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Abstract

A variant of adaptive arithmetic coding is proposed, adding cryptographic
features to this classical compression method. The idea is to perform the
updates of the frequency tables for characters of the underlying alphabet
selectively, according to some randomly chosen secret key K. We give em-
pirical evidence that with reasonably chosen parameters, the compression
performance is not hurt, and discuss also aspects of how to improve the
security of the system being used as an encryption method. To keep the
paper self-contained, we add a short description of the arithmetic coding
algorithm that is necessary to understand the details of the new suggested
method.
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1. Introduction and previous work

The system suggested herein lies at the crossroads of two disciplines
dealing both with the encoding of data, yet with different objectives. Data
compression focuses on representing its input in as few bits as possible, while
data encryption concentrates on letting two parties securely exchange some
information, by protecting it from being understood by a third, possibly
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malicious, eavesdropper. By combining compression and encryption tech-
niques, one may address some of the main concerns of communication over
a network, namely security, space savings of the transformed information,
and processing speed.

Although the objectives and methods are different, the goals of both
compression and encryption are achieved by removing redundancies. We
refer to a system combining the two disciplines as a compression cryptosys-
tem, and suggest basing such a system on adaptive arithmetic coding . This
yields, on the one hand, an increased data transfer rate in a communication
system, by generating a data file of reduced size. On the other hand, since
the exact model on which the encoding is based is only known to the com-
municating parties, the system seems to provide also privacy, as detailed
below.

A major purpose of an adversary could be, given a specific cipertext , to
reveal the corresponding cleartext . A more ambitious goal could be break
the code, that is, trying to reconstruct the secret key K, which would enable
the adversary not just to decode some specific ciphertext, but in fact all
those that have been encoded using the same key K. Breaking the code is
indeed possible for coding schemes like static Huffman coding, that use a
fixed set of codewords to represent the sequence of symbols in some given
input file, see [1] for a simple chosen plaintext attack. For Huffman and
similar codes, the secret key is the correspondence between codewords and
the encoded elements, characters or words. Fraenkel and Klein [6] suggest
methods for increasing the cryptographic security of variable length prefix
free codes, and Huffman codes in particular. Their methods are based on the
NP-completeness of various decoding problems, such that there is probably
no polynomial algorithm for breaking the code.

The ability of decoding when there is only partial knowledge, or equiv-
alently, guessing some codewords in the ciphertext substituting for given
characters of the plaintext, is related to the robustness of the given code
against errors. Huffman coding schemes are able to cope with communica-
tion errors such as bit losses and changes: even if following such an error,
the actually decoded text differs from the original encoded one, synchroniza-
tion is generally regained after a small number of erroneous codewords [13].
Arithmetic coding schemes, however, are rendered inoperable at the loss of
a single bit [3].

The fact that arithmetic coding is more sensitive to transmission errors
than Huffman coding is a disadvantage as far as the choice of a compression
scheme is concerned, but it turns into an advantage when one considers also
the cryptographic security of the encoding. Indeed, small fluctuations in the

2



probabilities will often not have enough of an impact to change the set of
optimal codewords. Longo and Galasso [15] define a pseudometric on the set
of probability distributions over a finite alphabet and derive an upper bound
on the distance from any probability distribution to the dyadic distribution
yielding the same Huffman tree. A dyadic distribution is one in which all
the probabilities are powers of 1

2 . On the other hand, small fluctuations
will have a cumulative effect in arithmetic coding, and the dependence of
the encoded message upon all the previously transmitted characters ensures
that even a minor discrepancy between the model actually used for encoding
and that assumed for the decoding will, in the long run, produce nonsensical
output.

Simultaneous compression and encryption can be achieved by either em-
bedding compression into encryption algorithms as in [25], or by adding
cryptographic features into compression schemes, as we suggest here. The
combination of arithmetic coding with data security was already suggested
long ago by Jones [9] and Witten and Cleary [23]. Jones’ implementation
uses fixed source symbol probabilities but is flexible in the choice of source
and code alphabets. Bergen and Hogan [1] investigate the security provided
by static arithmetic coding, and show how the attacker can determine both
the ordering of the symbols in the cumulative frequency table, and the ac-
tual value of the symbol frequencies, by feeding repeated binary substrings
as the input to the algorithm. In [2] they extend their work to a cryptosys-
tem based on adaptive arithmetic coding.

Witten and Cleary [23] refer to the model as a very large key, without
which decryption is impossible, and claim that an adaptive scheme provides
protection of messages from a casual observer and against chosen plaintext
attacks.

In [21], a key controls the interval splitting of arithmetic coding, but the
scheme is vulnerable by known plaintext attacks [8] based on the fact that
the same key is used to encode many messages. Katti and Vosoughi [10]
show that even an improved version that uses different keys for encrypting
different messages is still insecure under ciphertext-only attacks. Random-
ized arithmetic coding was proposed in [7], which is inefficient in terms of
compression when compared to the traditional “compress-then-encrypt” ap-
proach. An example of the latter is Singh and Gilhotra [19], who suggest
private key encryption based on static arithmetic coding. Utilizing chaotic
systems for arithmetic coding was suggested in [24], where the secret key
controls both the position and the direction of the line segments in the piece-
wise linear chaotic map. Klein et al. [11] suggest several heuristics for using
compression as a data encryption method in order to prevent illegal use of
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copyright material.
A cryptosystem is used in [16] to provide security for mobile SMS com-

munication: the SMS are first compressed and then encrypted using RSA.
A similar approach is taken in [18]. A compression cryptosystem especially
suited for the secure transmission of medical information such as images,
audio, video etc. is proposed in [17], but it is only suitable for short enough
messages, as efficiency drops when the length of the message increases. In
addition, the system requires a very large public key which makes it very
difficult to use in several practical applications.

Cleary et al. [4] consider static arithmetic coding with a binary alphabet
and show that for a chosen plaintext attack, w + 2 symbols are sufficient
to uniquely determine a w-bit probability. Obviously, they deal with a
very simplified version of arithmetic coding, while in the method we sug-
gest herein, many more parts of the system remain unknown, besides the
single probabilities. Duan et al. [5] propose a dynamic arithmetic coding
method based on a Markov model for joint encryption and compression.
The ith symbol is encoded based on a Markov chain of order 0 or 1, possibly
permuting the relevant conditional probabilities in the model depending on
a given secret key. Similarly to their scheme, we also update the model
based on a secret key, but we ignore the dependency between consecutive
characters.

Although simultaneous arithmetic coding and encryption has already
been studied, most of the suggested schemes are found insecure and espe-
cially inefficient in terms of compression. Unlike previous research, prelimi-
nary empirical results suggest that our proposed algorithm provides security
without hurting the compression efficiency. Section 2 describes the proposed
method, Section 3 considers possible attacks and suggests appropriate reme-
dies and Section 4 reports the experiments we have performed.

2. Proposed Method

We consider a cryptosystem which we imagine as being superimposed
upon an adaptive arithmetic coder. Given is a plaintext T = t1t2 · · · tn of
length n elements, drawn from an alphabet Σ = {σ0, . . . , σs−1} of fixed size
s. For simplicity, we shall refer to the elements of Σ as characters, but they
may as well be words or more general elements into which the plaintext
could be partitioned. The text will be encoded using adaptive arithmetic
coding, producing a compressed text B = b1b2 · · · bm of length m bits.

Arithmetic coding represents a message to be encoded by a sub-interval
[low, high) of [0, 1). For an initially empty string T , the algorithm starts with
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the basic interval [0, 1), which is increasingly narrowed as more characters
from T are processed. The narrowing procedure is based on partitioning
the current interval into sub-segments according to the probabilities of the
characters in Σ.

For example, if Σ = {a, b, c} and the probabilities are 0.2, 0.7 and 0.1,
respectively, a possible partition could be into the segments [0, 0.2), [0.2, 0.9)
and [0.9, 1). If the first character of T is b, the current interval after process-
ing b is [0.2, 0.9). In subsequent steps, the same procedure is applied after
appropriate scaling. So if the second character of T is a, to which the first
20% of the initial interval have been assigned, the current interval after pro-
cessing ba will be [0.2, 0.34), the first 20% of the current interval [0.2, 0.9).
After processing 3 characters bac, the interval would be [0.326, 0.34). Fig-
ure 1 is a schematic view of the repeated partition process for this example.
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Figure 1: Example of arithmetic coding.

The longer the text T , the narrower will the corresponding interval be,
thus the more bits will usually be needed to represent any real number in it.
To save space and since there will often be some overlap between the repre-
sentations of the real numbers low and high (in the last example, they both
start with 0.3), the final encoding will not be the resulting interval itself,
but rather a single real number within it. This suffices to allow decoding by
reversing the above procedure, if some external stopping condition is added,
like transmitting an end-of-text character or the length of the text. For
the above example, one could choose, say, 0.33, or, even better, 0.328125,
which is the number with the shortest binary representation, 0.0101012 , in
the interval [0.326, 0.34) = [0.01010011011101 · · ·2 , 0.01010111000010 · · ·2),
where the subscript 2 indicates that the fractional number is given in binary.
Opting for the minimal number of necessary bits seems natural in a data
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compression application, but the truth is that the savings are generally just
of a small number of bits; for large enough files, this is often negligible, so
one could as well choose the number within the final interval at random,
which adds some security as it puts an additional burden on a potential
adversary.

In the static variant of arithmetic coding just described, the partition of
[0, 1) into sub-segments is fixed throughout the process. A dynamic variant
calls for updating these segments adaptively, according to the probability
distribution of the alphabet within the prefix of the text that has already
been processed. In fact, the general step of the dynamic variant consists of
two independent actions:

1. compute the new interval as a function of the current one, the current
character and the currently assumed distribution of probabilities;

2. update the model by incrementing the frequency of the current charac-
ter and adjusting the relative sizes of all the intervals in the partition
accordingly.

The encryption we suggest is based on the fact that the model updates
of the second action above are done selectively, not necessarily at every
step. The exact subset of the processing steps at which the model is altered
is controlled by a secret key K. A similar idea of selectively updating the
model has been suggested in [12], albeit for enhancing processing time rather
than improving cryptographic strength.

Specifically, for the current encoding, if K = k0k1 · · · kr−1 is the standard
binary representation of the key K, where its length r is chosen large enough,
say, r = 512 or more, then the model will be updated at step i, that is, after
encoding the ith character, for i ≥ 1, if and only if k(i−1) mod r = 1. The
algorithm for encrypting a given message T according to a secret key K is
presented in Algorithm 1.

The encoding model is represented here by means of a partition of the
interval [0, 1) into sub-intervals [`j , hj) corresponding, respectively, to char-
acters σj , for 0 ≤ j < s. In fact it would suffice to keep only the lower or only
the higher bounds of the intervals, since `0 = 0, hj = `j+1 for 0 ≤ j ≤ s− 2
and hs−1 = 1, but the algorithms is easier to understand when both `j
and hj are used. A convenient initialization would be to assume a uniform
distribution, for example of the s = 256 8-bit characters of the extended

ascii set. The corresponding intervals would then be [`j , hj) =
[
j

256 ,
j+1
256

)
for 0 ≤ j < 256, which is what we have used in our experiments.

Updating the model consists of: incrementing the frequency of the cur-
rently read character ti; adjusting the cumulative frequencies of the elements
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encode(T,K)
1 [low, high)←− [0, 1)
2 initialize the interval partition distribution {[`0, h0), . . . , [`s−1, hs−1)}
3 for i←− 1 to n
3.1 range←− high− low
3.2 high←− low + range · hti
3.3 low ←− low + range · `ti
3.4 if k(i−1) mod r = 1 then
3.4.1 update {[`0, h0), . . . , [`s−1, hs−1)}
4 return some value in the current interval

Algorithm 1: Cryptosystem based on dynamic arithmetic encoding.

σp for p ≥ j, where j is the index within the alphabet Σ of the current char-
acter in the text, that is, ti = σj ; and finally adjusting accordingly the
probabilities by calculating the relative cumulative frequencies for all the
characters.

Algorithm 1 is given here in a simplified form, to convey its main idea.
We shall refine it, correcting potential flaws, in the following section dealing
with possible attacks.

3. Attacks

3.1. Cryptographic attack 1: guessing the repeatedly used key

One of the parameters of the system is the length r of the secret key.
Ideally, r should be as large as possible, and if one could choose r = 8n, that
is, a key as long as the text in bits, the key could be used as a one-time-pad,
providing absolute security. In practice, of course, the key K is limited,
and using it cyclically, as suggested in Algorithm 1, might be risky, if the
adversary finds some way, by a chosen plaintext or other attack, to exploit
the repetitive pattern in order to reveal the key itself.

We suggest to avoid this possible weakness of the system by considering
K as the seed of some random number generator. The secret to be kept is
then only of limited length, as in the initial setting, but the actually used
key can be generated to be of unbounded length. For example, use a large
constant randomly chosen prime P and a large primitive root of a modulo
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P ; choose a new K at each iteration by

K ← aK mod P.

Even if the prime P is publicly known, and even if an enemy gains
somehow knowledge of the value of K at some stage, it might not be possible
to deduce the following value of K without knowing the value of a that has
been kept secret. For going backwards, assume that the adversary succeeds
somehow to reveal the values of a and P after having processed a part of
the file. The part from that point B on is then not secured any more, but
having broken the code and found the values of a and P does not help to
decipher the text preceding B, because it means calculating the discrete log,
for which no efficient algorithm is known.

The conclusion is that replacing a fixed key K as suggested in Algo-
rithm 1 by a sequence of generated keys hardly incurs any penalty in com-
pression performance or any addition in encoding or decoding time, but no
attack based on the knowledge that a fixed key is used time and again will
be possible, since every block of r characters uses a different key.

3.2. Cryptographic attack 2: guessing the key iteratively by chosen plaintext

An adversary might try to reveal the secret key incrementally, bit per bit,
taking advantage of one of the weak points of the encoding, its initialization.
Indeed, the initial partition of the interval is a parameter of the arithmetic
encoding, and as such is known not only to the communicating parties.

The following chosen cleartext attack could be used. Assume, for simplic-
ity, a binary alphabet Σ = {a, b}, and that we start with uniform probabili-
ties, so that the corresponding intervals are [0, 12) and [12 , 1). More precisely,
we suppose that we start with fictitious initial frequencies of 1 for both char-
acters, to avoid the zero-frequency problem [22]. Choose as plaintext the
text consisting only of the two characters ab. If the first bit of the key is
k0 = 1, then the model is updated after having read the first character, so
the new frequencies are 2 and 1, and the corresponding intervals are [0, 23)
and [23 , 1). If k0 = 0, the intervals are not changed.

It now depends on which number x is returned in the final interval
[low, high). If low is chosen as x, the the system returns 2

3 if k0 = 1 and
1
2 if k0 = 0. If the number with shortest binary representation is chosen as
x, then x is 0.112 = 3

4 in the former case, and 0.12 = 1
2 in the latter. The

attacker can thus deduce the value of the first bit of the secret key from the
ciphertext of the chosen plaintext. If the algorithm returns an arbitrarily
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chosen value within the final interval, the attacker has a probabilistic proce-
dure to decide the value of k0: repeat the above test several times; if there
is at least one of the returned values within the interval [12 ,

2
3), then k0 must

be 1, otherwise decide that k0 = 0, though there is a small probability of
being wrong.

Once the first bit is known, the attack can be repeated similarly to reveal
the second bit, then the third, etc.

To avoid this flaw, the plaintext could be preceded by some known text of
a predefined size, say, the thousand first characters of the Bible or some other
well known text like Moby Dick . This prefix is then used just to tune the
encryption and decryption processes to a safe initialization of the boundaries
of the intervals. The real encoding only starts when the original plaintext
is processed. The rationale behind prepending a long enough known text,
is that we expect that after updating the model selectively several times
according to a secret key, the chances for the decryption model assumed by
the attacker to be perfectly synchronized with the actual encryption model,
without the knowledge of the secret key, are negligible, despite the fact that
the characters are also known to the adversary. Thus, decoding errors will
eventually appear, which in turn will initiate a snowball effect, as sporadic
mistakes at the beginning will trigger even more errors subsequently, and
the cumulative impact in the long run may destroy any similarity to the
original text. The alternative of guessing a random key with 2512 potential
variants is obviously ruled out.

We thus expect not to hurt the compression efficiency on the one hand,
yet to provide strong enough encryption on the other hand in the long run.
Indeed, dynamic arithmetic coding in particular, and all adaptive compres-
sion methods in general, are based on the assumption that the distribution
of the characters in the text starting from the current position onwards will
be similar to the distribution in the part of the text preceding this current
position. This leads to the intuition that a longer history window will always
be preferable to a shorter one. This will, however, not always be the case. It
might well happen, in particular for non-homogeneous texts, that basing the
prediction of the character probabilities on a random subset of n of the 2n
most recently read characters may yield a compression performance that is
not inferior, and sometimes even better, than using just the last n characters
as basis.

It is easy to construct a worst case example in which any deviation from
the standard model of considering the full history (or in case of limited
memory, a bounded size window with a suffix of the history), will give de-
teriorated compression performance. Consider, for instance, a text of the
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form abababab· · · , consisting of strictly alternating characters of a binary al-
phabet. An adaptive arithmetic encoder will produce a uniform probability
distribution (12 ,

1
2) for any standard (even) sized history window. However,

if the model is based on choosing n of the 2n last seen characters, according
to some secret key K, then the uniform distribution will be obtained only
if exactly half of the chosen characters are a and half are b. Assuming the
values of K are randomly chosen, the probability of this event is(

n
n/2

)(
n
n/2

)(
2n
n

) ' 2√
π n

,

where we have used Stirling’s approximation. Thus for k = 512 correspond-
ing to n = 256, only in 7% of cases we will end up with an exactly uniform
model. Nevertheless, this worst case behavior is restricted to such artificial
texts, and our empirical tests of several real language texts suggest that the
loss incurred by turning to a selective updating procedure as suggested is
hardly noticeable.

3.3. Cryptographic attack 3: guessing the boundaries of intervals

There might be other possible attacks that could render the method
vulnerable. In the following experiment we wanted to check the ability of
the adversary to predict the partition of [0,1) into intervals according to
the probabilities of the characters, without knowledge of the key. This is
important, because in a chosen cleartext attack, an adversary would know
at each stage the true distribution of the characters in the already processed
prefix of the text, which could possibly help to infer from it the stages at
which the model has been updated, and thereby guess the secret key on
which the encryption is based. We are therefore interested in measuring,
at each stage, the size of the overlapping parts of the subintervals of all
characters, between two possible partitions: the one induced by the entire
history processed so far, and the one corresponding to the subset of updating
steps according to the secret key.

Figure 2 illustrates what we mean by overlap. The interval [0, 1) is
shown, partitioned into 5 segments, corresponding to an alphabet {a, b, c, d, e}
of 5 characters, but with slightly differing boundaries in the upper and lower
parts of the figure. Overlapping parts of segments assigned to the same char-
acter are emphasized. Our measure for the overall overlap is the cumulative
size of the boldfaced sub-intervals, 0.714 in this example.

The boldfaced upper plot of Figure 3 shows this overlap for the partitions
of [0, 1) into sub-intervals according to:
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Figure 2: Overlapping intervals.

1. a model updating the partition after each character read;

2. a model updating the partition selectively, according to some secret
key.

The test text for this figure is the beginning of the Bible (King James version)
in English, in which the text was stripped of all punctuation signs, which
we have used to initiate the frequency table prior to the processing of the
cleartext itself. As can be seen, the overlap is large at the beginning, but
quickly drops to a level of about 8%, which is reached after roughly 100
characters. Then the overlap slowly rises until reaching a value of about 0.83
for 10000 processed characters. The overlap in the upper plot of Figure 3
will eventually approach 1, as both distributions tend, after processing a
large enough number of characters, to the actual distribution of the text.
Indeed, the initial prefixes of the text are too short to be representative
samples of the general text; but as more characters are accumulated, even
the distribution within a sub-sample will be increasingly similar to that of
the entire set. A similar phenomenon can be observed when considering
several independent sources describing the distribution of the characters in
“standard” English. Almost all will agree that the order of the first few
characters will be E, T, A, O, I, N, and will give quite similar values for their
probabilities.

Returning to the suggested compression cryptosystem, the overlap after
1000 characters is roughly around 0.3, which means that an adversary guess-
ing the partition, or basing it on the full distribution of all the characters in
the prefixed Bible sample, will have, for each processed character, a chance
of about 0.7 for being wrong. The probability for correct guesses in all of
the, say, 10 first attempts is thus less than 0.000006, and a single wrong
guess will imply many more subsequently.

3.4. Cryptographic attack 4: guessing the order of the characters

An additional parameter of the system is the order of the characters
in the partition. While for Huffman coding, characters have first to be
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Figure 3: Size of overlap as a function of the number of processed characters.

ordered by their frequencies, this is not the case for arithmetic coding. The
partition of the interval [0, 1) into sub-intervals can be done using any order
of the elements, and it is often convenient to adopt a lexicographic ordering
of the characters, rather than sorted by probabilities, as we have done in
the example of Figure 1. If a well determined and publicly known order is
believed to endanger the security, as suggested in [1], a different order could
be used, which has the advantage of putting the additional burden on the
adversary to guess not only the exact sizes of the intervals, but also their
order.

Ideally, the sequence of elements of Σ should be reshuffled after each
processed character, and the exact details of how to perform this action
should be controlled by the secret key K. This would obviously not change
the compression efficiency, but it would be very costly in execution time, for
both encoding and decoding. We therefore suggest the following strategy
which is much faster to implement, yet seems to be just as secure in the long
run.

Denote by π the permutation giving the current order of the charac-
ters, that is, the alphabet vector Σ = Σ[0],Σ[1], . . . ,Σ[s − 1] contains the
elements σπ(0), σπ(1), . . . , σπ(s−1), respectively. We start with the identity
permutation, π(i) = i, corresponding to lexicographic order. After each
processed character, we suggest to swap it with its neighbor in the current
order. More precisely, suppose the current character is σj for some 0 ≤ j < s;
at this stage, σj is stored at index π−1(j) in vector Σ. The suggestion is
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to swap the contents in Σ of the neighboring elements with indices π−1(j)
and (π−1(j) + 1) mod s. Figure 4 is a small example: assume the last seen
character is w, whose ascii value is 119 and that it is currently stored at
position 73 in the table Σ. The figure shows a part of Σ before and after the
swap.

index · · · 72 73 74 75 76 · · ·
before swap · · · 17 119 56 201 178 · · ·
after swap · · · 17 56 119 201 178 · · ·

Figure 4: Example of swapping elements.

Of course, this swapping strategy might be known to the enemy, so the
idea is, once again, to perform the swaps selectively, only at steps indexed
i for which k(i+1) mod r = 1. The effect of such a swap on the interval
partition is that all the boundaries remain in place, except the one separating
the adjacent intervals that have been interchanged (unless the last interval
is swapped with the first one, and then two boundaries are moved, or in
case the intervals are equal in size, and then no boundary is moved). The
update process is thus significantly faster than if all the elements had to be
permuted.

On the other hand, using just a small number of such restricted permu-
tations cannot possibly lead to a uniform spread of the s! different permu-
tations of the alphabet, but after a large enough number of iterations, the
distribution should approach uniformity. Figure 5 is an illustrative exam-
ple visually representing the permutations as dots in an s × s matrix. The
test file is the gzip compressed form of the English Bible mentioned above.
The bold faced + signs represent the elements of the permutation obtained
by swapping in each iteration, the × signs correspond to the elements of
the permutations performed selectively according to the 1-bits of the secret
key K. We see that after 10,000 iterations, the elements still seem to be
concentrated close to the main diagonal, reflecting the fact that elements
have only been moved locally. After 200,000 and 400,000 iterations, the
obtained permutations give a less clustered impression. In the three plots,
the permutations for full and selective updates are completely different.

Returning to the number of overlaps, the lower plot of Figure 3 depicts
this number after the swapping strategy has been applied. We see that
while without swapping, the size of the overlap is increasing after some
initial phase, and tends to 1, the effect of permuting the alphabet keeps the
overlap at the level of a few percent in the long run. We conclude that this
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Figure 5: Permutations of the lexicographically ordered alphabet after swaps.

simple strategy may significantly improve the security, at almost no cost.

4. Empirical Results

We considered four texts of different languages and sizes, each encoded as
a sequence of characters. ebib is the version of the English Bible, mentioned
already above; ftxt is the French version of the European Union’s JOC
corpus, a collection of pairs of questions and answers on various topics used
in the arcade evaluation project [20]; sources is formed by C/Java source
codes obtained by concatenating .c, .h and .java files of the linux-2.6.11.6
distributions; and English is the concatenation of English text files selected
from the etext02 to etext05 collections of the Gutenberg Project, from which
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the headers related to the project were deleted so as to leave just the real
text.

4.1. Compression performance

We have assumed that basing the prediction of the character probabilities
on a random subset of bits would not hurt the compression performance. We
therefore compared our method to traditional dynamic arithmetic coding,
which uses the entire portion of the file that has already been processed to
predict the current character, and measured their compression performance.

Table 1 presents information on the compression performance of the
data files involved. The second column presents the original file size in MB.
The third column gives the size of the file, in MB, compressed by adaptive
arithmetic coding without any key, that is, using the full history window.
The fourth column shows the difference in size, in bytes, of the compressed
file, when the updates of the model are done according to a randomly chosen
key as suggested. Interestingly, there was a loss, albeit a negligibly small
one, in all our tests. The last column gives the ratio of the loss to the size
of the file.

File full size compressed size absolute loss relative loss
MB MB bytes

ebib 3.5 1.8 56 3× 10−5

ftxt 7.6 4.2 316 7× 10−5

sources 200.0 136.6 436 3× 10−6

English 1024.0 579.3 437 7× 10−7

Table 1: Information about the used datasets

As can be seen, there is hardly any noticeable difference in size between
the files obtained by using the standard adaptive arithmetic code, and that
with the selective updating. Timing results for both encoding and decoding
are also almost identical for both variants, with, typically, a slight advantage
of the selective version, due to the time savings for not updating the model
at every step. Table 2 presents the processing times for both compression
and decompression, for the standard and selective methods. For each of the
test files the encoding and decoding times were averaged over 10 runs. The
displayed times are the time averages per MB, given in milliseconds.
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File Compression Decompression
standard selective standard selective

ebib 146 138 511 497
ftxt 141 140 448 446

sources 166 162 389 387
English 154 143 466 462

Table 2: Processing Times in ms

4.2. Uniformity

As to security, any reasonably compressed or encrypted file should consist
of a sequence of bits that is not distinguishable from a randomly generated
binary sequence. A criterion for such randomness could be that the prob-
ability of occurrence, within the compressed file, of any substring of length
m bits should be 2−m, for all m ≥ 1, that is, the probability for 1 or 0 are
both 0.5, the probabilities for 00, 01, 10 and 11 are 0.25, etc. We checked
this fact on all our compressed test files, for all values of m up to 8, and
found distributions that are very close to uniform, with small fluctuations,
for both methods of the original arithmetic coding and that with our selec-
tive updates. We bring here only the data for the file ebib; the results for
the other files were practically identical.

The left part of Figure 6 plots the probability of occurrence of 8-bit
strings as a function of their possible values 0 to 255. As expected, the
probabilities fluctuate within a narrow interval centered at 1

256 = 0.0039.
All the possible bit-positions have been taken into account, so the strings
were not necessarily byte aligned. The solid line corresponds to the method
with a secret key suggested herein, whereas the broken line is the distribu-
tion for the original arithmetic coding. As can be seen, these distributions
can be equally considered as uniform, and there seems to be no obvious
deterioration of the uniformity due to the selective choice of the update
steps.

The right part of Figure 6 repeats the test with 7-bit strings. Here
the values are in the range [0, 127], and the probabilities fluctuate around
1

128 = 0.0078. Similar graphs would be produced for the other values of m.
For m ≤ 3, the probabilities are shown in Table 3.

To get a more quantitative judgment of the intuitive impression that
these values are evenly spread, we calculated the standard deviation of the
distribution of the 2m values for each value of m. Usually, the standard
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Figure 6: Probability of occurrence of 8- and 7-bit substrings

as function of their value.

deviation σ is of the order of magnitude of the average µ, so their ratio σ
µ

may serve as a measure of the skewness of the distribution. Table 4 gives this
ratio for 1 ≤ m ≤ 8, for both the standard adaptive arithmetic coding with
model updates after every encoded character, and for the selective model we
proposed. As can be seen, the ratio is very small in all cases, of the order
of 1

1000 , suggesting that the distributions are indeed very close to uniform.

4.3. Sensitivity

In the last test, we checked the sensitivity of the system to variations in
the secret key. The measure of similarity between two image files proposed in
[5] is the normalized number of differing pixels. Since we consider encrypted
files which are not images, we shall use the normalized Hamming distance:
let A = a1 · · · an and B = b1 · · · bm be two bitstrings and assume n ≥ m.
First extend B by zeros so that both strings are of the same length n.
The normalized Hamming distance is then defined by 1

n

∑n
i=1(ai xor bi).

Figure 7 plots these values for prefixes of size n, for 1 ≤ n ≤ 1000 of the
file ebib: the first plot considers two independently generated random keys,
for the second and third plots the same key is used, with just the first or
last bit flipped. In any case, one sees that the produced cipherfiles are
completely different, with the number of differences in corresponding bits
rapidly tending to the expected value 1

2 . The values of the ratio for the three
tests at the end of the file (after processing 1.8 MB) were 0.499894, 0.500004
and 0.499995, respectively. We conclude that the suggested selective update
procedure of the model is extremely sensitive to even small alterations: all
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value standard arithmetic selective updates
m = 3 m = 2 m = 1 m = 3 m = 2 m = 1

0 0.12503 0.25002 0.50011 0.12507 0.25010 0.500005004
1 0.12498 0.25009 0.49989 0.12503 0.24991 0.499994996
2 0.12510 0.25009 0.12491 0.24991
3 0.12499 0.24981 0.12499 0.25009
4 0.12498 0.12503
5 0.12511 0.12488
6 0.12499 0.12499
7 0.12482 0.12499

Table 3: Probability of occurrence of 3-, 2- and 1-bit substrings

as function of their value.

m 8 7 6 5 4 3 2 1
standard 0.00383 0.00251 0.00164 0.00125 0.00094 0.00072 0.00053 0.00030
selective 0.00135 0.00042 0.00207 0.00182 0.00059 0.00013 0.00003 0.00001

Table 4: Ratio σ
µ of standard deviation to average

within the set of 2m values for m = 1, . . . , 8.

produced files pass the above randomness tests, are practically of the same
size, and are completely different from each other.

5. Conclusion

A standard way to devise a compression cryptosystem is to compress
the text and only then encrypt the compressed form. The alternative of
encrypting first and then compressing would not be effective, as a reasonably
encrypted file lacks any easily detectable redundancy and thus would not be
compressible at all. We have suggested a way to combine the compression
and encryption transformations in a single step, by using selective update
steps in the maintained adaptive model. Experiments show that neither
the compression performance, nor the running time are hurt. Moreover, the
randomness of our ciphertext suggests that decryption is hard without the
knowledge of the key.

A main feature of our compression cryptosystem is that the encryption
is, in fact, given for free, while compressing the data. The advantage of this
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Figure 7: Normalized Hamming distance.

method is not only saving the time for both encryption and decryption, but
also saving the space needed for the intermediate compressed file, which is
only needed in the traditional approach. Moreover, storing this compressed,
unencrypted, file, increases the risk of leaks of the underlying information.
Our method also suggests that this process can be done in a streaming
manner, without even storing the original file.
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