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ABSTRACT
Automated machine learning (AutoML) frameworks are gaining
popularity among data scientists as they dramatically reduce the
manual work devoted to the construction of ML pipelines while
obtaining similar and sometimes even better results than manually-
built models. Such frameworks intelligently search among millions
of possible ML pipeline configurations to finally retrieve an optimal
pipeline in terms of predictive accuracy. However, when the training
dataset is large, the construction and evaluation of a single ML
pipeline take longer, which makes the overall AutoML running
times increasingly high.

To this end, in this work we demonstrate SubStrat, an AutoML
optimization strategy that tackles the dataset size rather than the
configurations search space. SubStrat wraps existing AutoML tools,
and instead of executing them directly on the large dataset, it uses
a genetic-based algorithm to find a small yet representative data
subset that preserves characteristics of the original one. SubStrat
then employs the AutoML tool on the generated subset, resulting
in an intermediate ML pipeline, which is later refined by executing
a restricted, much shorter, AutoML process on the large dataset.
We demonstrate SubStrat on both AutoSklearn, TPOT, and H2O,
three popular AutoML frameworks, using several real-life Kaggle
datasets.
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1 INTRODUCTION
Automatedmachine learning (AutoML) frameworks aim to facilitate
the time-consuming task of developing a machine learning (ML)
model [9], assisting even inexperienced users in building accurate
and robust models for a given dataset. For each dataset, AutoML
frameworks compare a multitude of ML pipeline configurations –
typically composed of pre-processing, feature engineering, model
selection and hyper-parameters optimization [4] – and select the
configuration that yields the most accurate model [9].

Since the configuration space of all possible ML pipelines is
tremendously large, AutoML frameworks employ a variety of opti-
mizations and search heuristics, such as Bayesian optimization [7],
meta-learning [3, 5], and genetic algorithms [13], in order to reduce
the number of compared pipelines.

Nonetheless, when the training data is large, each pipeline exe-
cution takes a longer time to run. This can add up to hours of search
time, even when using state-of-the-art AutoML frameworks [4].
To tackle this challenge, we propose SubStrat, a new strategy for
reducing AutoML computation costs, tackling the data size rather
than the configuration search space. Hence, instead of employing an
AutoML tool directly on the large dataset, SubStrat first generates
a special data subset (DST) which preserves some characteristics
of the original one. It then executes the AutoML tool on the small
subset (which is significantly faster than on the large dataset) and
last, refines the resulted ML pipeline configuration by executing a
limited, shorter AutoML process back on the large dataset. This al-
lows SubStrat to significantly reduce AutoML times with a minimal
decrease in the final model accuracy. To our knowledge, SubStrat
is the first AutoML optimization strategy that utilizes data subsets
in order to speedup the AutoML process.

Although it is quite obvious that employing AutoML on a frac-
tion of the data takes less time, not all subsets result in good-enough
AutoML performance. For instance, as shown in Figure 3, using a
randomly selected subset in our approach is indeed much faster,
yet reduces the model accuracy by 30%. Therefore, finding an ade-
quate DST, with a minimal impact on the final accuracy in a timely
fashion is a challenge. To overcome this, SubStrat uses Gen-DST, a
novel, genetic-based algorithm that finds a DSTwhich preserves the
original dataset entropy. Given a dataset of 𝑁 rows and𝑀 columns,
Gen-DST finds a DST of size 𝑛 ×𝑚 (s.t. 𝑛 << 𝑁 and 𝑚 << 𝑀)
by producing generations of candidate DSTs, and performing an
evolution-like selection of the ones that obtain the closest entropy
to the original data.

The main advantage of our system is the compatibility with
state-of-the-art existing AutoML tools, allowing data scientists to
continue using their favorite frameworks while significantly reduc-
ing computation times.
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Related work. Auto-ML is a growing research field, aiming to
automate the process of developing ML models for a given task
and dataset [2, 4, 5, 7, 15, 17, 19]. Existing AutoML can be roughly
divided into two main categories: search-space optimizations and
meta-learning solutions (as well as the combination thereof). Search
space optimizations employ strategies such as Bayesian optimiza-
tion [2, 7], directed search [17, 19] and genetic programming [14],
to reduce the configuration search space, while meta-learning so-
lutions [3, 5, 20] utilize a corpus of datasets to learn some of the
configuration elements.

Differently from these works, the goal of SubStrat is to reduce
the size of the input dataset, rather than the search space of pipeline
configurations. The goal of SubStrat is not to replace existing Au-
toML tools, but to improve the running time of such search-based
tools by executing the majority of computation on a significantly
smaller data subset, discovered by Gen-DST, our genetic-based
algorithm.

Last, note that SubStrat is currently designed to assist in tradi-
tional AutoML tools (aimed at tabular datasets), whereas AutoML
frameworks (e.g.,[8] exists also for Neural-Network Architecture
search (NAS). We aim to tackle NAS optimization in future work.
Demo. We show how SubStrat is easily used with three popular
AutoML frameworks, AutoSklearn [3], TPOT [14], and H2O [12] on
a variety of publicly available datasets. After selecting a dataset, we
demonstrate how SubStrat integrates with the AutoML tools and
is able to significantly reduce their running times with a minimal
impact on accuracy. To further gauge the performance of SubStrat,
we provide a comparison utility that presents a side-by-side evalu-
ation of running times and performance of both SubStrat, the full
AutoML process, and a baseline approach that uses a Monte-Carlo
based DST (See Figure 3).

Last, note that a full report on SubStrat, including full algorithmic
details and experimental results, is provided in [11]. We further
publish our source code in [16].

2 APPROACH
In a typical AutoML scenario, a data scientist desires to build an ML
model for predicting the value of some target feature 𝑦 in dataset
𝐷 . Rather than manually constructing the model, the data scientist
employs an AutoML tool 𝐴 that intelligently scans multitudes of
ML pipelines (composed of feature engineering, model selection,
and hyper-parameters optimizations), and results in a particular
configuration that achieves the highest predictive performance.
We denote the application of an AutoML tool 𝐴 over dataset 𝐷
to predict the target 𝑦 by 𝐴(𝐷,𝑦) → 𝑀★, where 𝑀★ is the best
configuration that 𝐴 could find. As mentioned above, the larger the
dataset, the higher the computational cost of the AutoML, since
each candidate pipeline takes longer to execute. Let 𝑇𝑖𝑚𝑒 (𝑀★) be
the time it takes for the AutoML tool 𝐴 to generate𝑀★, with final
model accuracy, denoted by 𝐴𝑐𝑐 (𝑀★).

The goal of SubStrat, our subset-based strategy, is to utilize a
data subset in order to reduce AutoML computation times – while
retaining the output model performance. Namely, to generate a
model configuration 𝑀𝑠𝑢𝑏 s.t. 𝑇𝑖𝑚𝑒 (𝑀𝑠𝑢𝑏 ) << 𝑇𝑖𝑚𝑒 (𝑀★) but
𝐴𝑐𝑐 (𝑀𝑠𝑢𝑏 ) ≈ 𝐴𝑐𝑐 (𝑀★).

Dataset 

Intermidatie ML Pipeline Conf.

AutoML tool

SubStrat

Compute Gen-DST

Employ autoML 

Fine-tuning by 
Restricted autoML

Measure-preserving Data Subset

Final ML Pipeline

Figure 1: SubStrat Workflow

Unfortunately, as is also shown in [11], a simple random sample
is highly ineffective: When running the AutoML tool on a random
subset of the data, the process is indeed much faster (time is reduced
bymore than 96%), yet the finalmodel’s accuracy significantly drops.
On average, the accuracy of the random-sample AutoML model is
27% lower compared to the accuracy of the𝑀★, the output model
of the AutoML tool when running on the full dataset. Naturally,
such low accuracy makes the AutoML process completely futile.

We next describe how SubStrat overcomes this problem, able
to reduce running time by an average of 78% with an accuracy
reduction of less than 2% [11].

SubStrat workflow. Figure 1 describes the architecture and work-
flow of SubStrat.

The system takes as input a dataset, and an existing AutoML tool
(e.g., TPOT [14], AutoSKlearn [3]). It then works in three steps: (1)
SubStrat first intelligently searches for a small DST that preserves
the entropy of the full dataset (See Section 2.1). This is done using
Gen-DST, our novel genetic-based algorithm (See Section 2.2. (2)
Once the DST is ready, SubStrat employs the AutoML tool over the
DST, instead of the full dataset. This naturally, takes a fraction of
the time (See Figure 2). This phase results in an (intermediate) ML
pipeline configuration. (3) Last, SubStrat refines the intermediate
ML pipeline, by executing the AutoML tool on the full dataset, yet
in a much shorter, restricted manner. This results in a final ML
pipeline configuration.

We next describe the components of SubStrat in more detail.

2.1 Entropy-Preserving Data Subsets
Let 𝐷 be a dataset of 𝑁 rows and𝑀 columns. Denote its row and
column indices by 𝑅 = 1, 2, . . . , 𝑁 and 𝐶 = 1, 2, . . . , 𝑀 , respectively.
Intuitively, a DST of a full dataset𝐷 is simply a subset of the rows of
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𝐷 , projected over a subset of the columns. Formally, given a dataset
𝐷 with row-indices 𝑅 and column-indices 𝐶 , a data subset (DST) of
size 𝑛 ×𝑚 is defined as follows. Let [𝑅]𝑛 be the set of all 𝑛-subsets
of 𝑅, i.e., [𝑅]𝑛 = {𝑅′ |𝑅′ ⊆ 𝑅 ∧ |𝑅 | = 𝑛}, and [𝐶]𝑚 be the set of
all𝑚-subsets of 𝐶 . Then, given 𝑟 ∈ [𝑅]𝑛 and 𝑐 ∈ [𝐶]𝑚 , the data
subset is defined by the rows in 𝐷 indicated in 𝑟 , projected over the
columns indicated in 𝑐 .

Our goal is therefore to find a representative DST, that preserves
characteristics of the original dataset. Inspired by works in feature
selection [21] and decision tree learning [18], we use an entropy-
based measure to amount the preservation of such characteristics.
Our dataset entropy function, as defined below, assesses the “amount
of information” conveyed in the entire dataset.

Definition 2.1 (Dataset Entropy). Given dataset 𝐷 of size 𝑁 ×𝑀 ,
Let 𝐷𝑖 𝑗 be the value in row 𝑖 and column 𝑗 .

𝐻 (𝐷) =

∑𝑀
𝑗=1

(∑𝑁
𝑖=1 𝑃 𝑗 (𝐷𝑖 𝑗 ) · 𝐿𝑜𝑔2𝑃 (𝐷𝑖 𝑗 )

)
𝑀

(1)

Where 𝑃 𝑗 (𝐷𝑖 𝑗 ) is a probability function corresponding to the fre-
quency of the value in 𝐷𝑖 𝑗 w.r.t. Column 𝑗 . Namely, if 𝐷𝑖 𝑗 = 𝑣

then:

𝑃 𝑗 (𝑣) =
∑𝑁
𝑘=1 𝐼 [𝐷𝑘 𝑗 = 𝑣]

𝑁
(2)

Ideally, for a dataset 𝐷 , we would like to obtain the best entropy-
preservingDST𝑑 of size𝑛×𝑚. Naively, one can employ a brute-force
search that traverses through all possible DSTs of size 𝑛×𝑚. Clearly,
this becomes infeasible for large datasets or when a larger DST is
needed. Therefore, we define an optimization problem, which is
to minimize the entropy difference between the DST 𝑑 and the
original dataset 𝐷 , as follows:

L(𝑟, 𝑐) = |𝐻 (𝐷 [𝑟, 𝑐]) − 𝐻 (𝐷) | . (3)

In what comes next we describe Gen-DST, a genetic-based al-
gorithm that minimizes L(𝑟, 𝑐), while also obtaining short conver-
gence time. The latter is highly important since if the DST gen-
eration process takes too much time, the efficacy of our overall
solution in reducing AutoML times is significantly diminished.

2.2 Gen-DST: A Genetic-Based DST Algorithm
Our framework employs a Genetic Algorithm (GA) [6], a well-
known and commonly-usedmeta-heuristic searchmethod, based on
the biological theory of evolution [6]. We next briefly describe Gen-
DST our genetic-based algorithm for finding DSTs (Refer to [11]
for full details and analysis).

Briefly, the genetic representation of a candidate-DST, denoted
𝐺 , comprises of 𝑛 +𝑚 chromosomes: 𝑛 row-chromosomes, that cor-
respond to 𝑛 row indices of dataset 𝐷 , and𝑚 column-chromosomes,
that correspond to 𝑚 column-indices. Namely, 𝐺 B (𝑟, 𝑐), 𝑟 ∈
[𝑅]𝑛, 𝑐 ∈ [𝐶]𝑚 , where for a dataset 𝐷 , recall that 𝑅 and 𝐶 denote
its rows and columns indices. The fitness function, i.e., the goal
of the evolutionary process, is defined as the negative loss of the
DST-candidate: 𝐹 (𝐺) B −L(𝑟, 𝑐) (using the entropy difference, see
Equation 3).

Gen-DST finds the optimal DST, by first initializing (at random)
a population 𝑃 of candidate DSTs, then iteratively employing des-
ignated genetic operations: mutation, cross-over, and selection: The

Full 
autoML

SubStrat

18.1%

Data subset
 (7.4%)

Fine-tune pipeline
conf (9.54%)

Employ autoML
(1.16%)

Figure 2: SubStrat Computation Breakdown. Finding the DST
using Gen-DST takes 7.4% out of the full AutoML process (on
the large dataset). Then, employing the AutoML tool takes
another 1.16% and the fine-tuning stage takes another 9.54%.
The entire SubStrat process takes, on average, only 18.1% of
the time used by executing a full AutoML process.

mutation operator introduces random noise into the DST candi-
dates; The cross-over operator generates new DST candidates by
combining chromosomes of older candidates; Last, the selection
operator filters out the unfitted candidates (using Equation 3). For
each generation 𝑖 (out of𝜓 generations), the fittest DST candidate
is kept if it surpasses the best DST from the previous generations.
Finally, Gen-DST returns the best DST out of all𝜓 generations.

Last, note that the running times of Gen-DST depend on numer-
ous factors such as the number of generations𝜓 , population size |𝑃 |,
the full data as well as the DST size. We discuss below the running
time analysis of SubStrat compared to a full AutoML process.

Fine-Tuning the Configuration. After SubStrat generates a DST
𝑑 using Gen-DST, it runs the AutoML tool on 𝑑 and obtains an
intermediate ML configuration, denoted 𝑀 ′. This configuration
needs to be adapted back to fit dataset 𝐷 . To do so, we employ 𝐴
back on 𝐷 , but restrict its search space, forcing it to only consider
configurations that use the same ML model as specified in 𝑀 ′.
Such a simple yet efficient restriction allows SubStrat to retain
short running times, while considerably improving the intermediate
configuration 𝑀 ′, reaching almost the same accuracy as the best
configuration𝑀★.

Running Times Analysis. Figure 2 shows the mean computation
time of each of the three components in SubStrat, relatively to
the Full-AutoML execution (100%). The proportions were obtained
empirically over 10 different datasets, as described in [11]. The first
component of finding an entropy-preserving DST using Gen-DST
is rather costly, but still takes only 7.4% of the full AutoML process.
The second component, in which we employ the AutoML tool on
the obtained DST, takes only 1.16% of the full AutoML computation.
This natural speedup is since the DST, with a default size of

√
𝑁

rows and 0.25𝑀 columns, is on average 502X smaller than the full
dataset. Last, as expected, the fine-tuning phase is more costly
(9.54%), since each tested pipeline configuration is now executed
on the full dataset. Nevertheless, see that SubStrat execution takes
only 18.1% on average than the full AutoML case.
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Figure 3: Example usage of the SubStrat library on the flights dataset [1] and AutoSKlearn

3 UI AND DEMONSTRATION OVERVIEW
We implemented SubStrat as a Python library that wraps existing
AutoML tools, so users can continue using their favorite AutoML
library with the same pipelines they are used to. The hyper pa-
rameters of Gen-DST as well as the DST size, are inferred using a
meta-learning approach (Similarly to [2]), optimized on a system
setting that results in up to a 5% decrease of the model accuracy.

In our demonstration, we invite participants to use SubStrat
in a Jupyter notebook [10] environment, as depicted in Figure 3.
Participants will first select a dataset from a collection of 10 public
Kaggle datasets and predictive tasks. Then, the participants will
be invited to choose an AutoML tool (TPOT, AutoSKlearn, H2O),
and observe how SubStrat significantly reduces its running times.
Figure 3 illustrates an example such demonstration scenario, using
the flight delays dataset [1] and the AutoSKlearn [3] tool. The ML
task associated with the dataset is to predict whether a flight is
delayed or not.

To do so, as illustrated in Figure 3, users first need to import the
AutoML tool (Line 1) and the SubStrat library (Line 2). Next, the
users need to initialize the AutoML object (Line 3) and split the
data to train and test (Line 4). Then, SubStrat is employed (See Line
5), taking as input the training dataset, the target column (e.g., the
rightmost, “is_delayed” binary feature in the flight-delays example
scenario), and the AutoML object. Users can optionally specify the
DST size (default is “auto”, which will derive the size w.r.t. the input
dataset as described above) and the algorithm (default is Gen-DST).

SubStrat then outputs an optimized ML model which can be used
to perform predictions over the test dataset.In our example scenario
(Figure 3) SubStrat returns an AutoSklearn Estimator (cls) object,
yet in our additional demonstration scenarios, we show interested
users an alternative SubStrat process also for TPOT and H2O.

Next, to gauge the performance of SubStrat in terms of running
times and accuracy, we will use the SubStrat comparison utility,
which allows users to inspect the performance of SubStrat against
custom baselines. For instance, as depicted in Lines 6-8 in Figure 3,
we compare SubStrat to the naive, full AutoML process (which
executes AutoSklearn over the full dataset), as well as to a Monte
Carlo baseline, which selects the best entropy-preserving DSTs
among 100 randomly generated DSTs, instead of using Gen-DST.

The comparison tool then outputs two plots that depict the
performance of the selected baselines. The left-hand plot in Figure 3
compares the running time performance. We can see that the full
AutoML process took 455 seconds, compared to 78 seconds by
SubStrat, and 14 seconds by the Monte Carlo algorithm. Then, in
the right-hand plot shows an accuracy comparison. While the full
AutoML resulted in a model with 0.907 accuracy for the flights delay
prediction task, the model generated by SubStrat obtained 0.898 –
less than 1 point difference. The Monte Carlo approach, however,
yields substantially inferior accuracy, 0.633, which demonstrates a
decrease of more than 27 points compared to the full AutoML.

Last, we invite the participants to look under the hood of Sub-
Strat, and shed light on its computation process. We will present,
for example, which columns and rows from the original dataset
were used in the generated DST; what is the dataset entropy dif-
ference between the resulted DST and the full dataset; and present
the difference in the output model configurations.

Additional Scenarios. As mentioned above, other than the Flights
dataset scenario, we will allow users to select a different dataset and
AutoML algorithm, and inspect the optimization process performed
by SubStrat. Participants can choose to employ either AutoSklearn
or TPOT over 10 additional datasets from various domains and sizes
(up to 2M rows and 1000 columns) such as the Kaggle Car Insurance
Dataset, Mushroom Classification, Bike Demand, and more.
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