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Abstract—Data scientists frequently examine the raw content
of large tables when exploring an unknown dataset. In such cases,
small subsets of the full tables (sub-tables) that accurately capture
table contents are useful. We present a framework which, given a
large data table T , creates a sub-table of small, fixed dimensions
by selecting a subset of T ’s rows and projecting them over a
subset of T ’s columns. The question is: Which rows and columns
should be selected to yield an informative sub-table?

Our first contribution is an informativeness metric for sub-
tables with two complementary dimensions: cell coverage, which
measures how well the sub-table captures prominent data pat-
terns in T , and diversity. We use association rules as the patterns
captured by sub-tables, and show that computing optimal sub-
tables directly using this metric is infeasible. We then develop an
efficient algorithm that indirectly accounts for association rules
using table embedding. The resulting framework produces sub-
tables for the full table as well as for the results of queries over
the table, enabling the user to quickly understand results and
determine subsequent queries. Experimental results show that
high-quality sub-tables can be efficiently computed,and verify
the soundness of our metrics as well as the usefulness of selected
sub-tables through user studies.

Index Terms—Interactive data exploration and discovery

I. INTRODUCTION

Data exploration is the process of understanding an unfa-
miliar dataset and determining what part of the data is relevant
to an analysis task. The process is often done by iteratively
applying exploratory queries, examining their results, and
interpreting them with data visualizations.

Numerous lines of work have studied solutions for different
aspects of the exploration process, such as query suggestions
(e.g., [1], [2]), query formulation for non-programmers [3]–
[6], insights-discovery [7]–[9], and visualization recommen-
dations [10]–[12].

In this work, we focus on the task of tabular data display:
before applying additional queries or visualizations, users
often manually examine the raw table or query results. This
is done using commands such as the table display of the
popular Pandas library1, which shows a small subset of the
raw table rows and columns that is easier for a human user
to inspect than the full table. However, a disadvantage of the
Pandas tabular display is that its choice of rows and columns to
display is arbitrary: it includes a few of the first and last rows
and columns. As a result, the sub-tables may include arbitrary
data values and cross-column value combinations rather than
ones that reflect prominent trends; it may also elide columns
that are important for further exploration and analysis.

1Pandas: Python Data Analysis Library. https://Pandas.pydata.org/

Example I.1. Consider a table T taken from the Kaggle
flights dataset [13] which contains 31 columns and ∼6M rows.
T may be used for analysis tasks such as predicting flight
delays and cancellations.

The analyst starts by inspecting the data using Pandas
display(T ), which yields the sub-table displayed at the top left
of Figure 1.

The usefulness of this display for data exploration is intu-
itively limited: for instance, the first rows, last rows, and last
columns are repetitive, and the displayed values are arbitrary.
In addition, the chosen columns may not be relevant for the
analyst’s goals: for instance, the analyst may be interested in
flight cancellations, yet there is no reason to assume that the
columns in the Pandas sub-table are relevant for this goal.

Our goal is to develop a foundational approach for an in-
formed selection of sub-tables that characterizes a given table
as a whole and captures multiple diverse patterns. Concretely,
given a table T with n rows and m columns, our goal is
to create a sub-table Tsub with k << n rows and l << m
columns which is a subset of k rows projected over a subset
of l columns of T . To do this, we introduce a novel notion
of sub-table informativeness which reflects (1) the extent to
which the sub-table captures prominent data patterns and
trends in the full table, including cross-column patterns. This is
based on association rules (ARs) as a standard type of pattern
that applies to a subset of a row’s cells and hence allows
several such patterns to be captured is a small sub-table. (See
a discussion of other types of patterns in Section VII.); (2) the
diversity in the sub-table, including representative values from
each selected column and minimizing data repetitions. We also
allow users to specify target columns that affect the choice of
sub-tables so that it captures columns and ARs relevant to the
target column.

Example I.2. Continuing with the flights dataset, an informa-
tive sub-table is shown at the right of Figure 1. Unlike the sub-
table at the top left, this sub-table captures several prominent
ARs that hold over the input table and that include the target
column CANCELLED. For purposes of illustration, we show this
by highlighting cells that participate in one of the ARs that
hold for the row (many additional ARs hold). For example,
the highlighted rule in the first row states that long flights
(AIR TIME∈ [198.0, 422.0] and DISTANCE∈ [1546.0, 2724.0])
are likely not to be cancelled (CANCELLED= 0). The high-
lighted rule in the second row states that short afternoon
flights (according to the SCHEDULED DEPARTURE and SCHED-
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SubTab’s sub-table (8 rows × 8 columns):
SCHEDULED 

ARRIVAL
AIR

TIME
WHEELS 

OFF
WHEELS 

ON
DISTANCE DEPARTURE 

TIME
SCHEDULED 
DEPARTURE

CANCELLED

2157 242.0 1505.0 2207.0 1979 1448.0 1450 0
1925 N/A N/A N/A 733 N/A 1605 1
1059 31.0 1009.0 1040.0 109 955 1000 0
846 140.0 606.0 826.0 954 9551.0 600 0
1419 77.0 1231.0 1348.0 602 1222.0 1237 0
1920 135.0 1646.0 1901.0 1013 1620.0 1625 0
1643 156.0 1240.0 1616.0 1276 1228.0 1235 0
2050 79.0 1932.0 2051.0 550 1916.0 1916 0

YEAR MONTH DAY DAY OF 
WEEK

… SECURITY 
DELAY

AIRLINE 
DELAY

LATE AIRCRAFT 
DELAY

WEATHER 
DELAY

2015 1 1 4 … N/A N/A N/A N/A

2015 1 1 4 … N/A N/A N/A N/A

2015 1 1 4 … N/A N/A N/A N/A

… … … … … … … … …

2015 12 31 4 … N/A N/A N/A N/A

2015 12 31 4 … N/A N/A N/A N/A

2015 12 31 4 … N/A N/A N/A N/A

SubTab Pre-Processing Step:
• binning
• embedding

Selecting Step:
• clustering
• centroid selectionQuery

Pandas default sub-table (8 rows × 8 columns):

Raw dataset 
(6M rows X 31 columns) Query  

Result

Fig. 1: System Workflow. SubTab takes as input a raw table used throughout the EDA session. The sub-table on the left is the output of the display

command in Pandas, a random subset of the table’s rows and columns. The sub-table on the right is the output of SubTab, in which some of the ARs are
highlighted for purposes of illustration. SubTab has two-steps: (1) Pre-Processing Step - the table is binned and embedded into vectors; (2) Selecting Step -
triggered by a display of the input table or as the result of a query over the table, an informative sub-table is displayed. This is done by clustering the row
and column vectors of the query result in the embedded space and selecting the centroids as representatives.

ULED ARRIVAL columns) are likely to be canceled. The sub-
table also shows diverse values per column by including
representatives of diverse sub-groups in the value distribution,
e.g., morning, afternoon and night arrivals/departures, short,
medium and long flight distances, etc.

We formalize (Section II) our notion of informativeness
based on a combination of two complementary metrics: cell
coverage and diversity. Cell coverage measures how well the
sub-table Tsub represents data patterns in the full table T ,
which are defined via ARs.

Concretely, given a set of prominent ARs that hold over the
full table T ,2 our metric reflects the number of cells in T that
are describable by ARs that are captured in Tsub. If one or
more target columns are known in advance to be the focus of
the analysis, they will be included in the l selected columns,
and we measure cell coverage only according to ARs that
include one or more target columns. For the second metric,
diversity, we split the value distribution of a column (contin-
uous or categorical) into meaningful bins. We then compute
a Jaccard-like row similarity score based on these bins, and
use the average pairwise row distance as the diversity score.
Intuitively, in a small sub-table we cannot capture the full
distribution of each column, and our metric is geared towards
increasing the number of represented bins and reducing bin
repetitions. We use a score combining these metrics to measure
the informativeness of a sub-table.

Unfortunately, we show (Section III) that optimizing our
informativeness measures directly is generally infeasible, and
discuss the limitations of approximate solutions. In particular,
although there are several efficient techniques for mining ARs
(e.g., [14]–[18]), they are still too time-consuming for large
datasets in an interactive setting.

We therefore propose a sub-table selection method which
indirectly accounts for ARs using table embedding [19], [20],
and that allows us to avoid calculating ARs thereby speeding

2There are standard metrics we can use to measure the prominence of ARs
in T , such as Support and Confidence [14]. Also see Section V-D.

up and simplifying the entire process (Section IV). Concretely,
given a table T we use binning [15] to split each column’s
values into a small set of meaningful groups. We then compute
an embedding of table cells as vectors. As we demonstrate
in Section IV-B, the embedding captures bin co-occurrences,
and therefore implicitly corresponds to ARs. To select rows
and columns for a sub-table we derive from the cell vectors
a vector representation for rows and columns, cluster them
(separately), and select the centroids as rows and columns that
represent diverse patterns in the data.

An important benefit of our solution design is in responding
to queries over T : during the exploratory data analysis (EDA)
session, users typically issue different queries on a given
table T (red arrows of Figure 1). Our computation of cell
embedding may be viewed as a part of the pre-processing step
of a given data table T , along with the binning of its values
(first blue box in Figure 1). This step is executed once upon
loading the table. Then, for subsequent selection-projection
query Q on T , we can compute the vector representation
of rows and columns in Q(T ) based on the cells of T
that appear in them, and re-execute clustering and centroid
selection (Selecting step in Figure 1, shown as the second
blue box). This significantly speeds up sub-table computation
compared with computing everything from scratch (a few
seconds instead of up to a minute for large tables).

Contributions: Main contributions of this work include:
1) A formal notion of informativeness for sub-tables, de-

signed to measure how well a sub-table characterizes the full
table. The capturing of prominent data patterns in the sub-table
is measured by cell coverage (for ARs), while the ratio of non-
repetitive, representative values is measured by diversity.

2) A complexity analysis of the problem of selecting an
optimal sub-table, which shows the infeasibility of computing
sub-tables that optimize our informativeness metrics.

3) A greedy algorithm (CCSG), which traverses column
combinations, and greedily selects rows for each such combi-
nation. This algorithm approximates the optimal cell coverage
if all column combinations can be traversed within a given
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time limit. We also present RCCSG , a variant that samples rows
to speed up row selection. We discuss the practical limitations
of both algorithms, and use them as baselines against which
we compare the quality of computed sub-tables.

4) A practical algorithm, SubTab , for computing informa-
tive sub-tables, which accounts for ARs indirectly using table
embedding. The algorithm has two phases: a pre-processing
phase that performs binning and embedding, and can be
executed as soon as the data is loaded; and a clustering
and centroid selection phase that is called for each sub-table
display, e.g., on query results.

5) An implementation for SubTab as a local Python library
that hooks into Pandas , and displays tables and query results
as informative sub-tables. Its UI includes optional highlighting
of ARs (as shown in Figure 2).

6) Experimental results that measure the sub-table quality
and running time of SubTab compared with several baselines.
Among the interactive time algorithms, SubTab achieves the
best quality by a large gap. Among the algorithms that achieve
the best quality, including ones that directly optimize our met-
ric, SubTab is the only one which executes in interactive speed.
Experiments with real EDA sessions and user studies show that
our quality metrics are compatible with both subjective user
experience and objective performance in insight discovery.

Organization: The rest of the paper is organized as
follows. We start in Section II by defining our metrics of
cell coverage and diversity. Section III gives hardness results
for the problem of optimal sub-table selection and greedy
algorithms. Section IV presents our sub-table computation
method based on table embeddings. Section V describes our
experimental study. Related work is discussed in Section VI.
We conclude in Section VII.

II. MODEL AND METRICS

In this section, we formalize the notion of “sub-table
informativeness” via metrics of cell coverage and diversity and
define an optimization problem based on their combination.

A. Model

A relational schema U = {u1, . . . , u|U |} is a finite set of
columns, such that each column ui allows values from a subset
of the global domain Di ⊆ D (e.g., for a binary column, Di =

{0, 1}). A relational table over U is a finite set T ⊆ U →D
of tuples such that t(ui) ∈ Di is the value of the cell in the
row corresponding to a tuple t ∈ T and the column ui ∈ U .

Definition II.1 (Sub-table). Given a table T over schema U ,
a sub-table Tsub is a table over schema Usub ⊆ U such that
each tuple t ∈ Tsub is the projection of some tuple t′ ∈ T over
the columns of Usub, i.e., for every u ∈ Usub, t(u) = t′(u).

We next define two standard notions that will be useful in
the sequel: binning and ARs.

In a schema U , each column ui may be categorical , namely,
Di is discrete, e.g., a column of airline names; or continuous ,
namely, Di is a continuous range, e.g., a column of flight
distance. Moreover, in a table T over U a different distribution

Destination 
Airport

Arrival 
Time

Wheels On Airline 
Delay

Departure 
Time

Wheels 
Off

Scheduled 
Departure

Late Aircraft 
Delay

Distance Departure 
Delay

MCO 1842.0 1832.0 102.0 1050.0 1107.0 855 0.0 2218 115.0

JFK 742.0 736.0 N/A 2333.0 2345.0 2303 N/A 2475 28.0

MCO 2255.0 2247.0 2.0 1449.0 1504.0 1400 42.0 2446 49.0

MCO 256.0 568.0 56.0 564.0 548.0 1256 25.0 588 58.0

SEA 2300.0 2253.0 20.0 1939.0 2012.0 1807 72.0 2402 92.0

SAN 1941.0 1938.0 N/A 1649.0 1702.0 1629 N/A 2588 20.0

BOS 1550.0 1545.0 N/A 752.0 806.0 730 N/A 2611 22.0

SFO 2136.0 2130.0 N/A 1820.0 1834.0 1808 N/A 2704 12.0

JFK 16.0 3.0 0.0 1603.0 1615.0 1535 17.0 2475 28.0

Rule #2: {(Destination Airport -‘SEA’), (Arrival Time -‘high’), (Distance -‘high’)} →{(Airline Delay -‘low’), (Departure Delay -‘high’)}, 
support-0.11, confidence-0.5, lift-1.5

from SubTab import subTab
sdf = subTab(flights_df, use_rules=True)
df1 = flights_df[(flights_df[‘DISTANCE’]>2000) & (flights_df[‘DEPARTURE_DELAY’]>10)]
sdf.display(df1)

For creating new table vectors, it took 0:00:02.282
For summary creation, it took 0:00:00.45
{‘cell_cov’: 0.31. ‘jaccard’:0.72}

Fig. 2: Informative 10X10 sub-table for a large query result

of values (e.g. uniform or skewed) may occur in each column.
Binning the column values is a technique commonly used to
allow a uniform treatment of columns with different ranges
and distributions. Formally,

Definition II.2 (Binning). Given a table T over schema U , a
binning function B maps each column ui ∈ U to a finite set
of bins Bi = {Bi

1, . . . , B
i
|Bi|} such that for every t ∈ T , t(ui)

belongs to exactly one bin Bi
j ∈ Bi.

Example II.3. In the flights’ dataset, we split the (continuous)
range of the DISTANCE column into the bins short, medium, and
long-distance. Depending on the column value distribution, we
may obtain BDIST

long = [1546.0, 2724.0]. The CANC. column is
binary, hence we can use its categories as bins.

Next, we recall the notion of association rules (ARs), which
we use to capture patterns in the data. ARs will be used to
measure and compare the quality of sub-tables. Formally,

Definition II.4 (Association rules (ARs) [15]). Given a table
T over schema U , an AR R has the form
{(u1, v1), . . . (ur, vr)} → {(ur+1, vr+1), . . . (ur+p, vr+p)}
where each ui ∈ U is a column and each vi ∈ Di is a
cell value. Denote by UR = {u1, . . . , ur+p} ⊆ U the set
of columns used in R. We say R holds for a tuple t ∈ T if
t(ui) = vi for every 1 ≤ i ≤ r + p. Denote by TR ⊆ T the
subset of tuples for which R holds.

The use of binning may improve mined ARs [15]: given a
table T , we can replace each cell value t(ui) with an identifier
of its matching bin Bi

j . Consequently, one may be able to mine
ARs that apply to more tuples.

Example II.5. Using the bins from example II.3, the AR
from Example I.2 stating that long flights are likely not to
be cancelled can be written as:
AIR TIME∈ BAT

long,DISTANCE∈ BDIST
long →CANC.∈ BCANC

0 .

B. Informativeness Metrics

We now develop quality metrics for sub-tables. Out of
various possible informativeness metrics, we base our choice
on the role of a sub-table as a compact view of the raw data
that characterizes the table as a whole. The first type of metric
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that we develop intuitively measures how well data patterns
in the full table are captured by the sub-table. Specifically,
we focus on ARs, which apply to a subset of a row’s cells
and hence several such patterns can be captured in a small
sub-table.

Cell coverage: Given a sub-table Tsub of table T and a
set R of ARs mined from T (e.g., using [15]), we ask:

1) Which ARs of R are covered, i.e., captured by Tsub?
2) What is the marginal contribution of each covered AR to

Tsub’s informativeness?
3) How do marginal contributions aggregate to an overall

numerical score for Tsub?
Since sub-tables include a subset of the table cells, and ARs

are also defined at the level of table cells, we propose below
formal definitions for q1-q3 that yield a cell coverage metric.
This metric intuitively reflects the ratio of cells in T that are
describable by ARs in R that are represented in Tsub.

Definition II.6 (Cell coverage). Let T be a table, R a set of
ARs mined from T , and Tsub a sub-table of T .

1) An AR R ∈ R is said to be covered by Tsub if all the
attributes of R are in Tsub (UR ⊆ Usub), and there exists
a tuple t ∈ Tsub for which R holds ({Tsub}R ̸= ∅).
Let Rsub be the subset of R that is covered by Tsub.

2) The marginal contribution of R ∈ Rsub is the subset of
table cells it describes: cell(R, T ) := {⟨t, u⟩ | t ∈ TR ∧
u ∈ UR}.

3) The cell coverage of Tsub w.r.t. T,R is denoted by

cellCovR(T, Tsub) :=
1

upcov

∣∣∣∣∣ ⋃
R∈Rsub

cell(R, T )

∣∣∣∣∣ (1)

I.e., it is the (normalized) number of cells in T described
by any covered rule in R ∈ Rsub. The normalization
factor upcov :=

∣∣⋃
R∈R cell(R, T )

∣∣ is an upper bound
on the number of cells that can be covered, and ensures
that cellCovR(T, Tsub) ∈ [0, 1].

We next motivate our choice of cell coverage metric by a
brief overview of alternative approaches, through an example.

Alternative coverage metrics: Table T̂ , on the left of
Figure 3, illustrates some of the trends in the Flights dataset
mentioned above, with CANC. as the target column. The table
values represent bin names (e.g. “short”, “medium”, “long”).
ARs of maximal size are highlighted; each highlighted line
illustrates a different rule, with colors alternating for clarity.

First, observe that rows with CANC.=1 are more homoge-
neous compared with rows with CANC.=0 due to the fact that
many fields are not applicable when a flight is canceled. As a
result, there are 13 ARs for the first 4 rows, and only 8 for the
last 4. This issue is exacerbated for larger homogeneous data
subsets, leading to many overlapping rules including subsets
of their values. We therefore propose to use measures based
on data coverage rather than rule coverage.

Next, consider the two sub-tables on the right, T̂
(1)
sub and

T̂
(2)
sub , which differ in the last attribute. Both sub-tables cover

at least one rule for each tuple of T̂ . They would therefore

have the same score in terms of row coverage. However, T̂ (1)
sub

covers larger rules (two of size 4) compared with T̂
(2)
sub (only

one of size 4). Accordingly, T̂
(1)
sub describes 28 cells of T̂ ,

whereas T̂
(2)
sub describes only 26. We therefore propose to use

a cell-based metric rather than a row-based metric.
Finally, we note that, in T̂

(1)
sub , if we chose row 3 instead

of 1 and row 6 instead of 5 we would have the same cell
coverage. However, the sub-table would be more repetitive,
containing only 6-8 in the year field and two instances of
medium distance. This demonstrates that coverage should be
accompanied by a diversity metric, which we discuss next.

Diversity: As the above example demonstrates, diversity
in sub-tables can make them less repetitive and more informa-
tive. Out of the various diversity metrics from previous work
(e.g., [2], [21]–[23]), we adopt a standard diversity metric
based on pairwise Jaccard similarity. Our particular variation
of this metric, defined formally below, leverages the binning of
data: each bin represents a significant subset of the data (e.g.,
a peak of data frequency in our implementation). Hence, we
consider values from the same bin as similar and from different
bins as different. As a result, intuitively, higher scores will be
assigned to sub-tables that include (1) representative values
from more bins; and (2) fewer repetitions per bin. Moreover,
our metric accounts for values that do not participate in ARs,
and for overlapping ARs, which may not be reflected in the
cell coverage metric.

Definition II.7 (Diversity metric). The similarity of two tuples
t, t′ ∈ Tsub is the ratio of cells that share a bin, formally,

Jaccard(t, t′, Tsub) :=
|{ui∈Usub|∃Bi

j∈B(ui). t(ui),t
′(ui)∈B}|

|Usub|
We then define the diversity of Tsub as the complement of the
average similarity between its tuples, namely,

divers(Tsub,B) := 1− avgt,t′∈Tsub
Jaccard(t, t′, Tsub) (2)

Example II.8. Consider again sub-table T̂
(1)
sub from Figure 3.

In this example, the only value repetitions are in CANC.

and MONTH, yielding a diversity divers
(
T̂

(1)
sub ,B

)
= 1 −

avg(0.25, 0, 0.25) = 0.83. Figure 4 shows an even more
diverse sub-table, with divers

(
T̂

(3)
sub ,B

)
= 0.92, achieved by

excluding the repetitive MONTH column. However, this table
has lower cell coverage, describing only 24 cells, which shows
there is a trade-off between the metrics.

Optimization problem: We define OPT-SUB-TABLE as the
problem of computing a sub-table of a predefined size that
balances cell coverage and diversity. We allow users to specify
target columns of interest, which will be included in the sub-
table and ARs. More formally, we are given as input a table T
over schema U , dimensions k, l (the number of rows and
columns, respectively), a set of target columns U∗ ⊆ U such
that |U∗| ≤ l, a set of ARs R mined from T , a binning B as in
Def. II.2 and a parameter α ∈ [0, 1] which is used to balance
coverage and diversity (by default, α = 0.5). If there are target
attributes (U∗ ̸= ∅), we retain only the rules that contain them:
R∗ := {R ∈ R | {ur1 , . . . , urR+pR

} ∩ U∗ ̸= ∅}. Otherwise,
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T̂ ROW CANC. DEP. TIME MONTH SCHED. DEP. DISTANCE

1 1 N/A 6-8 afternoon short
2 1 N/A 6-8 afternoon medium
3 1 N/A 6-8 morning medium
4 1 N/A 6-8 morning short
5 0 morning 9-11 morning medium
6 0 morning 6-8 morning medium
7 0 evening 6-8 evening long
8 0 evening 6-8 afternoon long

T̂
(1)
sub ROW CANC. DEP. TIME MONTH DISTANCE

1 1 N/A 6-8 short
5 0 morning 9-11 medium
7 0 evening 6-8 long

T̂
(2)
sub ROW CANC. DEP. TIME MONTH SCHED. DEP.

1 1 N/A 6-8 afternoon
5 0 morning 9-11 morning
7 0 evening 6-8 evening

Fig. 3: Example Table T̂ with two sub-tables. One AR per row is highlighted by (arbitrary) colors and underlines

T̂
(3)
sub ROW CANC. DEP. TIME SCHED. DEP. DISTANCE

1 1 N/A afternoon short
5 0 morning morning medium
7 0 evening evening long

Fig. 4: Example of a diverse sub-table

we retain all rules: R∗ = R. Our goal is to find a k × l sub-
table Tsub that includes the target attributes (U∗ ⊆ Usub), and
that maximizes the following score among all such tables:

combined(Tsub, T,R∗, α) =

α · cellCovR*(T, Tsub) + (1− α) · divers(Tsub,B) (3)

Unfortunately, we show in the next section that directly
optimizing this problem is infeasible, and therefore give in
Section IV a practical solution that indirectly accounts for ARs
using table embedding.

III. EXACT AND APPROXIMATE ALGORITHMS

We first study exact solutions for (OPT-SUB-TABLE). Unfor-
tunately, we can already show hardness results for the cases
of finding the sub-table with maximal cell coverage (MAX-
CELL-COVER) and finding the sub-table with maximal diversity
(MAX-DIVERSE), i.e., solving OPT-SUB-TABLE with α = 1 and
α = 0, respectively. We therefore resort to approximate
solutions. We ignore w.l.o.g. the use of target columns and
binning. All proofs can be found in [24].

A. Exact Algorithms

We start by studying the complexity of MAX-CELL-COVER.
Given an n × m table T , a brute-force algorithm can theo-
retically traverse all O(nk ·ml) sub-tables of size k × l and
find the one with the maximal score. While this algorithm is
polynomial in the size of T , it is practically infeasible due to
the exponential dependency of n,m in k, l. Even for relatively
small dataset and sub-table sizes, e.g., for n = 10, 000 and
m, k, l = 5, this means checking 8.3 · 1017 sub-tables.

Since k is small, we examine whether our problem is fixed-
parameter tractable: FPT is class of fixed-parameter tractable
problems, having a solution in time O(poly(n) · f(k))
where n is the input size, f is a function and k is a parameter.

Denote by DEC-CELL-COVER the decision problem correspond-
ing to MAX-CELL-COVER: given a table T over schema U ,
dimensions k, l, a set of ARs R and a threshold Θ, decide if
there exists a sub-table Tsub of size k× l whose cell coverage
is cellCovR(T, Tsub) ≥ Θ. Unfortunately, we can show that
this problem is probably not in FPT, as follows.

Proposition III.1. Given an n ×m table T over schema U ,
and sub-table dimensions k, l. DEC-CELL-COVER is W[2]-hard3

in n = |T | and k as a parameter, assuming m, l = O(n).

The proof (omitted) uses a reduction from DOMINATING SET
and assumes that m, l = O(n), i.e., the number of attributes
is large. Otherwise, even when m << n, we can still show
NP-hardness in k.

Proposition III.2. DEC-CELL-COVER is NP-hard in k, the
number of tuples selected for the summary, even assuming
the number of attributes m = O(1).

Hardness of diversity optimization: We now focus on
the second sub-problem, MAX-DIVERSE, of selecting a sub-
table with maximal diversity, another particular case of OPT-
SUB-TABLE with α = 0. In previous work, it was established
that a similar diversity metric in the context of diverse crowd
selection is NP-hard [21]. We show a stronger hardness for
MAX-DIVERSE, establishing that similarly to MAX-CELL-COVER
it is also not parameter tractable in k. The proof is by a
reduction from INDEPENDENT SET.

Proposition III.3. Given an n ×m table T over schema U ,
and sub-table dimensions k, l. MAX-DIVERSE is W[1]-hard in
n = |T | and k as a parameter, assuming m, l = O(n2).

B. Approximate Algorithms and Limitations

Given the hardness results above, we consider approximate
solutions to MAX-CELL-COVER, i.e., computing sub-tables with
an approximately-optimal score. Algorithm 1 (CCSG) greedily
selects rows for given column combinations. It includes two
functions. The ColumnSelection function enumerates over the
possible column selections (line 2) and for each projects the
data over the selected columns and computes a sub-table using

3The W-hierarchy is a hierarchy of classes defined by properties of
the translation of problems into combinatorial circuits. It is known that
FPT=W[0]⊆W[1]⊆W[2]⊆ . . . , and conjectured that this hierarchy is strict,
i.e., W[0]⊂W[1]⊂W[2]⊂ . . . .
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ColumnSelection (T, k, l,R) // Table, dimensions, ARs
1 T ∗

sub ← ∅, cov∗ ← −1;
2 while Sample next U ′ ⊆ U such that |U | = l do
3 T ′ ← π

U′T ; // Projection of T on U ′

4 Tsub, cov← GreedyRowSelection(T ′, k,R);
5 if cov > cov∗ then cov∗ ← cov, T ∗

sub ← Tsub;
6 if timeLimitReached() then break;
7 return T ∗

sub;
GreedyRowSelection (T ′, k,R)

8 T ∗∗
sub ← ∅, cov∗∗ ← −1;

9 for i in 1 . . . k do
10 T ∗

sub ← T ∗∗
sub, cov∗ ← cov∗∗;

11 for t ∈ T ′ − T ∗
sub do

12 cov← cellCovR(T, Tsub);
13 if cov>cov∗ then cov∗←cov, T ∗

sub←Tsub;
14 cov∗∗ ← cov∗, T ∗∗

sub ← T ∗
sub;

15 return T ∗∗
sub, cov

∗∗;
Algorithm 1: Column Combination Sampling Greedy
Algorithm (CCSG)

the GreedyRowSelection function. The latter function iteratively
attempts to add each row to the current sub-table (line 11),
computes the resulting cell coverage score (line 12), and
records the sub-table with maximal cell coverage. This is
repeated k times to select k rows in total (line 9).

When no time limit is specified or when all
(
m
l

)
column

combinations are traversed before the time limit (line 6) is
reached, CCSG achieves a cell coverage that is approximately
optimal, as stated by the following proposition.

Proposition III.4. Given a table T over U , where |T | = n
and |U | = m and a set R of ARs, assuming CCSG fully
traverses all column combinations, the resulting k × l sub-
table Tsub such that cellCovR(T, Tsub) ≥ (1− 1

e )OPT where
OPT is the score of the optimal solution to MAX-CELL-COVER.
Computation time is O(

(
m
l

)
× k × n2 ×m× |R|).

Note that we can get finer-grained complexity by consid-
ering the number of bins: we can remove duplicated rows in
the projection on selected columns in line 3. Cell coverage
can still be computed, by recording the number of copies
per row. In this case, the n2 component of the complexity
bound above, corresponding to computing the cell coverage
for each candidate row (line 12), is at most b2l, where b is
the maximal number of bins per column, and thus bl is the
maximal number of unique value combinations. We perform
such a duplicate elimination in our implementation. Also note
that CCSG accounts for cell coverage, but not for diversity.

Limitations: Several practical issues arise when consid-
ering an implementation of CCSG:

First, the selection of rows via GreedyRowSelection, which
is of quadratic complexity in the number of (unique) rows, may
be too time-consuming for an interactive setting. E.g., in our
experimental study, it took over 30 seconds on average to ex-
ecute over a single U ′. We therefore consider a Row and Col-
umn Combination Sampling Greedy variant (RCCSG), which

Pre-processing (T̃ ) // Raw table
1 T ← normalize and bin T̃ ;
2 M← embedding(T ) ; // Embedding computation
3 return T,M ; // cell-to-vector model: M :T×U→Rγ

Centroid-based Selection (T, k, l, Q, U∗,M)
4 rowVecs, colVecs← empty dictionaries;
5 if Q ̸= NULL then T ← Q(T );
6 U ← columns of T ;
7 for t ∈ T do
8 v ← avgu∈U(M(t(u)));
9 rowVecs← rowVecs∪{v 7→ t};

10 C ← cluster(rowVecs, k);
11 Tsub ← rowVecs. getValues(centroids(C));
12 for u ∈ U − U∗ do
13 v ← avgt∈T(M(t(u)));
14 colVecs← colVecs∪{v 7→ u};
15 C ← cluster(colVecs, l − |U∗|);
16 Usub ← U∗ ∪ colVecs. getValues(centroids(C));
17 Tsub ← Π

Usub
Tsub;

18 return Tsub, Usub;
Algorithm 2: SubTab Algorithm for Sub-Table Selection

is identical to CCSG, except that we further sample the rows,
i.e., replace line 3 by T ′ ← RowSample

(
π

U′T, percent
)
. This

variant is used in our experiments (Section V), and has no
approximation guarantees due to the sampling it performs.

Second, CCSG/RCCSG require ARs as input. For large
datasets, even efficient implementations of AR mining, such
as [14], can be too time-consuming for an interactive setting,
and take several minutes to complete.

Third, CCSG/RCCSG may not be able to traverse all
(
m
l

)
column combinations within the time limit required in an
interactive setting. E.g., in our experimental study, neither
CCSG nor RCCSG finished the column combination traversal
over any dataset in less than two minutes. In this case,
approximation guarantees do not hold for CCSG, and we
show (Section V) that enumerating a fraction of the column
combinations yields cell coverage that is significantly lower.

IV. PRACTICAL SOLUTION

Due to the limitations of directly optimizing our metrics,
described above, we propose a different approach, which
implicitly accounts for ARs using table embeddings. The
embedding captures bin co-occurrences, and therefore, as we
show below, corresponds to frequent itemsets and ARs.

A. SubTab

Our solution, shown in Algorithm 2, includes two steps:
(1) Pre-Processing, which computes a vector representation
for each cell in the full table T using table embedding,
and (2) Centroid-based Sub-table Selection, which uses the
embedded vectors to quickly select a sub-table. Importantly,
Pre-Processing is performed only once upon loading table T ,
while Selection is performed for each query that the analyst
performs over T , to show a sub-table of the query results.
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Pre-Processing: Given a raw table T , the first step (line 1
of Algorithm 2)

is to normalize the values (e.g., remove illegal characters)
and bin continuous columns so that values are replaced by
their bin name (e.g., binning splits the DISTANCE column into
short, medium, and long distances). Let T̃ be the normalized,
binned table.

We then use a table embedding process to generate a real-
valued vector for each cell in the table T̃ . Several recent
works suggested means for embedding tabular data, e.g., based
on graph representations and auto-encoders [19], [20], [25]–
[27]. Our algorithm uses the embedding as an opaque box
(line 2), so any of these solutions can be plugged into it. The
main embedding used in our implementation is based on [19],
which is a general-purpose solution suitable for an interactive
setting; we compare the results to other embedding techniques
in Section V-B. Briefly, this embedding method transforms the
table into a corpus of sentences in which each cell in the table
T represents a single word. We use two types of sentences:
tuple-sentences, containing values in each tuple t ∈ T , and
column-sentences that cover the values in T (u),∀u ∈ U . We
then train a fast implementation of word embedding [28] over
a random sample of the sentences (100K by default). The
trained word-embedding model outputs a vector representation
for table cells.

The output of this process (line 3 of Algorithm 2), is the
binned table T with n rows and m columns, and a mapping
M between each cell in Tij to a corresponding, learned γ-
dimensional cell-vector Mij (γ is typically a low dimension
depending on the embedding technique and parameters).

The complexity of this step is the sum of costs of normal-
ization, binning and embedding learning, which may depend
on the data size, distribution and choice of implementation.
For instance, in our implementation (see Section V-A), nor-
malization is linear in the data. The cost is dominated by
binning, which requires ordering the values in each col-
umn in O(mn log n), but then computing the bins can be
done in linear time [29]; and by embedding, which takes
O(in′mγ log |V |), where i is the number of epochs used for
training, n′ ≤ n is the size of the row sample used by the
embedding function (by default we use, n′ = max{n, 100K}),
and V is the set of unique bin names in the sample [28], [30].
This is a major improvement compared with the complexity
of CCSG, which has a quadratic dependency on n as well as
an

(
m
l

)
component (by Prop III.4).

Centroid-Based Sub-table Selection: After computing
vector representations M for each cell in T , we use them
to compute representations for rows and columns, which in
turn are used to select rows and columns for the sub-table.
As mentioned above, this step is done over the results of each
query, without re-executing Pre-Processing and, in particular,
without recomputing the embedding.

Concretely, we first compute for each tuple t ∈ T a vector
representation, or tuple-vector, by taking the component-wise
average of the vectors representing t’s cells. That is, we aver-
age the cell-vectors M (t(u1)) ,M (t(u2)) , . . . ,M(u|U |))

(lines 7-9). To select a sub-table Tsub with k rows, we
then cluster the tuple-vectors into k clusters and use the k
rows corresponding to the cluster centroids. Next, to select l
columns for Usub we perform a similar process, creating
column-vectors, forming clusters, and finding their centroids.
The only change compared to row selection is due to the
presence of target columns U∗ ⊆ U , which must be included
in the sub-table. We exclude these columns from clustering,
compute only l − |U∗| clusters and then add the U∗ columns
to the selected centroids.

The time cost of this step includes the computation of row
vectors (line 7-9) by averaging m cell vectors of dimension γ
for each of the n rows in time O(nmγ), and the computation
of column vectors (line 12-14), again in O(nmγ). It also
includes two invocations of the cluster function, one with
n row vectors and k clusters (line 10) and one with ≤ m
column vectors and ≤ l clusters (line 15). The cost depends
on the clustering function. For instance, in our implementation
(see Section V-A) we use a K-means clustering algorithm
whose time complexity is O(jknγ) for rows, and O(jlmγ) for
columns. j is the number of iterations required to convergence,
k or l is the number of clusters, n or m is the number of items
and γ is the size of each vector [31]. Compared with the Pre-
processing step, this step is linear in the data (j is typically a
small constant), and hence of a lower complexity as well as
much lower execution time in practice (see Section V-B)

B. Embedding vs. Direct Optimization

We conclude with a few observations on our embedding-
based approach for sub-table generation. First, note that Al-
gorithm 2 does not directly optimize the cell-coverage and
diversity metrics, so there are no formal guarantees for the
scores its sub-tables achieve. Still, experiments in Section V
show that SubTab computes high-quality sub-tables in a few
seconds, whereas directly optimizing the metrics requires over
24 hours to achieve a quality comparable to SubTab.

Intuitively, SubTab performs well since (1) the embed-
ded vectors are learned w.r.t. the frequency of values co-
occurrences, similarly to ARs, therefore obtains high cell-
coverage; and (2) the algorithm selects cluster centroids as
rows and columns in the sub-table, and therefore obtains high
diversity scores as vectors in different clusters are significantly
less similar than those in the same cluster.

To confirm the latter intuition, we measured the overlap of
ARs between the row clusters. Figure 5 shows these results
on the Flights dataset. Each cluster corresponds to a row in
the resulting sub-table, and the heatmap shows the Jaccard
similarity of the ARs for every pair of clusters. Observe that
for most of the pairs, the overlap is negligible. (Similar results
were obtained for the other datasets.)

V. EXPERIMENTS

We performed an extensive experimental evaluation of Sub-
Tab both in terms of the running time as well as the quality
and usefulness of computed sub-tables. After describing the
experimental setup (Section V-A), we report our results.
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Fig. 5: Heatmap showing rule overlap in row clusters.

The first set of experiments (Section V-B) measure the per-
formance of SubTab for each dataset using different baselines.
The experiments are split into two parts: baselines that run in
interactive time (up to 2 minutes), for which the comparison is
based on our quality metrics; and slower baselines for which
the comparison is based on both running time and quality.

The second set of experiments tests the quality and use-
fulness of computed sub-tables (Section V-C) through (1) a
twofold user study, where participants are asked to perform
a realistic data analysis task and we evaluate their objective
performance as well as usability rantings they provided for
sub-tables; and (2) an offline, simulation-based study, in which
we replay pre-recorded real-life analysis sessions, generate
a sub-table for each exploratory query, then check whether
fragments of the next query in the session (e.g., selection terms
or aggregation columns) appear in the sub-table. We also use
these results to directly test the correlation between the quality
metrics (cell coverage, diversity and the combined score) of a
given sub-table and its ability to predict the fragments of the
next query. Finally, the performance using different parameter
settings is tested in Section V-D. A summary of findings from
the experiments can be found in Section V-E.

A. Experimental Setup

SubTab is implemented in Python 3.8 as a local Python
library that hooks into Pandas [32] and therefore can be
used, e.g. in common EDA environments such as Jupyter
notebooks. The binning method used is based on kernel density
estimation and is implemented with sciPy [33]. The Word2Vec
embedding method is implemented by gensim [34]. Centroid
selection is performed by creating clusters via KMeans using
sklearn [35]. The experiments were run on an Intel Xeon CPU-
based server with 24 cores and 96 GB of RAM.

Metrics implementation: Although SubTab does not re-
quire the computation of ARs, we mine ARs for experiments
that measure cell coverage. If ARs are given, our implemen-
tation also supports highlighting ARs (as shown in Figure 2),
which gives additional intuition to the users. We measure
the effect of highlighting ARs in all of the baselines in
Section V-C1. ARs are mined using efficient-apriori [36]; by
default, we set the thresholds for support and confidence to 0.1
and 0.6, respectively, and the minimum AR size to 3. We
vary these parameters in Section V-D. When target columns
are specified, the data is split and mined separately according

to the binned values of the target columns. Intuitively, this
allows our metrics to reflect ARs for different target values
(e.g., CANCELLED=0 or 1). Lastly, in our combined score, we
assign equal weights to cell coverage and diversity (α = 0.5).

Datasets: We demonstrate the performance of SubTab
over datasets in different domains; for lack of space, we show
results only for representative datasets in each experiment.

• Flights (FL) [13], 6M rows × 32 columns
• Spotify (SP ) [37], 42K rows × 15 columns
• Cyber-security (CY ) [38], 30K rows × 15 columns
• Credit card frauds (CC ) [39], 250K rows × 31 columns
• US Funds (USF ) [40], 23.5K rows × 298 columns
• Bank Loans dataset (BL) [41], 110K rows × 19 columns

Baselines: some of the baselines we have tested imple-
ment (a restricted version of) one of our algorithms. Others use
different forms of iterative sampling, and get as a parameter
a time limit after which they are halted.

1) SubTab: our implementation for Algorithm 2 using, for
cell embedding, the fast Word2Vec implementation of [28] as
described in Section IV-A.

2) EmbDI: our implementation for Algorithm 2 using, for
cell embedding, the approach of [20]. Briefly, the table is
transformed into a graph capturing relationships between cells,
rows, and columns, and Node2Vec is used to compute vector
representations. We chose EmbDI over other table embedding
techniques that have recently been proposed, as it was shown
to perform well on common database tasks.

3) No embedding (NE): a restricted variant of Sub-
Tabexcluding the vector embedding step. Instead, using one-hot
encoding [42], we transform categorical and textual values to
numerical values and then cluster the rows and columns as
in Algorithm 2. This approach corresponds to taking the first
level of the hierarchical clustering in [43] (see the detailed
comparison in Section VI).

4) Random (RAN(·)): sample k rows and l columns uni-
formly at random. To increase the quality of this baseline,
we repeat the random selection for a user-specified amount of
time and return the sub-table with the highest combined score
among all the randomly computed sub-tables.

5) Multi-Armed Bandit (MAB(·)): an improved sampling-
based technique using a version of the Multi-Armed Bandit
algorithm [44]. The algorithm iteratively selects a sub-table
and rewards its rows and columns based on the combined
score. We use Upper Confidence Bound (UCB) [45] to balance
exploration (examining new rows/columns) and exploitation
(selecting high-reward rows/columns).

6) Column Combination Sampling Greedy (CCSG(·)): as
defined in Section III-B.

7) Row and Column Combination Sampling Greedy
(RCCSG(·)): as defined in Section III-B.

B. Experimental Results

We next compare the performance of different baselines.
We split the results into two parts: first, we consider base-
lines which run in interactive time (up to 2 minutes): NE,
RAN(1min), MAB(1min), RCCSG(1min) and SubTab. For these
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Fig. 6: Experimental results for the quality of sub-tables computed by different baselines for different datasets
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Fig. 7: Experimental results for execution times and performance

algorithms, we compare output quality. Next, we consider
slower algorithms (execution time 30m-2d for the datasets that
we examined), and compare them to SubTab in terms of both
quality and execution time. These include EmbDI and longer
executions of sampling-based algorithms.

Interactive-time baselines: Figure 6 shows our combined
score, cell coverage and diversity over the FL, SP and CY
datasets. For all three datasets, SubTab achieves the highest
cell coverage and combined scores, by up to 40% over the
other baselines. This shows that vector embedding is useful in
capturing ARs (compared to NE), and that sampling for a short
time is not sufficient for finding high-coverage sub-tables, even
with the improvements of MAB or RCCSG. Interestingly, in
the FL and CY datasets, SubTab also achieves the highest
diversity score, which means that it outperforms the baselines
for any choice of α. In the SP dataset, RAN and MAB have a
slightly better diversity, but their combined score is lower due
to significantly lower cell coverage score.

Non-interactive baselines: To gain further perspective
on the quality of sub-tables, we also compare SubTab to the
slower, non-interactive baselines. Figure 7a shows the results
for the FL dataset, left compares their performance in terms
of combined score, and Figure 7a right compares the total
running times. SubTab achieves the same combined score as
the EmbDI baseline; however, the latter takes 40 minutes to ex-
ecute, whereas SubTab requires only about 1 minute (measured
end-to-end, including pre-processing and sub-table selection).
This shows that the embedding method used by default in
SubTab is already as effective for our purpose as state-of-
the-art embedding methods and hence is preferable due to
faster response times. MAB(24h) achieves the lowest quality

score, even though it is executed for a long time. Finally,
the Greedy(48h) baseline slightly outperforms the others in
terms of quality but is the slowest – this score was achieved
by executing it for 48 hours on a multi-process architecture.
These results empirically justify using SubTab as an alternative
to directly optimizing the score, since it can compute sub-
tables with similar quality scores in only a fraction of the
time. We also examined the performance of these baselines
on the other datasets, as well as on samples of the FL dataset
with as few as 5K rows. In all of these experiments, including
the 5K sample, the other baselines exceeded the time limit of 2
minutes. The observed trends for both comparative quality and
execution times were similar for these other datasets, hence we
omit them.

Execution time analysis: Recall that SubTab has two
distinct steps: Pre-processing, which is executed once upon
loading a data table, and Selection, which is executed for each
SubTab display, both for the table itself and for queries over
it (see Figure 1). Figure 7b shows the execution times for
each step over different datasets, mentioning the size of the
dataset next to the dataset 2-letter code. Pre-processing takes
the longest time, 85 seconds, for the CC dataset, although
it is smaller than FL. The reason is that this data contains
only numeric columns that must undergo binning. Still, this is
a reasonable time for the set-up phase of an EDA session.
The Selection phase takes only a few seconds for all the
datasets. We have tested the computation time for various
sub-table sizes, and the results were similar (the difference
is less than 10%). This shows that our reuse of embedding
is indeed effective in achieving a fast response time. We
also examine the scalability of our algorithm by isolating the
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effect of the sample size used to compute the embedding
(see Section IV-A). Figure 7c shows the execution time for
varying sample sizes (bars) as well as the combined score
of the computed sub-table (curve). Execution time increases
roughly linearly with the sample size, whereas the combined
score starts to converge as the learned model approaches its
maximal quality (in this case, around 100K).

C. Extrinsic Evaluation with Real Users

So far, our evaluation of sub-tables was done using the
quality metrics we have defined. We now use extrinsic quality
indicators based on EDA sessions of real users, in order to
validate (1) our baseline comparison by independent exper-
iments; and (2) the use of our intrinsic metrics by testing
the correlation of diversity, cell coverage and the combined
score with extrinsic usefulness metrics.The EDA sessions
were obtained via a user study as well as from an existing
repository [1], as described below.

1) Live User Study: We conducted a user study where
participants were asked to perform an actual data-analysis
task, in which they used sub-tables to discover insights about
datasets. The task was followed by a questionnaire, asking the
participants to rate different aspects of the system usability.
We detail the procedure below, and then provide an objective
evaluation of the insights that participants discovered, as well
as an analysis of the usability ranking.

We recruited 15 participants from both academic and in-
dustrial backgrounds, with varying degrees of expertise in
data analysis using Pandas (from junior to expert). We divided
the participants into three groups that worked with SubTab,
RAN(1m) and NE, respectively, as representative baselines out
of the ones that work in interactive time. The system names
were hidden from participants throughout the experiment.In
our previous experiment, MAB(1m) and RCCSG(1m) performed
similarly to RAN(1m), and were thus excluded. Each partic-
ipant used the assigned baseline to perform an exploration
task on three of our datasets (FL, SP , and BL). The user’s
goal was to write down insights that were relevant to the
given task while examining the sub-tables that were created
during the exploration. We then counted the number of correct
insights that participants listed and took the average over all
exploration tasks, per participant.

Insights discovery: Our first extrinsic quality measure is
based on objective performance in EDA tasks. A common
practice for evaluating discovery-oriented tasks is via asking
the users to list insights about the data [46]–[48]. Here, insights
correspond to ARs (e.g., flights with X also have Y ) or
correlations between columns (e.g., flights with lower X have
higher Y ). The correctness of insights is evaluated by measur-
ing the support and confidence of the AR or the correlation of
mentioned columns, as well as its direction (positive/negative).
The reasons for using this type of open-ended task are (1) to
preserve the exploratory nature of the task, and (2) to avoid
biasing the exploratory search of participants, by leading them
to concrete data patterns that form only a small fraction
of the space of potential discoveries. For each dataset, we

Metric SubTab RAN NE
# correct insights 4 (85%) 1.2 (30%) 0.2 (6%)

users with no insights 0 12% 89%
# Total insights 4.5 3.67 1.5

TABLE I: Results of the user study

gave participants a notebook containing several exploratory
queries, whose results were displayed as sub-tables generated
by either SubTab, RAN, or NE, unknown to the participants. The
notebooks contained various exploration commands that were
observed in different exploration notebooks in Kaggle. The
participants were then instructed to examine each notebook
and derive insights about the dataset, guided by a particular
analysis task. For example, the instruction in SP , containing
data about songs in the Spotify streaming service, was to
discover “what makes songs popular”. The correctness of
the participants’ insights was then assessed by computing
the correlation of the attributes included in the insight and
determining if the insight was a significant association rule.
Full details can be found in [49].

Table I shows the number and percentage of correct insights,
the percentage of users who did not derive insights at all,
and the total number of insights averaged across all users
and datasets. Note that when using SubTab, users derived an
average of 4 correct insights per dataset, which is 3X more
than RAN and 12X more than NE. As for incorrect insights,
users reached false conclusions using RAN and NE since the
sub-tables produced were misleading. For example, the sub-
tables exhibited a non-representative distribution of columns,
or presented a random, false correlation between columns.
Finally, observe that when using SubTab 100% of users were
able to successfully finish the analysis task and derive at least
one correct insight, which was not true for the other baselines.

Questionnaire Results: Next, we consider the subjective
experience of participants. After they completed the insights
discovery tasks, they were given a short questionnaire and
asked to rate the quality of the sub-tables they have seen
(without knowing which system produced them) on a scale
of 1 (strongly disagree) to 5 (strongly agree). The question-
naire used the following statements, which use “sub-table” as
a generic term but do not reveal any names of the underlying
systems that produced the sub-tables.

• Q1: The presented system is better than the standard
dataframe sub-table.

• Q2: Would you like to use the sub-table system in future
data exploration tasks?

• Q3: The sub-tables’ columns were relevant to the queries.
• Q4: The sub-tables’ rows are representative and capture

data patterns.

The questionnaire results are summarized in Figure 8a,
which shows the average ratings and standard deviation for
each question and baseline. Note that the average users’ rating
of SubTab is above 4 for all statements, and is significantly
higher than RAN and NE. The variance of the scores, and
particularly of SubTab is relatively small, indicating a broad
agreement between users on the quality of the sub-tables.
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Fig. 8: Experimental results for extrinsic evaluation

Recall that our system also supports highlighting ARs,
when given. We tested whether highlighting ARs changed the
relative performance of the baselines by highlighting them
for the SP and FL datasets (for all baselines), and used
the regular (unhighlighted) tabular view for sub-tables of BL.
We observed that the comparative performance was preserved
whether or not the ARs were highlighted.

2) Collected Sessions Study: We also conducted an “of-
fline” extrinsic evaluation of sub-tables using a collection
of 122 pre-recorded data exploration sessions [1]. The sessions
contain select, project, group-by, and sort operations over
the CY dataset. To evaluate the usefulness of sub-tables,
we replayed each query in a session and generated a corre-
sponding sub-table using SubTab, RAN or NE as representative,
interactive-time baselines. We then examined whether the next
query in each session contained a fragment (e.g., a group-by
attribute, selection term, etc.) that appears in the sub-table of
the previous query’s results. Intuitively, the presence of next-
query fragments in the sub-table indicates that the sub-table
is useful in selecting the next exploration step.

The percentage of captured query fragments when varying
the width (i.e., number of columns) of the sub-table from 3
to 7 (out of the 12 columns of CY ) are shown in Figure
8b. Here again, SubTab significantly outperforms the baselines
by up to 40%, notably improving relatively and absolutely as
the width increases up to 6 columns; this apparently suffices
to exhaust the contribution of columns to fragment capturing.
In contrast, performance for NE deteriorates for larger tables,
which indicates that its clusters are arbitrary rather than
meaningful. In light of the task difficulty, SubTab’s results are
encouraging: even though its output is limited to small-sized
sub-tables and query fragments can use any domain value
(even ones not present in the table), its sub-tables still capture
a significant percentage of real user query fragments.

Correlation to intrinsic metrics: We now examine the
direct correlation between the extrinsic quality measure (per-
centage of captured fragments in each sub-table, as measured
in the above experiment), and the sub-table intrinsic quality
metrics (i.e., cell coverage, diversity and the combined score).
In the above experiment, we have collected about 1000 sub-
tables of sizes 3 to 7, generated by different baselines, and
with various cell-coverage scores, diversity scores, and com-
binations thereof (cell-coverage was in the range [0.2-0.83],
and diversity in [0.3-0.71]).

Figure 8c shows the correlation (calculated using the
Cramér’s V [50] measure of association), for each of our
intrinsic metrics to the percentage of captured fragments.

First, the results indicate that the combined score achieves
significantly higher correlation than each of its components
individually, which indicates that both components of the score
are needed. Second, the relative importance of cell coverage,
as reflected by its correlation score compared with diversity,
increases with the sub-table size, intuitively since larger sub-
tables are more likely to predict data patterns used in sub-
sequent queries. We also compare the ranking of baselines
in our user study by the extrinsic and intrinsic metrics. The
average combined score for sub-tables produced SubTab, RAN
and NE in our live user study were 0.56, 0.32 and 0.15
respectively, which matches the ranking of these baselines by
user ratings (Figure 8a). Similarly, for the simulation-based
study (Section V-C2), we computed the combined score for
each sub-table and averaged per baseline and per sub-table
size. The resulting rankings are identical (see Figure 8b),
indicating that our metrics correlate with human judgments
and with the usefulness of sub-tables in EDA sessions.

D. Parameter Tuning

We next test different parameter settings – the number of
bins and the support and confidence thresholds. We varied
each parameter while using the default value for the others,
and examined the effect on the performance of SubTab and
other baselines with respect to different datasets. The scores
reported here are averaged over the FL and SP datasets. See
the technical report [24] for further details.

Number of bins: Intuitively, increasing the number of
bins makes the data more fine-grained – which results in a
larger number of weaker rules (i.e., that cover fewer tuples).
In such case, achieving high cell coverage is naturally more
difficult as a sub-table now needs to capture more rules to
cover the same number of cells. For example, from 5 bins
to 10 bins we can observe a cell coverage decrease of 37%
47%, 80%, 47% for SubTab, RAN, NE and RCCSG, respectively.
In contrast, the diversity score increases with the number of
bins, for all baselines. This is because tuples are more likely
to be different when using more bins.

Support and confidence threshold: AR support [14] re-
flects the ratio of tuples to which an AR applies. Setting a
minimum support threshold of 0.1 means that we consider
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only rules that apply to ≥ 10% of the data. Increasing the
support threshold (from 0.1 to 0.3) leads to a minor decrease
in cell coverage for SubTab, but a much higher decrease for
other baselines (a decrease of 45% on average). This indicates
that SubTab covers the meaningful, more significant rules, and
therefore it is more resilient to the decrease in the number of
rules that follows an increase in the support threshold. The
confidence of an AR measures the strength of the connection
between its parts, i.e., the ratio, among all tuples for which the
left-hand-side holds, of tuples where the right-hand-side also
holds. Increasing the confidence threshold (from 0.5 to 0.8)
leads to trends similar to increasing the support threshold: cell
coverage decreases by 15% 40%, 50%, 42% for SubTab, RAN,
RCCSG, and MAB, respectively.

E. Summary of Findings
Results of these experiments show that sub-tables com-

puted by SubTab exceed the quality of those computed by
other interactive-time algorithms, and are comparable to time-
consuming algorithms that directly optimize our metrics or
use expensive state-of-the-art embedding methods. Our user
study, over both live and pre-recorded EDA sessions, shows
higher scores for SubTab sub-tables for both objective perfor-
mance, i.e., the likelihood of discovering data patterns and
useful columns/values for further analysis, and for subjective
usability ratings. Finally, the results indicate that our metrics
of sub-table quality are sound, robust and correlated with
extrinsic sub-table quality metrics.

VI. RELATED WORK

Four lines of work are related to our problem:
(1) Row Sampling. The task of sampling or selecting rep-
resentative rows from a large dataset has been studied in
previous work for several different use cases. For example,
work in Approximate Query Processing (AQP) suggests using
stratified sampling [51] and dynamic sampling [51], [52] in
order to reduce the number of tuples and produce faster yet
inexact query results. Additional use cases are: sampling for
efficient generation of data visualizations [53], [54], query
results diversification [55], [56]. Closer to our work, [43]
suggests an interactive browsing interface for query results,
which utilizes a row sampling method based on hierarchical
clustering of the raw data. A similar approach is used by the
baseline No-Embedding (NE), as described in Section V-A,
which obtains sub-optimal results compared to SubTab. In
contrast, sub-table selection requires the joint selection of rows
and columns, as, e.g., certain rows better represent the values
in certain columns and vice versa.
(2) Feature Selection. The task of reducing the number of
columns in a dataset is an important step in many machine-
learning processes, and is the topic of a plethora of research
papers (see [57] for a survey). Roughly, these works can be cat-
egorized as filter methods, that output the Top-k features w.r.t.
a given metric (e.g., Chi-Square, ANOVA and Information-
Gain) [58]; as well as embedded [59] and wrapper [60]
methods, which directly utilize the ML model to determine

feature importance [61]. However, these works are ill-suited
to our problem, since they (1) select columns only, and cannot
be easily adapted to also select representative rows; and (2)
operate w.r.t a predefined, target column and a prediction task,
which may not exist in the data exploration phase.
(3) Data summarization Another line of work attempts to
derive compressed forms of the data or produce a high-level,
compact summary of the dataset. These include dimensional-
ity reduction [62] techniques, data sketches [63] for online
streams, and techniques for aggregation-focused AQP [64],
[65]. In particular, [66] generates a summary using association
rules in the data, yet directly mines the rules, which is
too costly in an interactive exploration. In contrast, SubTab
efficiently generates a sub-table which consists only of values
from the original table.
(4) Data exploration & Discovery Tools. A plethora of work
attempts to facilitate data exploration for users with varying
degrees of expertise. E.g., for non-programmer users, works
such as [3]–[6] suggest simplified exploration interfaces that
allow wrangling the data without explicitly writing queries.

Furthermore, numerous tools have been devised to facilitate
data and insight discovery. First, visualization recommender
systems, such as Voyager [10], DeepEye [11], and LUX [12]
automatically generate suitable, interesting visualizations for
an input dataset. Other solutions, like TopK-Insight [8] and
QuickInsights [67] produce aggregative insights and patterns
from the given data (e.g., rising or falling trends). Both types
of solutions indeed surface useful visualizations and insights
from the data, yet their output is highly specific: each insight
or visualization depicts a single pattern, mined from one or two
columns. SubTab assists the analysts in a different way, and can
work effectively alongside such systems. SubTab reduces the
(often very large) query results into a compact, representative
sample. The resulting sub-table contains a subset of the actual
raw data that captures multiple, diverse data patterns and
characterizes the table as a whole.

VII. CONCLUSION AND FUTURE WORK

This paper presents SubTab, a framework for creating small,
informative sub-tables for raw data display, a highly frequent
operation in data exploration. Given a large input table, SubTab
creates a sub-table with a small subset of the rows projected
over a small subset of the columns. The rows and columns
are chosen as representatives of prominent data patterns within
and across columns in the input table. SubTab can also be used
for displaying query results, enabling the user to quickly un-
derstand results and determine subsequent queries. Directions
for future research include exploring alternative data patterns
(e.g., quantitative association rules); speeding up sub-table
computation for queries over multiple tables (e.g., using join)
or that change the table structure/values (e.g., aggregation,
pivoting); and performing further experiments using synthetic
data to study the effect of different data distributions, different
types of binning etc. on the sub-tables calculated by different
algorithms (e.g., a greedy approach).
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