Smaller Compressed Suffix Arrays

*

EKATERINA BENzA!, SHMUEL T. KLEIN? AND DANA SHAPIRA®

! Department of Computer Science, Ariel University, Ariel 40700, Israel
2 Department of Computer Science, Bar Ilan University, Ramat-Gan 52900, Israel

Email: benzakate@gmail.com, tomi@cs.biu.ac.il, shapird@gq.ariel.ac.il

An alternative to compressed suffix arrays is introduced, based on representing
a sequence of integers using Fibonacci encodings, thereby reducing the space
requirements of state of the art implementations of the suffix array, while

retaining the searching functionalities.

Empirical tests support the theoretical

space complexity improvements, and show that there is no deterioration in the
processing times.

Received 00 Month 2017; revised 00 Month 2017

1. INTRODUCTION

The research field of compressed data structures [2]
combines two different, yet correlated, disciplines
in computer science: data compression and data
structures, and has recently attracted much attention,
mainly because of the necessity of handling Big Data.
The goal is storing massive information amounts in
compact memory space, while still supporting efficient
query processing.

One of the fundamental succinct data structures
using only o(Z) bits beyond the information-theoretic
lower bound of Z bits, is bitmaps, that support fast
implementations of operations known as rank and select.
These are defined for any bit vector B of length n, bit
value b € {0,1} and index 0 < i < n as:

rank,(B,i) — number of occurrences of b in B up to
and including position 7; and

select, (B, i) — position of the ith occurrence of b in B.

Efficient implementations for rank and select are due
to Jacobson [3], Raman et al. [4], and Navarro and
Providel [5], to list only a few.

The Wavelet tree (WT) data structure can be seen
as an extension of the rank and select operations
on bits to a general alphabet, and may be stored
in a compressed form in case it is constructed by
means of some compression method such as an entropy
encoder, described precisely as follows. A Wavelet
tree, suggested by Grossi et al. [6], is a data structure
which reorders the bits of the compressed file into an
alternative form, thereby enabling direct access, as well
as rank and select operations to a general alphabet. WT
can be constructed upon any prefix-free code, and their

*This is an extended version of a paper that has been presented
at the Prague Stringology Conference (PSC’18) in 2018, and
appeared in its proceedings [1].

topology is determined by this code. The internal nodes
of the WT are annotated with bitmaps: the root of
the WT holds the bitmap obtained by concatenating
the first bit of the codewords of each of the encoded
elements, which we shall call characters, in the order
they appear in the encoded text. The left and right
children of the root hold the bitmaps obtained by
concatenating, again in the given order, the second bit
of each of the codewords starting with 0, respectively
of those starting with 1. This process is repeated
recursively on the sub-sequences of characters whose
codewords start with 0 and 1, respectively.

Recently, several variants have been proposed for
adapting the Wavelet tree to various coding schemes.
Brisaboa et al. [7] use WT on Byte-Codes. In another
work, Brisaboa et al. [8] introduce directly accessible
codes (DACs) by integrating rank data structures into
variable lengths codes. Kiilekci [9] suggests the usage
of WT for Elias and Rice variable length codes. The
method is based on handling separately the unary
and binary parts of each codeword so that random
access is supported in constant time. As an alternative
implementation, the usage of a WT over the lengths of
the unary parts of each of the Elias or Rice codewords
is proposed, while storing the corresponding binary
parts; this allows direct access in time logr, where
r = O(loglog M) is the number of distinct values of
the lengths that are encoded in unary in the file.

Klein and Shapira [10] apply a pruning strategy
to Wavelet trees based on Fibonacci Codes, so that
in addition to supporting improved rank, select and
random access to the corresponding Fibonacci encoded
file, the size of the Fibonacci based WT is reduced. A
new data structures for reducing the space overhead of
a Huffman shaped WT is used in [11] to support extract
queries from a text by means of a Skeleton Huffman tree
and its reduced variants [10]. Range decoding in WT is
proposed in [12].

2 BENZA, KLEIN AND SHAPIRA

This paper concentrates on another compressed data
structure known as a compressed suffix array (CSA),
introduced by Grossi and Vitter [13] as a text index
that uses 2nlogo bits in the worst case, and supports
O(m) processing time for searching a pattern of length
m.

Given a text and some pattern we wish to locate
in it, the suffir array of the text is a self index,
meaning that the retrieval is done directly on the suffix
array itself, without the use of the text. That is, the
text is implicitly encoded, and the searching process
decompresses only the necessary portion of the text.
More formally, let T be a string of length n — 1 over an
alphabet ¥ of size o, which we assume in this paper to
be constant. A suffiz array for T$, $ ¢ X, is an array
SAJ0 : n — 1] of the indices of all the n suffixes of T'$
which have been arranged in lexicographic order. By
convention, $ is lexicographically smaller than all other
characters.

Suffix arrays have been introduced by Manber and
Myers [14], and are more space efficient than suffiz trees
(compact tries), because suffix trees generally require
additional space to store all the internal pointers in the
tree. Sadakane [15] extends the searching functionality
of a CSA to a self index, and proves that it uses search
time O(mlogn), and space e~ 'nHy+O(nloglog o) bits,
where) < e < lando < logo(l) n, Hy being the 0-order
empirical entropy of T

Grossi et al. [6] present an implementation of
compressed suffix arrays that asymptotically achieves
entropy space as well as fast pattern matching. More
precisely, the CSA uses nHy + O(%) bits and
O(mlogo + polylog(n)) searching timei where Hy is
the k-th order empirical entropy of T

Ferragina and Manzini [16] introduce the FM-index:
a text index based on the Burrows-Wheeler Transform
[17], which supports efficient pattern matching using
the Backward Search algorithm. The FM-index uses at
most 5nHj, + o(n) bits for a constant alphabet size o,
and O(m + occlog'™ n) searching time to locate the
occ occurrences of the pattern. We refer the reader
to the book of Navarro [2] for a comprehensive review
on compact data structures in general and compressed
suffix arrays in particular.

Huo et al. [18] construct a space efficient CSA, and
Huo et al. [19] extend their work for the reference
genome sequence and propose approximate pattern
matching on the compressed suffix array for short read
alignment. Their implementation uses 2nHy +n+ o(n)
bits of space, for k < clog,n — 1 and any ¢ < 1. They
report on extensive experiments to evaluate their CSA
compression, construction time, and pattern matching
processing time performance. The results suggest that
their compression performance is better than that of
the implementation of Sadakane [15] and the FM-index
[16], except for evenly distributed data like that of DNA
files.

In this paper we suggest the usage of Fibonacci Codes
instead of Elias’ C, code used in [18, 19], and show
how decompression can be avoided using our scheme.
Elias [20] considered mainly two fized codeword sets, C.,
and Cjs, in what he calls universal codes, in which the
integers are represented by binary sequences, a sample
of which appears in Table 1.

The implementation of the Fibonacci based suffix
array requires 1.44n Hy + n + o(n) bits of space, for
k < clog,n — 1 and any ¢ < 1, while retaining the
searching functionalities. Empirical results support this
theoretical bound improvement, and show that on most
files, our implementation saves space as compared to the
one of [18, 19].

The paper is organized as follows. We recall the
definitions related to Fibonacci coding in Section 2,
and those of Compressed Suffix Arrays in Section 3.
Section 4 then presents implementation details of the
CSA including its space analysis and the summation
process applied on the compressed form. Section 5
describes the functionality as self-index supported by
CSAs. Finally, empirical results are given in Section 6.

2. FIBONACCI ENCODINGS

The lengths of the C, codewords grow logarithmically,
which yields good asymptotic behavior. However, C,
is then often efficient only for quite large alphabets,
whereas the number of different elements in the CSA
for natural language texts is usually small. The same
is true for several other universal codeword sets such
as ETDC [21] and (s, ¢)-dense codes [22]. This was also
the motivation of using C instead of the asymptotically
better C5 representation in the implementation of Huo
et al. [18]. The Fibonacci code is yet another universal
variable length encoding of the integers, based on the
sum of Fibonacci numbers rather than on the sum of
powers of 2, as in the standard binary representation.
More precisely, any number > 0 can be uniquely
represented by a binary string b,.b,._1 - - - boby, with b; €
{0,1}, such that = = Y_;_, b;F;, where the Fibonacci
numbers F; are defined by:

Fi=F, 1+ Fi» for i > 1,
and the boundary conditions
FO =1 and F_l =0.

The uniqueness of the representation for every integer
x is achieved by building the representation according
to the following procedure: find the largest Fibonacci
number F,. smaller than or equal to x, and repeat the
process recursively with x — F,.. For example, 79 =
5542143 = Fy+F7+F3, so its Fibonacci representation
would be 101000100. As a result of this encoding
scheme, there are never consecutive Fibonacci numbers
in any of these sums, implying that in the corresponding
binary representation, there are no adjacent 1s. It thus

SMALLER COMPRESSED SUFFIX ARRAYS 3

7 cy Cs Fib1 Fibo
1 1 1 11 1
2 010 010 0 011 101
3 011 010 1 0011 1001
4 001 00 011 00 1011 10001
5 001 01 011 01 00011 10101
6 001 10 011 10 10011 100001
7 001 11 011 11 01011 101001
8 0001 000 00100 000 000011 100101
9 0001 001 00100 001 100011 1000001
10 0001 010 00100 010 010011 1010001
30 00001 1110 00101 1110 10001011 100000101
100 0000001 100100 00111 100100 00101000011 100100100001

TABLE 1: Several codewords of universal codes C.,, Cs, Fiby and Fib,.

suffices to precede the Fibonacci based representation
of any integer by a single 1-bit, which can act like a
comma, to obtain a uniquely decipherable code.

The properties of Fibonacci codes have been
exploited in several useful applications: robustness
to errors [23], direct access [24], fast decoding and
compressed search [25, 10], compressed matching in
dictionaries [26], rewriting codes for flash memory [27],
etc. The present work is yet another application of this
idea.

One variant of the Fibonacci code, denoted here by
Fiby, simply reverses the codewords in order to achieve
an instantaneous code [28]. The adjacent 1s are then
at the right instead of at the left end of each codeword,
yielding a prefix code, a sample of which is presented in
Table 1 in the column headed by Fib;.

Another variant, denoted here by Fiby, was
introduced in [28], and found to be often preferable for
the A® encoding described in the following section. The
set of codewords Fiby is constructed from the set Fiby
by omitting the rightmost 1-bit of every codeword and
prefixing each codeword by 10; for example, 0100011
(for encoding the number 15 in Fiby) is transformed
into 10010001 (for encoding the number 16 in Fibs).
As a result, every codeword now starts and ends with a
1-bit, so codeword boundaries may still be detected by
the occurrence of the string 11. Since, as a result of this
transformation, the shortest codeword 101 is of length
three, one may add 1 as a single codeword of length 1,
which explains the shift in the indices of corresponding
codewords. Table 1 presents several codewords for
Elias C,, and Cj, presented in the first two columns,
followed by Fib; and Fiby. For each presented value, the
codewords of shortest length are emphasized, unless all
are of the same length. Although most of the codewords
of Fib; are the shortest, its disadvantage relative to the
other codes is the encoding of the most frequent value
that uses two bits instead of a single one. This was
found to be empirically crucial for our data sets, as
the number 1 was by far the most common value to be
encoded.

3. COMPRESSED SUFFIX ARRAY

We recall that a suffix array (SA) for T'$, where T is a
string over ¥ and $ ¢ ¥, is an array SA[0 : n — 1] of the
indices of the suffixes of T'$, stored in lexicographical
order. That is, if SA[i] = j then the suffix T'[j : n — 1]
starting at position j of T', is the item indexed ¢ in the
lexicographically sorted list of all n suffixes of T'$. The
inverse function SA~![j] gives the position of T[] : n—1]
in the sorted list of the suffixes of T'.

The numbers in a suffix array can be stored using
nlogn bits, as they are a permutation of the numbers
{0,...,n — 1}, that require logn! Q(nlogn) bits,
at least. However, not all permutations correspond to
actual suffix arrays, as there are only o"~ ! different
texts T of length n — 1 over X. Thus a better lower
bound is, in fact, nlogo bits. Grossi and Vitter
[13] improve the space requirements of a suffix array
by decomposing it based on the neighbor function ®
defined as follows:

O[i] =4, if SA[j] = (1 + SA[i]) mod n.

The function ® can also be rewritten as:
®[i] = SA[(1 + SA[4]) mod n].

If SA[i] = j, that is, it refers to the suffix T[j : n — 1],
and ¢’ is the index such that SA[i] = j + 1, which
refers to the following suffix T[j + 1 : n — 1], then
the neighbor function connects these values by assigning
®[i] = 4'. Therefore, if SA[i] = j then SA[®[i]] = j + 1,
SA[®[®[i]]] = j + 2, and generally, SA[®F)[i]] = j + k.

It has been shown that the values of ® at consecutive
positions referring to suffixes that start with the same
symbol must be increasing. This claim is explained as
follows. Let ¢ and ¢ + 1 be two adjacent indices in
SA that correspond to suffixes that start by the same
symbol. The index i cannot be 1, as the symbol at
the first position corresponds to $ that occurs only
once. Let j = SA[{] and j/ = SA[i + 1]. Following
our assumption that they belong to suffixes starting
with the same symbol, we get that T[j] = T'[j']. Since

4 BENZA, KLEIN AND SHAPIRA
1 2 3 4 5 6 7 8 9 10 11
T m i s s i s s i P P i $
SA 1 (10 | 7 4 1 0 9 8 6 3 5 2
SATY | 5 |4 |11]9 |3 |10|8 |2 |T7T]|6]1]|0
9 5 0 7 |10 | 11| 4 1 6 2 3 8 9
T[SA] | $ i i i i m P P s s s S
D, Dy Dy o D, o
TABLE 2: CSA example for T = mississippi$
0 1 2 3 4 5 6 7 8 9 10 11
SAM 5 11 2
AD IERERE IERERE BENERE
Cy(AD) 00111 00111 011 00101 0001001 00101 100101 1
SB 0 30
B 0 13 0
Fib: (A®) 01011 01011 0011 00011 100011 00011 11 00011 11
SB 0 30
B 0 14 0
Fib2(A®) 101001 101001 1001 10101 1000001 10101 110101 1
SB 0 33
B 0 16 0
) 5 0 7 10 11 4 1 6 2 3 8 9
TABLE 3: Super blocks and regular blocks parsing of ® for a = 8 and b =4
using three different implementations: C, Fiby and Fiba codes.
Tlj : n] < T’ : n], it follows that T[j + 1,n] < differential encoding. Instead of @ itself, the values

T[j' + 1,n], and j' + 1 appears to the right of j 4+ 1
in SA. The position where j* + 1 appears in SA is
SAT'j' 4+ 1] = SAT'[SA[i +1] +1] = ®[i+1]. Using the
same argument, the position where j+ 1 appears in SA
is ®[i], thus, ®[i] < ®[i + 1].

As @ is an increasing function for suffixes starting
with the same symbol, ® can be partitioned into o
arrays of increasing numbers ®. = [0 : n, — 1], for all
¢ € X, where n. is the number of occurrences of the
character ¢ in the text. As an example, consider the
text T = mississippi$. The text T, its suffix array
SA, its inverse function SA~!, and ® are given in the
first rows of Table 2. The last row partitions the ® row
into subintervals, denoted by ®;,®,, ®, and @5, each
referring to a different character of T. The first cell
does always refer to the special character $, denoted
by ®3. To better understand this partition, we have
preceded it with a row showing T[SA[i]] at position i,
the first character of the corresponding suffix.

The implementation of CSA used in [18, 19] applies

AD[i]| = ®[i] — ®[i — 1] are encoded, except for the first
which is not defined. More precisely, since universal
codes are designed for positive integers, we define, for
>0

A@M:{

These differences are then encoded using the C.
encoding method of Elias.

To provide faster access to the C encoded sequence
S of integers, which we denote as C,(S), we partition
it into so-called super-blocks, which in turn are sub-
partitioned into blocks, and three auxiliary tables SB,
B and SAM are defined. For given values a and b,
which are defined in the following paragraph, SB[0 :
% — 1] stores the starting position of the encoding of
each super-block in C,(S), i.e., the total number of
bits in super-blocks preceding the current super-block;
B[O : § — 1] stores the starting position in C,(S) of the
encoding of every block relative to the beginning of the
super-block containing this block; and SAM[0 : % — 1]

®[i] — Ji — 1]
Oli| — ®li— 1] +n

if the difference is > 0,
if the difference is < 0.

SMALLER COMPRESSED SUFFIX ARRAYS 5

contains the first in each block of ® values as a sample
from which the omitted values can be derived.

The sizes of the super-blocks and blocks are chosen
in [18] as a = log” n elements and b = log® n elements.
While the super-blocks store the absolute number of
bits up to that position, the blocks record the relative
position with respect to the beginning of the super-
block. Table 3 uses our running example for ¢ = 8 and
b = 4 illustrating how the neighbor function ® can be
derived on the basis of the differences A® and the SAM
values. The third line of Table 3 displays the Elias’ C
encoding of A®, followed by two lines for the values in
the super-blocks and blocks. The table also contains
the encodings corresponding to the Fibonacci variants
Fib; and Fibs, as well as the matching SB and B arrays.

Once the partition into super-blocks and blocks is
given, the elements to be stored are the A® values for
each block; the first value of each block is not defined
and therefore omitted. In other words, the sequence
A®[ib+ 1], A®[ib+ 2],..., ADP[(i + 1)b — 1] is encoded,
and A®[:ib] are not defined, for all 0 < i < |7]. For
the completeness of the example, we have copied the ®
array at the bottom of the table.

4. IMPLEMENTATION DETAILS

Using the encoding and decoding alternatives, as well
as the arrays of the samples, super-blocks and blocks,
the ® values can be extracted in time O(b) as follows.
The arguments of the decoding function, denoted by
D(E,s,L), are: the encoded array £ to be decoded,
the starting position s within £, and the number of
codewords ¢ to be decoded and then summed up. The
values of ® are then computed using:

oli) = [SAM[[£]]+ (1)
(&, SB[[£]] +B[[}]], imodb)| modn.

To obtain ®[i], SB and B are accessed to determine
the corresponding bit position within £. Starting
at that position, ¢ mod b codewords are decoded and
added to the sample values stored in SAM. The mod
n at the end takes care of the negative values of the
differences A®[i]. Recall that n has been added to
each such negative number; these technical additions
are cancelled by the modulus.

As an example using Fibo,

®[6] = [SAM[S] + D(&,SB[E] + B[£],6 mod 4)] mod n
= [SAM[1] + D(&, SB[0] + B[1],2)] mod 12
= [114 D(£,0 4 16,2)] mod 12.
Two consecutive values, 10101 and 1000001 are then
retrieved and decoded as 5 and 9 (see Table 1) and are
added to 11, so that the final result (114+-549) mod 12 =

1 is returned. The relevant values of the example are
highlighted in bold in Table 3.

4.1. Space Analysis

Huo et al. [18] prove that the space used for the Elias
C, based A® encoding is 2nHj + n + o(n) bits in the
worst case for any k < clog,n — 1 and any constant
¢ < 1. Navarro [2] shows that if A® is encoded using
Cs, the space for CSA is nHy + n + O(n).

C, and Cs require 2|logz| + 1 and |logz| + 1 +
2|log([logx] + 1)] bits, respectively, to encode the
number z. To evaluate the corresponding Fibonacci
codeword lengths, let F,. be the largest Fibonacci
number smaller than or equal to the given number
z. Then r bits are necessary to encode z. A well
known approximation of the Fibonacci number F,. is
j}—%, where ¢ = HT\/E = 1.618 is the golden ratio. This
approximation can be used to derive our estimate of the
length of the encoding, because the difference between

Iir and j}—% isA just %, where (]3 = 1*7‘/5 = —é, so that
|¢| < 1 and ¢" decreases exponentially with growing .
From the fact that F,. < z < F,.y; we may thus

extract a bound for r to be

r< log¢(\/5x) = log, V5 + (logs2) logy x
= 1.672 + 1.4404 log, x.

That is, the lengths of Fibonacci codewords are
asymptoticly between those of C, and Cs. However,
in practice, Fibonacci codes may be preferable in case
the numbers are not uniformly distributed, as in our
application of compressed suffix arrays.

Emulating the space analysis given in [18] for the
Elias Cy encoded CSA, replacing the length estimates
of 2logx for a value x by 1.44 logz, we get that at
most 1.44n Hi(1 + o(1)) + O(n) bits are needed for
the Fibonacci based representation of the CSA, for any
k < clog,n —1, and any constant ¢ < 1, where Hy, is
the k-th order empirical entropy.

4.2. Compressed addition

According to equation (1), in order to obtain ®[i],
i mod b codewords need to be decoded. The traditional
approach is to decode each codeword and add the
decoded values. One of the advantages of using a
Fibonacci based representation of the integers is that
it is possible to perform this addition directly on the
compressed form of the CSA, without individually
decoding each summand.

To add i mod b Fibonacci encoded numbers, first
strip the appended 1 for Fib; or the prepended 10 for
Fiby (except for the first codeword 1, which is given a
special treatment), and pad, if necessary, the shorter
codewords with zeros at their right end so that all
representations are of equal length ¢. Considering this
as an (7 mod b) x ¢ matrix, we record the number of 1-
bits in each column into an array W1 : £]. The sought
result is obtained by summing Z§:1 W j]F; for Fiby,

or by summing Z§:1 Wj]F; + (i mod b) for Fibs.

6 BENZA, KLEIN AND SHAPIRA

For example, assume that (i mod b) = 5 differences
AD[i], 2,3,5,6, and 4, should be added to obtain
2+3+4+5+4+6+4 = 20. They are represented in Fib; as
011, 0011, 00011, 10011, and 1011, respectively.

The steps proposed are:

1. Strip the appended 1: resulting in 01-1, 001-1,
0001-1, 1001-1, and 101-1.

2. Pad the shorter codewords with 0s so that all of
them are of length ¢ = 4: 0100, 0010, 0001, 1001,
and 1010.

3. Regard them as an (i mod b) x £ =5 x 4 matrix:

00

10

01

01

10

4. Record the number of ones in each column in
WIl:4]=1[2,1,2,2].

5. S W[iFis2-1+1:2+2-3+2:5=20, as
expected.

Encoding the same example, 2,3,5,6,4, using
Fiby, attains 101, 1001, 10101, 100001, and 10001,
respectively. Stripping the prepended 10 and padding
by 0Os, we receive 1-000, 01-00, 101-0, 0001, and 001-0.
Finally, putting them in a matrix:

OO OR
oo~ O
—OoORROO
OO OoOO

WL :4]is then [2,1,2,1], and 3;_; W[j]F;+ (i mod b)
is2-14+1-24+2-341-545 =20, as expected.

In fact, the matrix should be understood as a
conceptual tool to explain the algorithm, and in an
actual implementation the extracted bits are processed
from left to right, only up to the rightmost 1-bits, which
are the leading bits in the Fibonacci encoded numbers.
The overall processing time of all these numbers is
thus proportional to the number of bits used for their
encoding, which is, asymptotically and empirically on
our test files, smaller than the time necessary for the
corresponding C., encodings used in [18].

Similarly, the Elias C, code could be partially used
directly in its compressed form, as the summation of
integers represented by codewords of the same length
can be evaluated by adding the binary parts, and
copying the common unary part, or extending it by a
single 1-bit if there has been a carry in the addition.
However, handling codewords of different lengths is
more involved: in order to locate the binary parts, the
number of preceding 1’s in the unary part of each of the
codewords has to be counted, whereas in the Fibonacci
encoding, the codeword limits are easily detected by the
occurrence of a pair of adjacent 1-bits.

A different approach for storing the increasing &
values of the CSA suggests using the FElias-Fano

encoding [29]. Based on this approach, [30] propose
an enhanced block based representation of the ® values
that provides improved compression results as well as
faster backward search for the counting query.

5. EXTRACT, COUNT AND LOCATE
QUERIES ON CSA

For a given pattern P, the compressed suffix array
CSA(T) supports the following operations without any
use of T":

1. EXTRACT({,r) - for returning the substring T[¢ : r].

2. COUNT(P) - for returning the number of occur-
rences of P in T.

3. LOCATE(P) - for returning the list of all occurrences
of PinT.

Assume the alphabet ¥ = {cg,...,co—1} is given
in lexicographic order. In order to query the CSA,
one uses an additional table C of size o. It stores at
entry ¢ the total number of characters in T that are
lexicographically smaller than ¢;, for each character c;.
Formally, C[i] = Z;;ll occ(c;), where occ(c;) denotes
the number of occurrences of ¢; in T'. For simplicity, a
sentinel element Cfo] = |T| = n is added. The space
used for C' is ologn bits. We shall use the inverse
array C ', which is not stored explicitly, and its values
are retrieved using binary search on array C. Define a
function ord(x) giving the index, starting from 0, of the
character x within ¥ in lexicographical order. For the
particular order of our alphabet, ord(c¢;) = i.

For our running example T = mississippi$, the
array C' is

5.1. The EXTRACT Query

Next we show how to perform EXTRACT(,r) on the
CSA for computing the substring str = T[¢ : r]. The
index k = SA~![¢] is the location corresponding to suffix
T[¢,n — 1] in the suffix array, ie., T[(,n — 1] is the
element indexed k of the suffixes of T" in lexicographic
order. Thus, the first character of str, T[], is C~1[k].
For the following characters, one must follow the ®
function and compute iteratively k < ®(k) and C~1[k],
r — £ times, as presented in Algorithm 1.

As an illustration, we perform EXTRACT(6,8) on our
running example. SA~![6] = 8 and C~![8] = s is the
first character; k = ®[8] = 2, and C71[2] = i is the
second character. Finally, k = ®[2] = 7 and the last
character is C~1[7] = p, so the returned string is str =
sip.

Note that although a contiguous region of T is
sought, the ® values are not necessarily adjacent to each
other, and therefore each ® value should be extracted

SMALLER COMPRESSED SUFFIX ARRAYS 7

independently. This non adjacency of the ® values
is similar to what happens in the backward search
of the FM-index [16], where the sequence of intervals
obtained when processing the characters right to left,
are not contained in each other. However, some Wavelet
trees implementations mentioned in the introduction do
follow continuous regions.

In [11], the partial decoding of a contiguous portion
of the file, or even its full decoding, is significantly
accelerated relative to repeatedly performing random
accesses on the consecutive indices.

EXTRACT(Z, 1)
k<« SAT'[]
for j <~ £ to r do
str[j —] « C7[K]
k «+ ®[k]
return str

ALGORITHM 1: EXTRACT a range in T.

5.2. COUNT and LOCATE Queries

An occurrence of a given pattern P in T is a prefix of
some suffix of T. The indices of several such occurrences
of the same pattern appear in consecutive cells of SA.
In particular, the suffixes that start in the text T at
positions indexed SA[C[i]], SA[C[i] + 1],---,SA[C]i +
1] — 1] all have ¢; as their first character. As mentioned
above, the suffixes of T' can be reconstructed using
the function ®. The query LOCATE(P) returns the
range [start,end] in SA of suffixes of T that start with
P if P occurs in T, or an empty range, otherwise.
That is, it returns the indices {SA[start], SA[start +
1],...,SA[end]} that are the positions of the suffixes
that are prefixed by P.

The algorithm LOCATE(P) is presented for the
completeness of the paper. The algorithm searches for
the range bounds, going backwards from p,, to p;. The
initial interval is [0, n — 1], referring to the entire range
of the text. At each iteration of the algorithm, the range
for P[i : m] is computed given the range for P[i+1 : m].
The final range is a sub-interval of the suffix array where
P occurs as a prefix of the corresponding suffixes. The
computation for COUNT(P) is simply the size of the
interval.

LOCATE(P)
(4,r) < (0,n —1)
for i < |P| down-to 1 do
B {jl0<a()<r}
D <« {Clord(p;)], Clord(p;)] + 1,...,Clord(p;) + 1] — 1}
if BND =0 then
return “pattern not found”
(¢,7) + (min(B N D), max(B N D))
return (¢,7)

ALGORITHM 2: LOCATE P in T.

As an example, let P =issi.

1. We start with the initial range [0,11] and the
rightmost character of P, i; B is then the entire
range [0,11], and since ord(p,,) = ord(i) = 1,
C[1] = 1, thus D is the range [1,...,4], which
yields (¢,r) = (1,4).

2. The next character to be processed is the right s,
with range [1,4]. B is then {5,6,8,9}, and since
ord(ps) = ord(s) = 4, C[4] = 8, thus D is the range
8,9, 10, 11], which yields (¢,7) = (8,9).

3. The next character to be processed is the left s,
with range [8,9]. B is then {10,11}, and since
ord(pa) = ord(s) = 4, C[4] = 8, thus D is the
range [8,...,11] as in the previous iteration, which
yields (¢,r) = (10, 11).

4. Finally, the last character to be processed is the left
i, starting with range [10, 11]. B is then {3,4}, and
D is [1,...,4] as for the first 1 processed earlier,
which yields as final range (¢,7) = (3,4).

The SA at positions [3, 4] are 4 and 1, as can be seen
in Table 1, which are the positions in 7" that start with
P =issi.

In order to improve the running time, the subset B
in Algorithm 2 does not have to be computed explicitly.
Recall that ®. is increasing for each character ¢, thus
for each character p; of P, the search for £ and r can
be done using binary search within the range ®,,. The
total running time in the worst case is thus O(mlogn).
However, the range is of size 8(n) only for the first few
steps and is usually narrowed after several characters to
a much smaller range, so the running time is smaller in
practice.

6. EXPERIMENTAL RESULTS

We considered the same test files as Huo et al., taken
from the Pizza & Chili® as well as from the Canterbury*
corpora. We used the implementation® of [18] and
adapted it to encode the AP values with Fib; and Fibs,
instead of with Elias’ C, code. Both the sizes of the
CSA as well as the net sizes of the different encodings
without the space overhead of the super-blocks and
blocks have been considered.

The first column of Table 4 reports the sizes in MB
of the datasets. The following columns present the
compression ratio of the net encodings of A® using
these universal codes, in which the compression ratio
is defined as the storage occupied by the net encodings,
divided by the size of the original file. We also added
Elias’ Cs code, as it is asymptotically the best of these
four universal codes alternatives. Table 5 presents
the compression ratio of the entire CSA, including the

3http://pizzachili.dcc.uchile.cl
4http://corpus.canterbury.ac.nz
Shttps://github.com/Hongweihuo-Lab/CSA

8 BENZA, KLEIN AND SHAPIRA

overhead of the blocks, super-blocks and samples, for
the C, Fib; and Fiby encodings. The best values in
each row are emphasized.

Name size (MB) (oM Cs Fiby Fiba
Canterbury
E.coL1 4.42 0.435 0.488 0.460 0.458
BIBLE 3.86 0.348 0.357 0.403 0.342
WORLD192 2.36 0.329 0.327 0.391 0.317
NEWS 0.36 0.494 0.486 0.508 0.469
BOOK1 0.73 0.477 0.490 0.495 0.467
PAPER1 0.05 0.480 0.480 0.500 0.460
KENNEDY 0.98 0.428 0.402 0.463 0.388
Pizza & Chili
DNA 100 0.403 0.450 0.438 0.422
PROTEINS 100 0.655 0.649 0.622 0.627
XML 100 0.229 0.232 0.321 0.225
SOURCES 100 0.319 0.317 0.385 0.307
ENGLISH 100 0.375 0.382 0.424 0.368

TABLE 4: Compression ratio for net encoding of A®.

C, Fiby Fiby

Canterbury

E.cou1 0.57 0.59 0.59
BIBLE 0.48 0.53 0.47
WORLD192 0.46 0.52 0.45
NEWS 0.62 0.63 0.59
BOOK1 0.60 0.61 0.59
PAPER1 0.62 0.63 0.60
KENNEDY 0.55 0.59 0.51
Pizza & Chili

DNA 0.56 0.59 0.58
PROTEINS 0.81 0.78 0.78
XML 0.38 0.48 0.38
SOURCES 0.48 0.54 0.46
ENGLISH 0.53 0.58 0.52

TABLE 5: Compression ratio including overhead of
blocks and super blocks

As can be seen, the overhead incurred by the super-
blocks and blocks does not change the order of the
relative performance of the coding alternatives on our
test data. In both tables the Fibs based CSA encoding
performs best on most files. For DNA and E.cCoLI,
C, gives the best results, but these are two test
files of [18] for which FM-index and Sadakane’s CSA
implementation produce better results than C,. Huo et
al. explain this performance by the different frequencies
of small values (1 and 2) in A®, which tend to be lower
in these files than in the others, so it is not surprising
that for such files, the performance of the Fibonacci
encodings is also inferior to that of C,. The other file
for which Fibs does not produce the most efficient CSA

C, Fiby Fib,

Canterbury

E.coL1 0.095 0.103 0.102
BIBLE 0.081 0.087 0.086
WORLD192 0.078 0.082 0.080
NEWS 0.108 0.122 0.119
BOOK1 0.108 0.105 0.105
PAPER1 0.200 0.340 0.320
Pizza & Chili

DNA 0.273 0.280 0.279
PROTEINS 0.258 0.265 0.264
XML 0.191 0.193 0.191
SOURCES 0.160 0.164 0.163
ENGLISH 0.253 0.256 0.255

TABLE 6: Construction time of the CSA in seconds per
MB.

is PROTEINS, for which it is outperformed by Fib;.

The sizes presented in Tables 4 and 5 also show
that the overhead is approximately 25-42% for the
Canterbury Corpus, and about 24-69% for the larger
files in the Pizza & Chili Corpus.

For the processing times all experiments were
conducted on a machine running 64 bit Windows 10
with an Intel Core i7-8550U @ 1.80-4.0 GHz processor,
with 8GB of main memory and 8 MB Cache. For
the Fibonacci codes we considered both the variant
that replaces the C, encoding of [18, 19] by one of
the Fibonacci encoding alternatives, and the one that
also performs compressed addition, as presented in
Section 3.2; the latter are denoted by Fib;-CA and Fibo-
CA.

Table 6 presents the construction time of each CSA
alternative. Each test was run ten times and the results,
given in seconds per MB, were averaged. As can be
seen, in most cases the construction for C, is slightly
faster than for the Fibonacci variants. Note that the
construction is done only once.

250 T

200

150

100

50

0 I I I I I I !
10 20 30 40 50 60 70

FIGURE 1: Counting query of our CSA compared with C,
(in 10™* sec).

SMALLER COMPRESSED SUFFIX ARRAYS 9

For the locating and counting queries we considered
patterns of different lengths appearing in the text, by
randomly selecting their starting positions. As above,
each test was repeated ten times for each of the input
patterns and the results were averaged.

The counting query processing times are given in
units of 1074 seconds, and are presented in Figure 1.
The original implementation of Huo et al. was 5-8 times
slower than the times reported here, as we improved it
for a fair comparison. In all cases, the counting queries
on the Fibonacci variants are faster than for C,. For
Fibs-cA, which is the best alternative in all cases, the
processing is 3.7 to 9.5 times faster than for C. For the
locating queries, the processing times of the Fibonacci
variants are comparable to those of C, in all cases.

7. CONCLUSION

Huo et al. [18] present experiments showing that their
CSA implementation is empirically better than the
FM-index and Sadakane’s CSA implementations on
most tested files. We suggest here a Fibonacci based
CSA, which generally achieves even better compression
performance on the same data-sets, without hurting the
processing times.

Acknowledgement: We would like to thank Hongwei
Huo for sharing the implementation of [18].

REFERENCES

[1] Benza, E., Klein, S. T., and Shapira, D. (2018)
Fibonacci based compressed suffix array. Prague
Stringology Conference 2018, Prague, Czech Republic,
August 27-28, 2018, pp. 3-11.

[2] Navarro, G. (2016) Compact Data Structures -
A Practical Approach. Cambridge University Press,
Cambridge UK.

[3] Jacobson, G. (1989) Space-efficient static trees and
graphs. Proceedings of the 30th Annual Symposium on
Foundations of Computer Science, Research Triangle
Park, North Carolina, USA, 30 October—1 November
1989, pp. 549-554. IEEE Computer Society, Washing-
ton DC.

[4] Raman, R., Raman, V., and Satti, S. R. (2007) Succinct
indexable dictionaries with applications to encoding
k-ary trees, prefix sums and multisets. ACM Trans.
Algorithms, 3, 43.

[6] Navarro, G. and Providel, E. (2012) Fast, small, simple
rank/select on bitmaps. Ezperimental Algorithms -
Proceedings of the 11th International Symposium, SEA
2012, Bordeauz, France, June 7-9, Lecture Notes in
Computer Science, 7276, pp. 295-306. Springer Verlag,
Berlin.

[6] Grossi, R., Gupta, A., and Vitter, J. S. (2003) High-
order entropy-compressed text indexes. Proceedings
of the 14th ACM-SIAM Symposium on Discrete
Algorithms, Baltimore, Maryland, January 12-14,
pp. 841-850. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA.

[7] Brisaboa, N. R., Farina, A., Ladra, S., and Navarro,
G. (2012) Implicit indexing of natural language text by
reorganizing bytecodes. Inf. Retr., 15, 527-557.

[8] Brisaboa, N. R., Ladra, S., and Navarro, G. (2013)
DACs: Bringing direct access to variable-length codes.
Inf. Process. Manage., 49, 392-404.

[9] Kiilekei, M. O. (2014) Enhanced variable-length codes:
Improved compression with efficient random access.
Proceeding of the Data Compression Conference, DCC
2014, Snowbird, UT, USA, 26-28 March, pp. 362-371.
IEEE Computer Society, Los Alamitos, CA.

[10] Klein, S. T. and Shapira, D. (2016) Compressed
matching for feature vectors. Theor. Comput. Sci., 638,
52-62.

[11] Baruch, G., Klein, S. T., and Shapira, D.
(2018) Accelerated partial decoding in wavelet trees.
To appear in Discrete Applied Mathematics, 258,
https://doi.org/10.1016/j.dam.2018.07.016.

[12] Baruch, G., Klein, S. T., and Shapira, D. (2017) A
space efficient direct access data structure. J. Discrete
Algorithms, 43, 26-37.

[13] Grossi, R. and Vitter, J. S. (2005) Compressed suffix
arrays and suffix trees with applications to text
indexing and string matching. SIAM Journal on
Computing, 35, 378-407.

[14] Manber, U. and Myers, G. (1993) Suffix arrays: A new
method for on-line string searches. SIAM Journal on
Computing, 22, 935-948.

[15] Sadakane, K. (2003) New text indexing functionalities
of the compressed suffix arrays. J. Algorithms, 48, 294—
313.

[16] Ferragina, P. and Manzini, G. (2005) Indexing
compressed text. J. ACM, 52, 552-581.

[17] Burrows, M. and Wheeler, D. J. (1994) A block sorting
lossless data compression algorithm. SRC Technical
Report 124. Digital Equipment Corporation, Palo Alto,
CA.

[18] Huo, H., Chen, L., Vitter, J. S., and Nekrich, Y. (2014)
A practical implementation of compressed suffix arrays
with applications to self-indexing. Proceeding of the
Data Compression Conference, DCC 2014, Snowbird,
UT, USA, 26-28 March, pp. 292-301. IEEE Computer
Society, Los Alamitos, CA.

[19] Huo, H., Sun, Z., Li, S., Vitter, J. S., Wang, X.,
Yu, Q., and Huan, J. (2016) CS2A: A compressed
suffix array-based method for short read alignment.
Proceeding of the Data Compression Conference, DCC
2016, Snowbird, UT, USA, March 30-April 1, pp. 271—
278. IEEE Computer Society, Los Alamitos, CA.

[20] Elias, P. (1975) Universal codeword sets and represen-
tations of the integers. IEEE Trans. Information The-
ory, 21, 194-203.

[21] Brisaboa, N. R., Iglesias, E. L., Navarro, G., and
Paramd, J. R. (2003) An efficient compression code
for text databases. Advances in Information Retrieval,
Proceedings of the 25th Furopean Conference on IR
Research, ECIR 2003, Pisa, Italy, April 14-16, Lecture
Notes in Computer Science, 2633, pp. 468-481.
Springer Verlag, Berlin.

10 BENzA, KLEIN AND SHAPIRA

[22] Brisaboa, N. R., Farifia, A., Navarro, G., and Esteller,
M. F. (2003) (s,c)-dense coding: An optimized
compression code for natural language text databases.
Proc. 10th Symposium on String Processing and
Information Retrieval, SPIRE 2003, Manaus, Brazil,
October 8-10, Lecture Notes in Computer Science,
2857, pp. 122-136. Springer Verlag, Berlin.

[23] Apostolico, A. and Fraenkel, A. S. (1987) Robust
transmission of unbounded strings using Fibonacci
representations. IEEE Trans. Information Theory, 33,
238-245.

[24] Klein, S. T. and Shapira, D. (2016) Random access to
Fibonacci encoded files. Discrete Applied Mathematics,
212, 115-128.

[25] Klein, S. T. and Ben-Nissan, M. K. (2010) On the
usefulness of Fibonacci compression codes. Comput.
J., 53, 701-716.

[26] Klein, S. T. and Shapira, D. (2006) Compressed pattern
matching in JPEG images. Int. J. Found. Comput. Sci.,
17, 1297-1306.

[27] Klein, S. T. and Shapira, D. (2019) Context sensitive
rewriting codes for flash memory. Comput. J., 62, 20—
29.

[28] Fraenkel, A. S. and Klein, S. T. (1996) Robust universal
complete codes for transmission and compression.
Discrete Applied Mathematics, 64, 31-55.

[29] Ottaviano, G. and Venturini, R. (2014) Partitioned
Elias-Fano indexes. The 37th Conference on Research
and Development in Information Retrieval, SIGIR’14,
Gold Coast, QLD, Australia, July 06 — 11, pp. 273-282.
ACM, NY, USA.

[30] Gog, S., Moffat, A., and Petri, M. (2017) CSA++:
fast pattern search for large alphabets. Proc. 19th
Workshop on Algorithm Engineering and Ezxperiments,
ALENEX 2017, Barcelona, Spain, January 17-18, pp.
73-82. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA.

