In this
particular case, ` = 5, a = 0.375, and the 4 first bits after the binary point of 0.37510 = 0.01100 · · ·2 are
the Huffman codeword α = 0110 of x.

Let us now return to the alphabet A of size n. We leave the partition of [0, 1) as for the alphabet
A′, except that the sub-interval [a, b) will be split into halves [a, c) and [c, b), where c = a+b

2 , each of
size 2−`, and corresponding, respectively, to the characters an−1 and an. This is schematically shown in
Figure 2b.

x

0 1ba

0.0110

(a)

a
n-1

0 1ba

0.01100

a n

0 1

0.01101

c

(b)

Figure 2. Schematic view of the inductive step of the proof.

• If the current character y to be processed is one of a1, . . . , an−2, it follows from the inductive
assumption that arithmetic coding will narrow the current interval so that the following bits of
the output stream are equal to the Huffman codeword of y.

• If the current character is an−1, the corresponding interval is [a, c). From the inductive assumption
we know that if we would deal with A′ and the following character would be x, the next generated
bits would have been α, so if we now restrict our attention to [a, c), the left half of [a, b), the next
generated bits have to be α0. But α0 is exactly the Huffman codeword of an−1 in A.

• Similarly, if the next character is an, the restriction would be to [c, b) and the next generated bits
would have to be α1, which is the Huffman codeword of an in A.

Summarizing, we have found a partition of [0, 1) for which arithmetic coding produces identical
output to one of the possible Huffman codes, also for any dyadic alphabet of size n, which concludes
the proof.
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The randomness of the output of arithmetic coding thus follows from that of Huffman coding
with the same assumptions.

Theorem 1. If the elements in a text occur with a dyadic probability distribution and independently of each
other, then applying some arithmetic coder will produce output that seems random, in the sense that every
possible substring of length m will occur with probability 2−m.

Proof. From the lemma we know that in the case of a dyadic distribution, Huffman and arithmetic
coding may produce the same binary string B as output. If, in addition, the occurrences of the elements
are independent of each other, this string B will be random in the above sense according to the theorem
in Section 2.3 of Reference [30].

There are also dynamic variants of Huffman and arithmetic coding, in which the i-th element is
encoded on the basis of a Huffman code or a partition of the initial interval corresponding to the i− 1
preceding elements. An efficient algorithm avoiding the repeated construction of the Huffman tree
can be found in Reference [35]; for dynamic arithmetic coding, the partition of the interval is simply
updated after the processing of each element. Adaptive methods may improve the compression,
especially on heterogeneous files, but there are other inputs for which the static variants are preferable.

As to randomness of dynamically Huffman encoded texts, the fact that an element is not always
represented by the same codeword seems to be advantageous, but in fact, at least for independently
appearing elements with dyadic probability distributions, there should be no difference: we know that
each time the interval is rescaled in arithmetic coding, or at the end of the processing of a codeword
in Huffman coding, each of the following characters will contribute the binary string si to the output
file, according to whether the next element is ai, where si is the codeword corresponding to ai in the
given Huffman code. The only difference between static and dynamic coding is that the Huffman tree,
and the partition of the interval [0, 1), may change, but as long as dyadicity and independence are
maintained, the above arguments apply here as well.

2.3. LZW

We have dealt so far with statistical compression and turn now to another family of methods
based on dictionaries. The most famous representatives of this family are the algorithms due to Ziv
and Lempel and their variants. Dictionary methods compress by replacing substrings of the input
text by (shorter) pointers to a dictionary, in which a collection of appropriate substrings has been
stored. In LZW [36–38], the dictionary D is initialized as containing the single characters alone, and
then adaptively updated by adding any newly encountered substring in the parsing process that has
not been adjoined previously to D. The text is parsed sequentially into a sequence of elements of the
currently constructed dictionary D, where at each stage, the longest possible element of D is chosen.

The output of this compression method is a sequence of pointers to the dictionary D, and the
randomness of the compressed file will thus depend on the way chosen to encode these pointers. In its
original implementation, LZW is designed to work with alphabets of up to 256 characters and we shall
stick, for simplicity, to this restriction, which could easily be extended. LZW starts with a dictionary of
size 512 which stores already all the single characters in ASCII and is therefore half filled. Any pointer
to D is just the 9-bit binary representation of the index of the addressed entry. After having processed
256 elements of the input file, thereby adding 256 entries to D, the dictionary is filled up and its size
is doubled to 1024 entries. From this point on, all the pointers to D are encoded as 10-bit integers.
In general, after processing 29, 210, . . . , 2i, . . . more elements of the input file, the size of the dictionary is
doubled to 211, 212, . . . , 2i+2, . . . entries, up to a predetermined maximal size, say 218. There are several
options to continue, like restarting from scratch with 9 bits, or considering the dictionary as static and
not adjoining any more strings.
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The following argument claims that an LZW-encoded file will generally not be random. At any
stage of the algorithm, the ratio between the number of occupied entries and the current size of D is
between 1

2 and 1. This suggests that the probability for a referenced string to fall into the lower half of
the dictionary is higher than for the upper part. But all indices of the lower part entries have a 0 in their
leftmost bits, and those of the upper part start with 1. We conclude that the probability for the leftmost
bits of every codeword, which are very specific bits in the compressed file, those at bit positions

0, 9, 18, . . . ,

9× 256, 9× 256 + 10, 9× 256 + 20, . . . ,

9× 256 + 10× 512, 9× 256 + 10× 512 + 11, 9× 256 + 10× 512 + 22, . . .

to be equal to 0 is higher than to be equal to 1, contradicting randomness.

The following variant of LZW tries to rectify this shortcoming. Since we suspect the distribution
of the possible values of the first bit of every pointer to the dictionary to be biased, and since we know
exactly where to locate these bits in the compressed file (every 9-th bit, then every 10-th, etc.), we may
split each pointer and aggregate the output in two separate strings: F for the first bit of each index,
and T concatenating the tails of the numbers, that is, their values after having stripped the leading bit
of each. If the distribution in F is not uniform, a simple arithmetic coder, even on the individual bits,
can only improve the compression. Indeed, the contribution of each encoded bit of T will then be the
entropy H(p), where p is the probability of a 1-bit, and as mentioned earlier, if p 6= 1

2 , then H(p) < 1,
so that the encoding of F will be strictly shorter than |F|.

The new variant will thus improve the compression on the one hand, but also the randomness,
since we replace a part of the compressed file, which we know is not uniformly distributed, by its
arithmetic encoding, which has been dealt with above and has been reported to produce seemingly
random output in empirical tests [23]. A similar approach, using different encodings, is used in gzip,
which first encodes a file using LZ77 [37] producing characters and (offset, length) pairs, and then
encodes the offsets by means of a certain Huffman tree, and the characters and lengths by means
of another.

3. Empirical Tests

The following series of tests to check the randomness of compressed data has been performed.
The test files were from different languages and with different alphabets, and they all yielded essentially
the same behavior. To allow a fair comparison, we present here only the results on one of the files,
the King James version of the English Bible (The file can be accessed at http://u.cs.biu.ac.il/~tomi/
files/ebib2), in which the text was stripped of all punctuation signs, leaving only upper and lower
case characters and blank. There is no claim that the file is representative of “typical” input, so the
results should be interpreted as an illustration of the above ideas, rather than as empirical evidence.

To check whether the compressed sequence is m-distributed, we collected statistics on the
frequencies of all (overlapping) bit-strings of length m, for m = 1, . . . , 8. For each m, the distribution
of the 2m possible m-bit patterns was compared to the expected uniform distribution for a perfectly
random sequence. We used two different measures to quantify the distance between the obtained
and expected distributions, and considered that the smaller the obtained distance values, the better
the randomness.

• A measure for the spread of values could be the standard deviation σ, which is generally of the
order of magnitude of the average µ, so their ratio σ

µ may serve as a measure of the skewness of
the distribution.

http://u.cs.biu.ac.il/~tomi/files/ebib2
http://u.cs.biu.ac.il/~tomi/files/ebib2
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• Given two probability distributions P = {p1, . . . , pn} and Q = {q1, . . . , qn}, the Kullback–Leibler
(KL) divergence [39], defined as

DKL(P‖Q) =
n

∑
i=1

pi log
pi
qi

,

gives a one-sided, asymmetric, distance from P to Q, which vanishes for P = Q.

In the special case treated here, the second distribution Q is uniform on 2m elements, Um =

{2−m, . . . , 2−m}, thus

DKL(P‖Um) =
2m

∑
i=1

pi log(2m pi) =
2m

∑
i=1

pi log pi + m
2m

∑
i=1

pi = m− H(P),

where H(P) is the entropy of P.

Tables 1 and 2 display the values of the measures σ
µ and 1

m DKL(P‖Um) (KL is normalized),
respectively, for the following set of files, all encoding the same Bible file mentioned above, except for
file random.

Random—a sequence of 220 randomly and independently chosen bits has been generated, to
serve as a baseline for a perfectly random file. Ideally, all probabilities should be 2−m, but there are of
course fluctuations, and our measures try to quantify them.

Arith—compressed file using static arithmetic coding.
Gzip—compressed file using gzip, a Ziv-Lempel variant on which Huffman coding is

superimposed.
Newlzw—compressed file using the variant of LZW encoding the leading and the other bits of

each dictionary entry index separately.
Oldlzw—compressed file using the original LZW.
Bwt—compressed file using bzip2 based on the Burrows–Wheeler transform [40].
Hufwrd—compressed file using Huffman coding on the 611,793 words (11,377 different words)

of the Bible.
Hufcar—compressed file using Huffman coding on the 52 different characters in the Bible file.
Ascii—is the uncompressed input file itself, of size 3,099,227 bytes.

Table 1. Ratio σ
µ of standard deviation to average within the set of 2m values for m = 1, . . . , 8.

alg \ m 1 2 3 4 5 6 7 8 avgalg

avgrandom
compr

arith 0.00004 0.0001 0.0007 0.0011 0.0017 0.0025 0.0036 0.0050 0.3 52.4
random 0.0015 0.0021 0.0029 0.0040 0.0054 0.0078 0.0108 0.0149 1 –
gzip 0.0072 0.0129 0.0168 0.0204 0.0234 0.0263 0.0290 0.0318 3.4 31.2
newlzw 0.0174 0.0251 0.0314 0.0367 0.0415 0.0459 0.0501 0.0541 6.1 30.2
oldlzw 0.0237 0.0341 0.0427 0.0504 0.0572 0.0633 0.0691 0.0746 8.4 30.3
bwt 0.0204 0.0326 0.0415 0.0544 0.0674 0.0825 0.1025 0.1236 10.6 23.3
hufwrd 0.0420 0.0595 0.0730 0.0851 0.0976 0.1130 0.1299 0.1500 15.2 21.7
hufcar 0.0834 0.1240 0.1609 0.2018 0.2661 0.3533 0.4488 0.5695 44.7 52.8
ascii 0.1227 0.1736 0.2506 0.3234 0.4457 0.5721 0.8007 1.1124 76.9 100

The standard variants of the Unix operating system for gzip and bzip2, without parameters, have
been used; the implementation of arithmetic coding is from Nelson’s book [41], and those of the
variants of LZW and Huffman coding have been written by the authors. The lines in the tables are
arranged in increasing order of the average values in each row. One can see that all the values, for both
measures, are very small, especially when compared to those in the last line corresponding to the
original, uncompressed file. As expected, the values for the random file, were by far the smallest, for the
KL divergence even by orders of magnitude, except for the values obtained for arithmetic coding,
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which seem to be “more random than random”. This shows that the random number generator of the
awk program we used to produce the random file needs apparently to be improved. Both measures
yield the same order of the compression methods.

Table 2. Kullback—Leibler distance from uniform distribution.

alg \ m 1 2 3 4 5 6 7 8 avgalg

avgrandom

arith 0.000000001 0.000000003 0.00000010 0.00000021 0.00000042 0.00000076 0.00000135 0.00000224 0.02
random 0.00000154 0.00000308 0.00000625 0.00001152 0.00002079 0.00004397 0.00008407 0.00015928 1
gzip 0.00004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 2
newlzw 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0003 6
oldlzw 0.0004 0.0004 0.0004 0.0004 0.0005 0.0005 0.0005 0.0005 11
bwt 0.0003 0.0004 0.0004 0.0005 0.0007 0.0008 0.0011 0.0014 17
hufwrd 0.0013 0.0013 0.0013 0.0013 0.0014 0.0015 0.0017 0.0020 36
hufcar 0.0050 0.0058 0.0069 0.0087 0.0122 0.0173 0.0223 0.0289 324
ascii 0.0109 0.0109 0.0170 0.0228 0.0338 0.0452 0.0699 0.1014 944

Table 1 shows also, in its last column, the compression ratio defined as the size of the compressed
as a percentage of the original file. We define avgalg to be the average of the values in columns headed 1
to 8 for the line corresponding to compression method alg. In both tables, the columns headed avgalg

avgrandom
give this ratio, showing that the standard deviations can be between 3 to 77 times larger than for the
random benchmark. The KL divergence is 2 to 300 times larger for compression methods, and almost
1000 times for an uncompressed file.

We see that good compression is not necessarily correlated with randomness: the smallest
file (about 22%) was obtained by Huffman encoding the text as a sequence of words, whereas its
randomness is 15 or 36 times worse than for random. The new variant of LZW improves the compression
performance only by about 0.4% relative to the standard LZW version, but improves the randomness
by 28% for the average σ

µ and by 45% for the average KL distance.

4. Conclusions

We have examined the randomness of compressed data and shown that while the uniformity
of the probability distributions of the occurrences of all possible bit patterns may be better than for
uncompressed files, there are still quite large differences between the compression methods themselves,
suggesting that cascading compression techniques might sometimes be useful. Surprisingly, the
best compression schemes (hufwrd and bwt) do not have the most random output, suggesting that
these schemes can be further improved. Moffat [42] considers a more involved model, first and
second order word-based compressions, and analyzes the space savings by combining them with
arithmetic, Huffman, and move-to-front methods. Using a higher order Markov model [43] may also
increase randomness.

We had no intention to cover all possible lossless compression techniques in this work, and
concentrated only on a few selected ones. Some other interesting ones, such as PPM [4] and CTW [44]
have been left for future work. Another line of investigation deals with compression methods that
are not for general purpose, but custom tailored for files with known structure, such as dictionaries,
concordances, lists, B-trees and bitmaps, as can be found in large full-text information retrieval systems.
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