
Next-Step Suggestions for Modern Interactive
Data Analysis Platforms

Technical Report

February 12, 2018

Abstract

Modern Interactive Data Analysis (IDA) platforms, such as Kibana,
Splunk, and Tableau, are gradually replacing traditional OLAP/SQL tools,
as they allow for easy-to-use data exploration, visualization, and mining,
even for users lacking SQL and programming skills. Nevertheless, data
analysis is still a difficult task, especially for non-expert users. To that
end we present REACT, a recommender system designed for modern IDA
platforms. In these platforms, analysis sessions interweave high-level ac-
tions of multiple types and operate over diverse datasets. REACT identifies
and generalizes relevant (previous) sessions to generate personalized next-
action suggestions to the user.

We model the user’s analysis context using a generic tree based model,
where the edges represent the user’s recent actions, and the nodes rep-
resent their result “screens”. A dedicated context-similarity metric is
employed for efficient indexing and retrieval of relevant candidate next-
actions. These are then generalized to abstract actions that convey com-
mon fragments, then adapted to the specific user context. To prove the
utility of REACT we performed an extensive online and offline experimental
evaluation over real-world analysis logs from the cyber security domain,
which we also publish to serve as a benchmark dataset for future work.

1 Introduction
Data analysis is fundamentally an interactive, iterative process in which a user
issues an analysis action (i.e. query), receives a results set, and decides if and
which action to issue next. Until recent years, analysis tasks required thorough
expertise in SQL and programming, as well as mathematics and statistics. How-
ever, since the advent of the Big Data era, the infrastructures and support for
Interactive Data Analysis (IDA) have greatly developed: Novel, often web-based
platforms such as Tableau, Kibana (ELK), and Splunk, are gradually replacing
traditional tools, allowing easy-to-use data exploration, visualization, and min-
ing, even for users lacking knowledge of SQL and programming languages. Yet,
IDA is still a difficult process, especially for inexperienced users, as it requires
a deep understanding of the investigated domain and the particular context.
Users may therefore skip significant analysis actions and overlook important
aspects of the data [21].

1

To assist users, previous work suggested the use of recommender systems in
the domain of data analysis. These works mostly focus on traditional SQL/O-
LAP environments, and roughly employ two approaches: collaborative filter-
ing [20, 18, 22, 6], and data-driven [25, 17, 19, 27]. In the collaborative filtering
approach, systems use a repository of (prior) queries of the same or other users,
to generate recommendations according to the following assumption: if users
are posing similar sequences of queries, they are likely interested in the same
subpart of the dataset. Hence, queries of one user can be provided as recommen-
dations to the other. In the data-driven approach, systems examine the data
at hand and provide recommendations based on the potential interestingness of
the query result. (See overview of related work in Section 5.) While all these
works make a notable contribution, they scarcely address two challenges, central
to current IDA platforms:

(1) IDA platforms facilitate composite analysis processes, interweaving ac-
tions of multiple types (e.g. SQL-like operators, OLAP multidimensional aggre-
gations, visualization) while providing a simplified syntax. In contrast, previous
work typically focuses only on one class of actions, thus not capturing the de-
pendency of one action on the results of previous actions of different types.

(2) In common IDA business environments, users (even of the same depart-
ment) often examine different datasets, for different purposes. In contrast, previ-
ous work generally assumes that users are investigating the same database/cube.
Thus, to generate recommendations, these systems search for users who made
similar queries on the exact same dataset, and use their explicit queries as rec-
ommendations. This scenario is mostly impracticable in a varying-dataset IDA
environment.

Thus, as advocated in [21], a more holistic approach is required to fully
capture the essence of the IDA work, and to be able to provide meaningful
recommendations in adequate times. To that end, we present REACT, a recom-
mender system designated for modern IDA platforms, which particularly tackles
the new challenges that they pose. Given the specific context of the user (e.g.,
the analysis actions of all types performed thus far by the user, the results ob-
tained, the properties of the data set at hand, etc.), REACT processes and adapts
previous experience of other analysts working with the same or related datasets,
in order to present the user with personalized next-step suggestions.

Our key contributions in this work can be summarized as follows.

Efficient Retrieval of Similar Analysis "Contexts" As in existing anal-
ysis recommender systems, we also record previous analysis activity by the sys-
tem’s users. Given the state of the current user within an analysis process,
we first search for the top-k similar analysis "contexts". The main questions
we address are: (1) How does one define “context” in modern IDA platforms?
Previous work suggests using either an a-priori profile [12] (containing e.g. the
user’s role, current assignment etc), her past actions sequence [20], or the data
tuples examined [13]. Since modern platforms display more than just the re-
sulted tuples (e.g., also visualizations, data mining results), can such properties
be uniformly incorporated in the analysis context? (2) How does one efficiently
capture and compare contexts in a way that grasp their commonalities, even
when users are examining different datasets?

REACT models analysis context using a tree based model, where the edges

2

Figure 1: Web-Based Analysis UI Powered by REACT

represent the user’s recent actions, and the nodes represent their results “screens”
(denoted displays). Context similarity is then measured using tree edit distance,
plugged with two novel ground metrics, measuring the distance between analysis
actions and displays. Last, contexts are stored in an index structure exploiting
the contexts’ metric space and the characteristics of our problem settings. From
these similar contexts, we efficiently retrieve a set of candidate “next-actions”.

Actions Generalization In order to derive an appropriate next-action rec-
ommendation to a user, we examine next-actions performed by other users in
similar contexts. Note however that these actions may be diverse and oper-
ate on distinct datasets, thus they are not useful as is, and must be processed
to become recommendations. We therefore developed a routine for generaliz-
ing multiple actions to abstract actions (to be formally defined in the paper),
conveying common action fragments. Out of many possible generalizations, we
derive and present the most relevant ones to the user as next step "suggestions"
(See Figure 1 for an example). This process allows REACT to overcome the well-
known sparsity problem in recommender systems [5], where goals of different
users rarely overlap.

Real Life Experiments We evaluated our system using real-life IDA logs,
acquired from over 50 experienced analysts in the domain of cyber security. We
performed both an offline predictive evaluation as well as a live experiment,
demonstrating that REACT effectively reduces analysis times by 30% on average.
Since to our knowledge, there is no publicly available benchmark datasets for
modern IDA recommender systems, we publish ours [2], to be used by the
research community in future work.

The paper is organized as follows. In Section 2 we describe our model for
analysis context, and provide the necessary definitions for the generalization of
actions. Section 3 describes the components and workflow of our recommenda-
tions framework. Our experiments are detailed in Section 4. Last, we overview
related work in Section 5, and conclude in Section 6.

3

2 Model and Definitions
We begin by describing our model for the current IDA problem setting and
analysis context, then lay the groundwork for generating next-action recommen-
dations, in a multiple datasets environment, through a novel action abstraction
mechanism.

2.1 A Data Model for Modern IDA Platforms
Dataset A typical IDA process starts when a user loads a particular dataset
to an analysis UI (typically web-based). She then executes a series of analysis
actions, after each one she examines the results and decides if to execute a new
action. We abstractly model a dataset by a triplet D = (O,A,H), where O is a
set of data objects, A is a domain of attribute names andH is a (possibly empty)
set of semantic hierarchies one per attribute name, that defines an abstraction
refinement order on the attribute values. For example, consider the data subset
displayed in Figure 1, conveying network traffic data: Semantic hierarchies that
can be employed for the time and IP attributes are: hours ≤ minutes ≤ seconds
and country ≤ city ≤ IP.

Analysis Actions and Displays, Analysis Tree Inspired by [8], we as-
sume in this work that users perform analysis actions that fall into three main
categories: data retrieval actions, performed to select and filter the relevant
data objects for the current assignment (e.g. FILTER by ’protocol’="HTTP");
data representation operations are performed to alter the point-of-view of the
data objects and include OLAP cube exploration (e.g., ROLL-UP ’time’ FROM
’seconds’ TO ’hours’) and data mining tasks such as clustering and outliers
detection (e.g., CLUSTER by ’Source_IP’).

As common in web applications, we represent the actions and their parame-
ters by a set of key-value pairs (KVP) 〈k, v〉 s.t. k denotes the parameter type,
and v denotes its value. For example, the parameters of the action FILTER by
’Protocol’="SSL" may be represented by {〈 ’type’,FILTER 〉, 〈’attr’,’Protocol’ 〉,
〈’opr’,’=’ 〉, 〈’term’,’SSL’ 〉}.

The execution of an analysis action generates a Results Display d = (〈O,A〉, G,M),
representing a multifaceted “results screen”, where: 〈O,A〉 represents the ba-
sic data layer, indicating the subsets of data objects O ⊆ O, and attributes
A ⊆ A of the input dataset currently being displayed. G is the granular-
ity layer, identifying one abstraction level per attribute (and possibly a cor-
responding aggregate function), thus representing the current cube point-of-
view (e.g. in the current example G can be {〈Time:Minuetes;IP:country 〉,
’avg_length’:AVG(length)}). Finally M is the mining layer, associates each
object oi ∈ O a (possibly empty) set of labels, representing data mining results
(e.g. clustering, outliers, and association rules). Other types of actions (and
corresponding layers, e.g. the data visualization layer) can be added in a
similar manner, yet are omitted here for simplicity.

The interactive analysis process in IDA platforms works in intuitively like
website navigation - at each point one may invoke an action or backtrack to a
previous display and take an alternative navigation path. We thus model the

4

Figure 2: Analysis Tree.

IDA process over dataset D as an ordered labeled tree1 whose nodes represent
displays, and the edges outgoing each node are labeled by the performed ac-
tion and lead to the resulting display node. The order captures the execution
timeline. We use a tree, in contrast to a serial trace, to better model points in
the exploration where analysts perform multiple actions on the same display in
order to examine multiple facets.

Definition 2.1 (Analysis Tree). Given a dataset D, and a sequence of analysis
actions q1, q2, . . . , qm of a given user, that starts from an initial display d0,
then generates displays d1, . . . , dm, an analysis tree T = (r, V,E,≺) is a tree
containing m+1 nodes, s.t. each node vi ∈ V represents a display di, and each
edge ei = (vj , vi) ∈ E represents an action qi, operating on dj, and resulting
in di. ≺ denotes the preorder traversal which captures the execution timeline,
namely, vi ≺ vj iff qi was executed before qj

See Figure 2 for an illustration of an analysis tree (ignore for now the dashed
line). A sample of the content of display d5 is provided in the bottom-right
corner.

Analysis Context A context is generally defined as the circumstances that
form the setting for an event. Inspired by the well known n-gram model, we
define the n-context of an action q, by the last n displays preceding q. Formally:

Definition 2.2 (n−context of analysis action). For analysis action (edge) q in
an analysis tree T , we define its n-context, denoted cq, as the minimal subtree
of T that contains the min(n, |T |) displays (nodes) preceding q.

Note that cq does not include q, as it represent the state of the user prior to
its execution.

As an example, in Figure 2, the subtree in the dashed frame is the 4-context
of action q5. In Section 4 we examine the effect of different sizes of n-contexts,
and show that using not too large values allows for both interactive performance
and good recommendations quality.

2.2 Generalizing Analysis Actions
Since analysis actions may be performed in different contexts and on different
datasets, we will be interested in generalizing a set of relevant actions into
abstract actions, representing their commonalities.

An abstraction of a given action is obtained by generalizing (i.e., replacing)
a subset of its parameters by generic variables, denoted by ∗. We define first a
generalization for a single parameter, then lift it to action parameter sets.

1If the same display is generated twice (yet on different paths) it is represented by two
different nodes

5

Definition 2.3 (Single Parameter Generalization). A single key-value param-
eter pair 〈k, v〉 can be generalized into 〈∗, v〉 or to 〈k, ∗〉, where ∗ denotes the
generic variable. These may be further generalized to 〈∗, ∗〉, which forms a gen-
eralization for all possible parameters. Thus such “generalization” forms a partial
order over template parameters: 〈∗, ∗〉 ≤ 〈∗, v〉; 〈∗, ∗〉 ≤ 〈k, ∗〉; 〈∗, v〉 ≤ 〈k, v〉;
〈k, ∗〉 ≤ 〈k, v〉. We refer to a generalized parameter as an abstract parameter
and denote it by 〈k̂, v̂〉, where k̂ and v̂ stand for either a variable ∗, or some
concrete key/value.

Lifting these definitions to actions (i.e sets of parameters), we define an
abstract action (or abstraction in short) as an action whose parameters may
consist of abstract parameters. We require that the abstract actions in the set
are incomparable, i.e. the set does not contain a parameter and its generaliza-
tion. Now, a partial order of actions can then be defined by lifting the partial
order of single parameters: Abstract action q̂1 “generalizes” q̂2 (or q̂2 is an “in-
stantiation” of q̂1) denoted by q̂1 ≤ q̂2, if all parameters in q̂1 are more general
than parameters in q̂2. Formally:

Definition 2.4 (Abstract action, Partial Order).
(1) An abstract action q̂ = {〈k̂i, v̂i〉} is a set of incomparable abstract pa-

rameters, i.e.: @〈k̂1, v̂1〉, 〈k̂2, v̂2〉 ∈ q̂, s.t. 〈k̂1, v̂1〉 ≤ 〈k̂2, v̂2〉 ∧ 〈k̂1, v̂1〉 6= 〈k̂2, v̂2〉.
(2) q̂1 generalizes q̂2 (denoted by q̂1 ≤ q̂2) iff: ∀〈k̂1, v̂1〉 ∈ q̂1,∃〈k̂2, v̂2〉 ∈ q̂2 s.t.
〈k̂1, v̂1〉 ≤ 〈k̂2, v̂2〉

Consider the following example for an illustration of the actions’ partial
order.

Example 2.5. Given the (abstract) actions:
q1={〈 ’type’,FILTER〉, 〈 ’attr’,’Protocol’〉, 〈 ’opr’,’=’〉, 〈 ’term’,’SSL’〉}
q̂1={〈 ’type’,FILTER〉, 〈 ’attr’,’Protocol’〉, 〈 ’opr’,∗〉, 〈 ’term’,’SSL’〉}
q̂2={〈 ’type’,FILTER〉, 〈 ’attr’,’Protocol’〉, 〈 ’opr’,‘=’〉, 〈 ∗,’SSL’〉}
First, observe that none of the abstractions contain a parameter and its general-
ization. Second, according to the partial order we have that q̂1 ≤ q1 and q̂2 ≤ q1,
but q̂1 and q̂2 are incomparable, i.e. neither one generalizes the other.

We further lift the definition to a set of actions and say that an abstract
action q̂ generalizes a set of (abstract) actions Q̂, iff ∀q̂′ ∈ Q̂, q̂ ≤ q̂′. The set
of all generalizations of Q̂ is denoted G(Q̂) Last, we say that a generalization
q̂ ∈ G(Q̂) is minimal, iff @q̂′ ∈ G(Q̂), q̂ < q̂′.

For instance, the minimal generalization for q̂1, q̂2 (as in the example above),
denoted MG({q̂1, q̂2}), is {〈 ’attr’,’Protocol’ 〉, 〈 ’opr’,∗〉, 〈 ∗,’SSL’ 〉}

In Section 3.2, we present an effective algorithm that, given a multiset of
actions, derives a set of "minimal, frequent generalizations", and uses them to
generate next-action recommendations. We also show that for a given set of
abstractions Q̂, always exists exactly one minimal generalization MG(Q̂).

3 Recommendation Framework
We next present the components and workflow of REACT. As explained in the in-
troduction, at each point of a user’s analysis process, we would like to generate

6

relevant next-action recommendations. For that we first find a set of “candi-
date” actions, performed by other users in similar n-contexts (Definition 2.2).
We then generalize and process the candidate actions, to form a set of of next-
action recommendations, tailored to the current user. In what comes next, in
Section 3.1 we first describe a distance metric for n-contexts, then an optimized
solution to efficiently retrieve the topmost similar n-contexts. In Section 3.2 we
state the desired properties of the recommended actions. We provide efficient
methods for the generalization process of the candidate actions, and finally, dis-
cuss how can one further materialize them, if concrete action recommendations
are desired.

3.1 Finding Actions with Similar n−contexts
Let c? be the current user’s n-context before she decides on a new action. Given
a repository of previous analysis trees, our first goal is to efficiently search the
repository for the top-most similar other n-contexts to c?. We first briefly dis-
cuss how to measure the similarity of n-contexts, then explain how to efficiently
identify such contexts.

Determining Context Similarity There are several ways to determine the
distance of labeled ordered trees (e.g. [10]). We use the common tree edit
distance to estimate the distance of any given n-contexts c, c′, denoted δ(c, c′).
Briefly, the distance is defined by the minimum-cost sequence of edit operations
ES = es1, es2, ... required to transform c into c′. The edit operations allowed are
delete/add a node or an edge, and alter the label of a node or an edge. We use a
cost function γ(esi) that gives add/delete operations the unit cost, whereas the
cost of alter for node/edge labels is proportional to the similarity between the
data displays and analysis actions that they represent, respectively, bounded by
the cost of deletion plus addition. Finally, the distance is the commutative cost
of the minimal ES, namely δ(c, c′) = min{

∑N
i=1 γ(esi)}.

Next, we intuitively define the distance notions for actions and displays. For
a full description, see Appendix A.

Display Distance. Recall that different analysts may operate on distinct
datasets (as well as on distinct data subsets), yet we would like to benefit from
the users’ experience across datasets and sources. Given two displays, we first
match, and align their sets of attributes to a global schema (e.g. matching
attribute names such as ’ip_address’ and ’ip_addr’ to a global attribute ’IP’),
using a schema matching and alignment tool (e.g. [1]).

Then, we compare the content of the matched attributes w.r.t. each layer
(data, granularity, mining, etc). Intuitively, our distance metric captures the
following (for explicit formulas refer to Appendix A): (1) Their schema simi-
larity (2) The structure of the data: we compare structural properties of each
matching columns such as its value entropy, # of unique values and # of nulls.
(3) Grouping/cube differences, including the difference in the level of abstrac-
tion in both displays (w.r.t. the attributes hierarchy), as well as differences
in the resulted groupings e.g. the number of groups and their size variance.
(4) Differences in the mining label sets (by employing a simple variation of the
generalized Jaccard distance for multisets).

The final distance score between displays is the sum of the above mentioned
factors, normalized to obtain values in [0, 1].

7

Action Distance. We measure the distance between two analysis ac-
tions q, q′ by the sum of their “distances” from their minimal generalization
MG({q, q′}), as defined in Section 2.2, normalized by their distances to the
most general abstraction {〈∗, ∗〉}. As in the display distance, since actions may
operate on different datasets, we first align attributes to the global schema.
Then, before measuring the distance, we replace attribute names (i.e. in the
parameter 〈 ’attr’,a〉), by their corresponding global schema ones.

Following Example 2.5, the distance between q̂1 and q̂2 is 0.2, as their dis-
tances from MG({q̂1, q̂2}) and {〈∗, ∗〉} are 1 and 5, resp.

Last, to obtain distance values between [0, 1] (while preserving the metric
properties) we employ the Steinhaus transform [16] on the context distance
scores.

Our efficient similarity search described next is based on the following ob-
servation:

Observation 3.1. If the actions/displays distance notions are proper metrics,
then δ is a proper distance metric. I.e. non-negative, symmetric and sub-
additive s.t. δ(T, T ′) = 0 only if T = T ′.

We show in Appendix [?] that our action and display distance functions are
proper metrics.

Context Indexing, Similarity search Analysis platforms and databases
often store a query log, usually recording the syntax of past executed queries.
Correspondingly, in our system we maintain a repository of analysis trees, de-
noted T that includes for each tree T ∈ T the actions and displays it comprises.
Since storing the entire results display is costly, we only store in our reposi-
tory a compact summary of each displays, containing the statistical meta-data
required for the displays distance comparison as previously mentioned.

Now, our goal is to efficiently find the top-k most similar n-contexts, to
the current user’s context c?. A straight-forward solution would be to employ a
subtree similarity search (e.g. [9]), to find all subtrees in T similar to the current
c? (then filter the output set for valid n-contexts according to definition 2.2).

However, this solution requires the traversal of the entire repository2 , which
may take too long for an interactive recommender system. In REACT, we extract
the n-contexts from the analysis tree repository and store them in a metric
tree [14] index. We briefly describe the properties of the metric-tree, then explain
how we use it in our setting.

A metric-tree is a data structure designed for indexing objects residing in
a metric space, for performing an efficient search by exploiting the triangle
inequality property of the metric. In a metric tree, all objects are stored in its
leaves, and the non-leaf nodes comprise of (1) a representative object, denoted
by s, chosen among its descendant leaf nodes, (2) a “covering” radius r(s),
denoting the maximal distance between the representative object s and all of
its descendants, and (3) for each child node of s, denoted si it stores the distance
between their representative objects δ(s, si), as well as its covering radius r(si).

In our settings, whenever a user executes a new action q, as a part of analysis
tree T ′, we construct an object cq that represent the current n-context and

2While some index structures exist for unit-cost tree edit operations[15], this is not the
case in our setting.

8

consists of the pointer to the first and last nodes of the context subtree in T ′.
Then we add cq to the metric tree w.r.t. the context distance metric δ. We
denote the resulted metric tree byMc.

Although the metric tree facilitates an efficient k-nearest neighbors (kNN)
search, that given a query object retrieves the top-k most similar objects, our
problem settings required a different strategy. Due to the inherent sparsity of
the n-contexts, it may be that some of the top-k similar sessions may be too
different from the current one, thus inadequate for generating recommendations.
We therefore suggest using a refinement, denoted Bounded Top-k, which restricts
the kNN search s.t. all retrieved objects are also within a given radius.

Definition 3.2 (Bounded Top-k Search). Given the metric tree Mc, a fixed
distance bound θ, a number k, and a current c?, Bounded Top-k Search retrieve
a set of k n-contexts denoted Ck that are (1) the k most similar to c?, and (2)
their distance from c? is at most θ.

Our bounded top-k search is implemented as follows: GivenMc, θ, k, c? we
first initialize the temporary output set Ck with k "empty" n-contexts, s.t. their
distance from c? is ∞.

Then, the metric treeMc is traversed from the root node. At any non-leaf
node vs, we compute δ(c?, s), where s is the representative object (i.e. n-context)
of vs. Let θk be min(θ, δk), where δk denotes the distance between c? and the
least similar n-context in Ck. Then, by employing the triangle inequality, further
traversal paths are excluded in cases where (1) the distance δ(c?, s) > r(s) + θk
(where r(s) is the covering radius of s) or (2) any representative object si of
a child node of vs, s.t. |δ(c?, s) − δ(s, si)| > θk + r(si). When a leaf node is
reached, we iteratively insert its associated n-contexts to Ck, if their distance
from c? is less than δk, and correspondingly remove elements from Ck that are
more distant from c?

In Section 4 we examine the performance of the bounded top-k strategy,
comparing to the kNN and to a naive "brute-force" search. Results show that
the bounded top-k search is indeed more suitable in our setting, and allows
faster execution times (by an average of more than 20%). The latter is due to
the excessive computations performed in the kNN search in order to maintain
a global, unbounded top-k set (i.e. as long as δk, the distance score of the least
similar element in Ck, is lower than the bound θ).

3.2 Mining Abstract Actions
To generate recommendations, we consider the "next-action" of each of the
similar n-contexts in Ck (obtained as described above). We call these candidate
actions, denoted by Qk = {q|cq ∈ Ck}.

The question we address here is how, and to what extent can Qk be used to
generate next-actions recommendations, given that the actions may be executed
on different datasets? One possibility, is to recommend actions that appear
frequently in Qk. However, since users in our setting may be examining different
datasets, there may be no such frequent actions. For example, assume that the
actions in Qk are:

(1) FILTER by ’ip_address’=’192.168.1.1’,
(2) FILTER by ’ip_addr’=’10.0.0.2’,
(3) FILTER by ’ip’=’164.148.2.26’

9

While the actions are intuitively similar, none appear more than once. To
that end, we suggest finding the commonalities of the actions in Qk, using the
actions generalization constructs, defined in Section 2.2. As actions may be
employed on attributes of different schema, we first replace the attributes in
each action to its equivalent in the global schema (similarly as in the actions
distance notion described in Section 3.1).

Continuing with the example, assuming that the schema alignment maps
the attributes in (1), (2), and (3) to ’IP’, we can derive that the abstract action
"Employ a Filter on the ‘IP’ column by SOME value" is a meaningful next-step
suggestion to the current user.

Of course, not all such generalized, abstract actions may be useful (e.g. the
most general abstract action {〈∗, ∗〉}, while frequent in Qk, is clearly uninfor-
mative). We next explain how our system allows to restrict attention only to
meaningful abstract actions, and efficiently extracts them from Qk.

Recommendation candidates Given the action multiset Qk, our goal here
is to extract, as recommendation candidates, a set of abstract actions that gen-
eralize actions in Qk. Intuitively, we are interested in abstract actions that are,
first of all, "frequent", i.e., correspond to action fragments that are frequent in
Qk. Also, to extract the most information from Qk, we require the frequent
abstractions to also be minimal (as in Section 2.2), i.e. as specific as possible.
Last, since we are interested in providing only meaningful, coherent recom-
mendations, we will allow a set of predefined constraints for recommendation
candidates, e.g. "Must contain an attribute name".

Formally, let Q̂k be the set of all abstractions corresponding to Qk, namely
Q̂k = {q̂|∃q ∈ Qk, q̂ ≤ q}. Out of the large set Q̂k, we are interested in finding
a (small) subset R̂ ⊂ Q̂k of recommendation candidates s.t. each r̂ ∈ R̂ has the
following properties:

1. Frequent in Qk. Given a threshold θf , an abstract action q̂ is frequent
iff |{q|q∈Qk,q̂≤q}|

|Qk| ≥ θf . We require that each r̂ ∈ R̂ is frequent.
2. A Minimal Generalization. Minimal generalizations preserve the

most “information” about the essence of their corresponding actions. We thus
require that each r̂ ∈ R̂, is both frequent and minimal, i.e. @q̂ ∈ Q̂′k s.t. r̂ < q̂
and q̂ is frequent in Qk.

3. Coherent. We allow a predefined set of coherency constraints, namely
a set of abstractions T̂ , requiring any r̂ ∈ R̂ is an instantiation of at least one of
them, i.e. ∃t̂ ∈ T̂ s.t. t̂ < r̂. For example, we can restrict our process to return
recommendations that only contain attributes that are present in the currently
examined dataset, i.e. T̂ = {〈 ’attr’,a1〉, 〈 ’attr’,a2〉,...} where ai is an attribute
name (in the global schema).

Extracting recommendation candidates Given the action multiset Qk, a
frequency threshold θ and a set of coherency constraints T̂ , we will now describe
how to extract R̂, the corresponding set of recommendation candidates.

A naive solution would be to generate Q̂k, the set of all possible abstractions,
then iterate through all q̂ ∈ Q̂, and output q̂ only if it is a valid recommendation
candidate, as defined above (i.e., frequent, minimal and coherent). However, this
is computationally expensive since the size of Q̂k may be exponential in |Qk|,

10

and determining the frequency of a template demands a traversal over the action
multiset Qk.

The efficient mining of abstract actions is enabled due to a reduction from
our problem to the frequent itemsets mining (FIM) problem under monotonic
constraints [23]. We first provide necessary propositions, then explain the re-
duction and describe how any state-of-the-art FIM algorithm may be used to
extract R̂ from Qk, without materializing the large set Q̂.

First, we show the following essential properties:

Proposition 3.3. (1) The multiset Q̂k forms a semi-lattice, under the general-
ization partial order. (2) Any minimal generalization MG(Q̂) is a least-upper-
bound for Q̂: For any two actions q̂1, q̂2 exists a single minimal generalization
MG({q̂1, q̂2}).

(sketch). We need to show that for any two (abstract) actions q̂1, q̂2 exists a
single MG (i.e. least upper bound). Existence of an MG can be proven by
construction. Given action q̂1, q̂2, we first expand each of their parameters sets
to include all “ancestors”, i.e. given action q̂i, create q̂∗i = {〈k̂, v̂〉|∃〈k̂′, v̂′〉 ∈
q̂i, 〈k̂, v̂〉 ≤ 〈k̂′, v̂′〉}. Thus MG(q̂1, q̂2) is obtained by q̂∗1 ∩ q̂∗2 , then pruning
redundant ancestors, that are more general than others (See Definition 2.3).
As for uniqueness, we can prove that any MG({q̂1, q̂2}) is derived from the
intersection q̂∗1 ∩ q̂∗2 , which is naturally unique.

Now, we explain how to use an FIM algorithm in our settings. First, recall
from the literature that an FIM algorithm is given a catalog of items, and
a set of transactions (each comprises a multiset of items), then it mines all
maximal-frequent itemsets (MFI): i.e. sets of items that appear frequently in the
transactions, yet none of their supersets are frequent. We denote by FIM(X, θf)
the output MFIs of a given FIM algorithm on a multiset X of transaction with
frequency above θf .

Applying it to our settings, let Q∗k be the extension of Qk, obtained by
embedding in each action q ∈ Qk the ancestors in the single-parameter partial
order. Namely, q∗ := q ∪ {(k̂, v̂)| ∃(k, v) ∈ q, (k̂, v̂) ≤ (k, v)}. Intuitively, each
action q∗ ∈ Q∗k is equivalent to a transaction, and its parameters (including
ancestors) to items. We can prove the following proposition, stating that our
desired set of abstractions are, in fact, MFIs:

Proposition 3.4. R̂ ⊆ FIM(Q∗k, θf)

We now state the procedure for computing R̂.

Algorithm: (sketch) Given the actions Qk, a constraints set T̂ and a fre-
quency threshold θf , we generate R̂ as follows: (1) using Qk we construct Q∗k by
embedding the parameters’ ancestors in each q ∈ Qk. (2) We apply an FIM algo-
rithm to obtain the MFI set FIM(Q∗k, θf). (3) We prune any q̂ ∈ FIM(Q∗k, θf)
if: (1) q̂ is not a legal abstract action, that contains a parameter and its an-
cestor, i.e. ∃〈k̂, v̂〉, 〈k̂′, v̂′〉 s.t. 〈k̂′, v̂′〉 ≤ 〈k̂, v̂〉. (2) q̂ does not meet any of the
constraints in T̂ , namely @t̂ ∈ T̂ s.t. t̂ ≤ q̂. The output of the procedure is
the pruned set FIM(Q∗k, θf), which is essentially the set of recommendation
candidates R̂.

11

Last, note that our input set for the FIM algorithm induces relatively short
running times, comparing to the typical itemset mining scenario, due to the
following:

(1) The number of “transactions” is relatively small, as it contains only k
actions. In Section 4 we show that optimal recommendation quality is obtained
when setting k between 15 to 30. (2) The size of each transaction, i.e. an
extended action q∗, is at most 3|q|, as to each parameter 〈k, v〉 ∈ q we add up
to two generalizations - 〈 k,∗〉 and 〈 ∗,v〉. (3) The coherency constraints in our
settings are monotonic, i.e. if apply to a given action q̂ then they also apply for
any of its instantiations q̂′ s.t. q̂ ≤ q̂′. The latter facilitates a further speed-up
in the FIM process as suggested e.g. in [23].

We return the recommendations in R̂, sorted by their frequency in Qk, while
replacing the global attributes with their local equivalents in the current user’s
dataset.

Materializing Abstractions to Concrete Recommendations The gener-
alization procedure produces a set of frequent and minimal abstract actions, that
are returned to the user as next step "suggestions". Some of the suggested ab-
stract actions in R̂may not yet be executable actions (e.g. {〈 ’type’,AGGREGATE 〉,
〈 ’attr’,’Length’ 〉 〈 ’func’,∗〉}, namely, "Employ some aggregation function on
the column ’Length’", without specifying the aggregation function). As we
demonstrate in our experimental evaluation (Section 4), these recommendations
are most useful, and assisted real users to reduce analysis times by an average of
30%. Nevertheless, if desired, such abstract suggestions can be further materi-
alized to obtain executable actions by assigning real values to the ∗ parameters.
To do so, we harness as a complementary module a set of data-driven tools each
designated for a specific action type (See [19] for drill-down operations, and [29]
for data visualizations, [17] for FILTER, etc.). These tools consider the data
subset at hand, and automatically select action parameters that maximizes the
interestingness of its corresponding results set.

4 Experimental Results
We performed an extensive experiments set over real-world analysis logs that we
acquired. We performed first an offline evaluation, as common in recommender
systems, by measuring the ability of generated recommendations to predict the
users’ analysis actions. This allowed us to tune the system parameters, then
compare its predictive performance with several baseline approaches. Second,
we performed a "live" experiment with real users, testing if REACT can be prac-
tically used to reduce analysis times. We further evaluated the scalability of
REACT using large, synthetic analysis workloads, and finally, we examined the
effect of the system’s parameters on the predictive performance as well as on
execution times.

4.1 Experimental Setup
Implementation The prototype of REACT is implemented in Python 3.4+MySQL,
using the metric tree described in [14], tree edit distance algorithm of [31], and
schema matching and alignment tool from [1]. All experiments described below

12

Parameter Value range Default Conf.
n-context Size [3, 14] 8

Dist. Threshold θδ [0.1, 0.8] 0.45

Freq. Threshold θf [0.1, 0.3] 0.1

k [5, 40] 25

Table 1: Parameters Grid Search
were conducted on a MacBook Pro machine with 8 cores and 16GB RAM, out of
which 6 were utilized for our system. In both the offline and online evaluations
described in the sequel, we used REACT with a single constraint {〈 ’type’,∗〉},
that restricts all recommendations to contain an action type, and set a limit of
3 on the number of recommendations presented to the user at each point.

Real-world dataset To our knowledge, there are no publicly available repos-
itories of analysis actions performed on modern IDA platforms. We therefore
recruited 56 analysts, specializing in the domain of cyber-security (via dedi-
cated forums, network security firms, and volunteer senior students from the
Israeli National Cyber-Security Program), and asked them to analyze 4 differ-
ent datasets using a prototype web-based analysis platform that we developed
(as in Figure 1). Each dataset, provided by the Honeynet Project [28], contains
between 350 to 13K rows of raw network logs that may reveal a distinct security
event, e.g. malware communication hidden in network traffic, hacking activity
inside a local network, an IP range/port scan, etc. (there is no connection be-
tween the tuples of different datasets). The analysts were asked to perform as
many analysis actions as required to reveal the details of the underlying security
event of each dataset. All actions (total of 1152), displays, and corresponding
n-contexts were recorded as mentioned in Section 3.1, and the attributes of the
4 datasets aligned to a global schema comprising 15 columns, obtained from [3].
Our acquired action log is publicly available [2] for use in future work.

4.2 Offline Evaluation
Predictive accuracy is a common method for measuring the utility of a rec-
ommender system. We describe first the evaluation process and metrics, then
overview the results.

Evaluation technique We simulated the recorded analysis sessions one by
one, and at each point in a session, used REACT to generate recommendations
(with the given session omitted from the repository), then examined whether
the recommendations indeed correspond to the actual next-action performed by
the user, at this point. We used the following standard evaluation metrics in
Information Retrieval: First, we evaluated "high-level" accuracy, by considering
a recommendation relevant if it has the same ’type’ and ’attr’ values as the true
action q. We then used (1) R@3, i.e. Recall at 3, which counts the number of
relevant recommendations, i.e. yields 1 if one of the three recommendations was
relevant and 0 otherwise. To further account for the order of recommendations,
we used (2) MRR (Mean Reciprocal Rank) score, which discounts the score
according to the position of the relevant recommendation. Second, we evaluated
precision and recall w.r.t. the complete set of parameters in each action, by
using the (3) Macro F1-score which is the harmonic mean of the precision

13

Multi-dataset Cross-DatasetBaseline MRR R@3 F1 MRR R@3 F1
RANDOM 0.03 0.05 0.3 0.03 0.05 0.3
NO-GEN. 0.55 0.65 0.78 0.52 0.62 0.77
REACT:DO 0.67 0.75 0.85 0.69 0.77 0.85
REACT:AO 0.73 0.8 0.89 0.72 0.79 0.89
REACT 0.76 0.84 0.9 0.75 0.81 0.91

Table 2: Baselines Results

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Coverage Rate

0.7

0.8

0.9
A
cc
ur
ac
y
S
co
re
s

MRR
R@3
Macro F1

Figure 3: Skylines of Coverage/Accuracy

and recall. We aggregated the results for all prediction cases, when the system
was able to produce at least 1 recommendation, and correspondingly measured
the (4) coverage rate, i.e. the proportion of cases where REACT produced
recommendations out of the total number of cases.

Evaluation scenarios. Recall that we captured analysis activity in 4 different
(yet related) datasets. We thus evaluated our solution in two scenarios: (1)
Multi-dataset scenario, where REACT utilizes analysis actions performed on all
datasets, and (2) Cross-dataset scenario, in which we examined if our solution
can provide recommendations for a user analyzing a given dataset, using only
sessions performed on the other datasets than the one she examines.

Parameters Selection We used a standard grid search consisting of more
than 11.5K unique settings. Table 1 depicts the system parameters and their
range. To choose an optimal configuration we calculated the skyline to obtain
a set of dominant configurations w.r.t. the coverage, and each of the accuracy
scores (R@3, MRR and F1). Figure 3 depicts the 2-dimensional skyline for
the coverage and each of the accuracy measures, in the multi-dataset scenario
(similar trends were examined for the cross-dataset experiment, thus omitted).

Naturally, there is a tradeoff between optimal coverage and predictive accu-
racy (See Section 4.5 for a discussion). For the experiments described next, we
selected a default configuration (See Table 1) that obtains an MRR, R@3 and
F1 scores of 0.76, 0.84, 0.9 (resp.) while retaining a coverage of 70%.

Baselines Comparison We next compare the predictive performance of our
system to several baselines.

Since, to our knowledge, previous work does not support the multi-facet IDA
setting that we consider, (see Section 5 for discussion), we do not benchmark
against them. The following baselines were used: (1) NO-GEN. This base-
line directly applies collaborative techniques, and recommends previous queries
from the log, without our generalization mechanism: For each case, it generates
recommendations by finding the top-3 similar n-contexts (using our context dis-
tance metric), then returns their corresponding actions. We use this baseline to
examine the need in our generalization process. (2) REACT:AO (actions only)

14

1 2 3 4 5 6 7
n-context Size

0.6

0.7

0.8

0.9

1.0

S
co

re

(a) PA: Context Size

10 20 30 40
Size of Top-k

0.6

0.7

0.8

0.9

1.0

S
co

re

(b) PA: Size of Top-k

Figure 4: Predictive Accuracy

0.2 0.4 0.6 0.8 1.0
Distance Threshold

0.2

0.4

0.6

0.8

1.0

E
xe

cu
tio

n
Ti
m
e
(S

ec
on

ds
)

(a) ET: Dist. Threshold

20000 40000 60000 80000 100000
Log Size

0

2

4

6

8

10

12

E
xe

cu
tio

n
Ti
m
e
(S
ec

on
ds

)

(b) ET: Log Size

Figure 5: Execution Times

and (3) REACT:DO (displays only) are variants of REACT, that use a restricted
version of the similarity metric which only considers the actions syntax/displays
summary (resp.) It is used to test whether considering both actions and displays
improves the predictive accuracy. (3) Random. This simple baseline generates
3 random actions and returns them as recommendations. This one is used to
test whether one can simply "guess" the next action. We compared the base-
lines in both the multi-datasets and the cross-datasets scenarios. For baselines
(2) and (3), we used the same parameters selection routine (as described earlier
in this section) to find their best configuration that yields above 70% coverage.

Table 2 depicts the Accuracy scores of all baselines, in the multi-dataset
and cross-dataset scenarios. First, we observe that the random baseline fails to
produce adequate recommendations, as the space of possible actions is rather
large. Second, we see that REACT outperforms both the actions only and dis-
plays only variant which ignores the results-set/action syntax similarity. Third,
we observe that the collaborative baseline is substantially inferior to REACT,
demonstrating the importance of our generalization process in the IDA diverse
environment. Importantly, observe that REACT obtained the best performance
also in the cross-dataset scenario, i.e. when it has to provide recommendations
only based on actions performed on different datasets.

4.3 Online Evaluation
We next demonstrate the effectiveness of REACT for assisting users, in practice.
Since modern IDA platforms provide a simplified interface that does not require
prior SQL/programming knowledge, our goal here is to assist inexperienced
analysts who are not domain experts, (as opposed to assisting domain experts

15

lacking SQL knowledge, as examined in [18, 20]).
To that end, we recruited 20 computer science graduate students, all familiar

with data analysis practices, but who are not experts in cyber security. The
participants were asked to perform two distinct analysis tasks on two (different)
datasets from the Honeynet challenges collection, such that in one task they are
unassisted, and in the other they are supported by REACT. In each task, the goal
was to identify the underlying security event hidden in the particular dataset.
For each participant, we measured the number of actions, and the amount of
time required to successfully analyze the dataset. To neutralize external effects
(e.g. which of the challenges was solved with/without REACT, and whether REACT
was used first or second), we considered all four combinations, splitting the users
into four equal size groups. Figure 6 depicts the average number of actions it
took users to complete the tasks, as well as the variance bar, w.r.t. the sessions
order (with REACT or unassisted), and the examined datasets.

We can see that in all cases, with REACT, the number of analysis actions
required to complete the task was reduced by approximately 50%. Correspond-
ingly, the overall analysis time was also reduced by an average of 30%, regardless
of the dataset and the order of tasks.

1st 2nd
Sessions Order

0

5

10

15

of
 A
ct
io
ns

A B
Dataset

Using REACT
Unassisted

Figure 6: Online Evaluation: With/Without REACT

4.4 Running Time & Scalability
Our next experiment examines the system’s response time as a function of the
log size. In order to examine performance over a larger analysis log than our real-
world dataset, we generated synthetic workloads of analysis sessions, following
[24], by first producing a set of random "seed" contexts and then constructing a
set of variants for each seed. This was done by randomly generating edit scripts
for the given tree up to a distance bound of 0.3.

Figure 5b displays the overall execution times of REACT (in green) for log
size of 10K to 100K. To further examine the efficiency of our contexts index
mechanism and similarity search strategy, we provide the execution time of
two variants of REACT, using alternative similarity search techniques: (1) the
traditional metric tree kNN search, and (2) Brute-force similarity search, which
retrieves the top-k contexts by performing a sequential pass on all n-contexts.

First, see that REACT - using the Bounded Top-k similarity search - outper-
forms the unbounded kNN by an average of 17%, and the brute-force by 71%.
For a moderately large log of 10K actions, REACT produces recommendations
in less than 0.5 seconds, while for a significantly larger one (100K) it takes 3.4
seconds, which, given the time the users need to examine the results display
before they consider the next action to perform, is a reasonable time (We mea-
sured a median time of 40 between consecutive queries). Also note that the
generalization process took no longer than 8 milliseconds, in all tested configu-
ration. Last, recall that our prototype is implemented in Python, and utilizes

16

only 6 cores. Hence execution times could be greatly improved if added more
processors or if using a compiled/JIT language such as C or Java.

4.5 System Parameters Effect
Last, we provide a deeper dive into the effect of the system parameters on the
predictive accuracy, and on execution times. In each experiment, we varied
one parameter while keeping the others in their default values (as in Table 1).
We provide here only a brief overview of our findings, and refer the reader to
Appendix [?] for further details.

Briefly, we observe the following trends: (1) The accuracy/coverage tradeoff:
n, k, and θ (the context size, top-k size, and distance threshold, resp.) control
the amount of "information" considered in the similarity comparison and in the
generalization process. For instance, choosing larger values of n and k dictates
REACT to retrieve a larger set of longer similar n-contexts. This naturally in-
creases accuracy, yet decreases the coverage, as there are fewer cases where a
large set of similar n-contexts can be found (See Figures 4a and 4b). (2) The
distance threshold θ has a similar effect on accuracy/coverage (namely, tighter
threshold induces higher accuracy, and respectively, lower coverage), however as
depicted in Figure 5a, it reduces execution times. This is due to the Bounded
Top-k strategy (described in Section 3.1) which employs the tight threshold for
pruning more dissimilar n-contexts.

5 Related Work
The design of recommender systems that utilize the query log to assist users
in data analysis has been the focus of a significant body of work. However,
although the analysis paradigm shifts towards modern web-based analysis plat-
forms, prior work mostly focuses on recommending explicit SQL/OLAP queries
and generally assumes that users are investigating the same database/cube.

For SQL, works like [20, 18] suggest query recommendation, with the primary
goal of assisting users lacking SQL knowledge to formulate queries w.r.t. their
information needs. Considering the current user’s past query sequence, they
find other users with similar sequences (that contain similar query "fragments"),
then return as recommendation the most suitable query (or query parts) from
the log. We argue, and empirically show in our experiments (Section 4.2), that
due to the diverse datasets environment as in nowadays IDA settings, presenting
users with past queries, exactly as appear in the log, is not optimal. We address
this by our actions generalization mechanism.

Similar techniques used for recommending OLAP MDX queries (See [22] for
a survey). Closer to our work is [6], providing OLAP query sequence recom-
mendations. The authors note that it is unlikely that two OLAP sessions share
identical queries, therefore suggest to first find the top most similar session in
the log (using a dedicated measure for OLAP sessions in [7]), and then adapt
it to the current user, by matching query fragments in both sessions. However,
they assume that there always exists a single session with high enough simi-
larity to the current one, rather than synthesizing a recommendation based on
an analysis of multiple similar sessions. Here too our experiments (Section 4.5)
show that in the IDA environment, best results were obtained when deriving rec-

17

ommendations from multiple contexts (top-25 yielded the best results in terms
of accuracy/coverage).

A complementary module that we use in REACT (as described in Section 3.2)
is data-driven recommendations (also called discovery-driven in the literature)
that we employ to instantiate action parameters. These tools use heuristic
notions of interestingness and employ them, e.g., to find data subsets conveying
interesting patterns ([25, 17]), choose high-utility drill-down parameters [19],
data visualizations [29], and data summaries [27].

In our work, we define the analysis context as the recent actions performed
thus far, and their results displays. Alternative notions of context (e.g. in
[12]) consider a user’s a-priori profile, comprises e.g. her role, analysis goals,
etc. Such information can be incorporated in our system by refining the n-
contexts similarity measure to also take the similarity of these parameters into
consideration.

Also, our framework draws similar lines to previous work in process min-
ing [30, 26], presenting recommendations based on high-level workflows ex-
tracted from application event logs. However, such works assume limited num-
ber of possible "activities" at a given state, which is not the case for the flexible
process of data analysis.

Last, recent techniques from transfer learning and embedding-based repre-
sentation learning [11] can be used to investigate how one may find a mapping
between different analysis scenarios, and transfer knowledge between different
analysis tasks and datasets. Harnessing such techniques to our context would
make an exciting future research.

6 Conclusion
This work presents REACT, a recommender system designated to assist users of
modern, web-based IDA platforms. REACT’s generic data model supports a range
of high-level action types, and can be easily extended to include new ones. Our
n-context similarity metric takes into account both the actions’ syntax and their
corresponding multi-layered displays. We synthesize next-action suggestions by
generalizing multiple actions executed in similar n-contexts, extracting abstract
actions that capture meaningful commonalities. Our experiments with real-life
data and users demonstrate the effectiveness of our solution. An additional
contribution of our work, is the real-life IDA logs acquired in our experiments
that may serve as a benchmark dataset for future work.

In future work, we intend on investigating tighter integration with data
driven tools that may lead to a better comprehension of the dataset at hand.
Similarly, process mining techniques may be used to encompass more elements
in the analysis context (e.g. mouse movements, time spent on examining result
sets, etc.), and embedding techniques for finding a comprehensive representation
of analysis contexts, displays, and actions.

References
[1] Biggorilla: Data integration in python. https://www.biggorilla.org/.

[2] REACT: Ida benchmark dataset. https://github.com/TAU-DB/REACT-IDA.

[3] Wireshark: Network protocl analyzer wiki. https://wiki.wireshark.org/.

18

[4] Z. Abedjan, L. Golab, and F. Naumann. Profiling relational data: a survey.
VLDBJ, 2015.

[5] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender
systems. TKDE, 2005.

[6] J. Aligon, E. Gallinucci, M. Golfarelli, P. Marcel, and S. Rizzi. A collaborative
filtering approach for recommending olap sessions. ICDSST, 2015.

[7] J. Aligon, M. Golfarelli, P. Marcel, S. Rizzi, and E. Turricchia. Similarity measures
for olap sessions. KAIS, 39, 2014.

[8] R. Amar, J. Eagan, and J. Stasko. Low-level components of analytic activity in
information visualization. In INFOVIS, 2005.

[9] N. Augsten, D. Barbosa, M. Böhlen, and T. Palpanas. Tasm: Top-k approximate
subtree matching. In ICDE, 2010.

[10] N. Augsten, M. Böhlen, and J. Gamper. The pq-gram distance between ordered
labeled trees. TODS, 2010.

[11] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and
new perspectives. TPAMI, 2013.

[12] C. Bolchini, E. Quintarelli, and L. Tanca. Context support for designing analytical
queries. In Methodologies and Technologies for Networked Enterprises, pages 277–
289. Springer, 2012.

[13] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query recommendations for
interactive database exploration. In SSDBM, 2009.

[14] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for
similarity search in metric spaces. In VLDB, 1997.

[15] S. Cohen. Indexing for subtree similarity-search using edit distance. In SIGMOD,
2013.

[16] M. M. Deza and E. Deza. Encyclopedia of distances. In Encyclopedia of Distances,
pages 1–583. Springer, 2009.

[17] M. Drosou and E. Pitoura. Ymaldb: exploring relational databases via result-
driven recommendations. The VLDB Journal, 22(6), 2013.

[18] M. Eirinaki, S. Abraham, N. Polyzotis, and N. Shaikh. Querie: Collaborative
database exploration. TKDE, 2014.

[19] M. Joglekar, H. Garcia-Molina, and A. G. Parameswaran. Interactive data explo-
ration with smart drill-down. In ICDE, 2016.

[20] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu. Snipsuggest: Context-
aware autocompletion for sql. VLDB, 2010.

[21] J. Liu, A. Wilson, and D. Gunning. Workflow-based human-in-the-loop data
analytics. In HCBDR, 2014.

[22] P. Marcel and E. Negre. A survey of query recommendation techniques for data
warehouse exploration. In EDA, pages 119–134, 2011.

[23] J. Pei and J. Han. Can we push more constraints into frequent pattern mining?
In KDD, 2000.

[24] S. Rizzi and E. Gallinucci. Cubeload: a parametric generator of realistic olap
workloads. In CAISE, 2014.

[25] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration of olap
data cubes. In EDBT, 1998.

[26] H. Schonenberg, B. Weber, B. Van Dongen, and W. Van der Aalst. Supporting
flexible processes through recommendations based on history. In ICBPM, 2008.

19

[27] M. Singh, M. J. Cafarella, and H. Jagadish. Dbexplorer: Exploratory search in
databases. EDBT, 2016.

[28] L. Spitzner. The honeynet project: Trapping the hackers. IEEE S&P, 2003.
[29] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and N. Polyzotis. Seedb:

efficient data-driven visualization recommendations to support visual analytics.
VLDB, 2015.

[30] S. Yang, X. Dong, L. Sun, Y. Zhou, R. A. Farneth, H. Xiong, R. S. Burd, and
I. Marsic. A data-driven process recommender framework. In KDD, 2017.

[31] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM, 1989.

A REACT: Prototype Implementation
In this Section we describe our prototype implementation of REACT, designed
to work with IDA interfaces supporting the following actions: (1) Basic rela-
tional actions such as FILTER PROJECT, SORT actions, as well as GROUP-BY and
AGGREGATE, (2) Data cube actions e.g. ROLL-UP and DRILL-DOWN, and (3) basic
ML based actions like CLUSTER DETECT-OULIERS. We first explain what informa-
tion is captured for these interface, then describe the context distance function,
and finally, we present the end-to end system workflow.

A.1 Prototype IDA Platform
In principle, the recommendation engine is an intermediate plug-in for any
web based IDA platform. As a proof of concept, we have developed our own
web-based analysis IDA (Python 3.4, AngularJS). REACT-UIcan be loaded with
any tabular dataset (and a corresponding OLAP hierarchy) provided by the
user, and support the following actions: Basic data retrieval actions - FILTER,
PROJECT, SORT, GROUP-BY; Data cube (OLAP) actions that alter the point-of-
view of the data tuples - ROLL-UP, DRILL-DOWN; and the mining operations
CLUSTER, and elemDETECT-OUTLIERS a basic data mining action.

In accordance, a display in REACT-UIcomprises three layers, denoted by d =
{LD, LG, LM}:

Raw data layer. It depicts the currently projected tuples and attribtues
from the original dataset. Instead of maintaining the entire results set, inspired
by data profiling tools, (see [4]) we keep a compact summary containing struc-
tural meta data. Formally, for a set of currently projected attributes A, the
raw data layer LD = {〈IaU , IaN , IaH〉|∀a ∈ A} consists a triplet of indices for
each column s.t. (1) IU indicates The number of unique values, (2) IN marks
the number of NULL values, and (3) IH stands for the normalized value en-
tropy, given for a categorical column a containing the unique values x1,2 , ..xn
asH = −

∑
x∈a

px log px

log |a| , where px denotes the frequency of the unique value x ∈ X.

For numeric columns, since they may be sparse, we first perform equi-width
binning, dividing the value range to B different buckets ranging from the min-
imal value to the maximal. The normalized entropy H = −

∑
b∈B

pb log pb

log |a| where

pb denotes the frequency of column’s values associated to the bucket b.

20

Granularity layer. This layer describes the level of abstraction for columns
that are grouped-by, or aggregated using some aggregation function (e.g., SUM,
COUNT, etc.). Given a set G of grouped/aggregated attributes, We denote
the granularity layer by LG = 〈{IaG|∀a ∈ G}, IC , IV 〉, where for an aggregated
column (1) IaG = l(a) , i.e. the position of the current level in the OLAP hier-
archy (when such hierarchy is absent, l(a) = 1). If the column a is aggregated,
then, IaG = IaH , where IH stand for the normalized value entropy (as defined
for numeric columns above). (2) IaC denotes the number of different groups and

(3) IaV marks their size-variance, i.e. IV =
IC∑
i=1

(pi − µ)2 where pi stands for the

probability for group i (i.e its size divided by the number of tuples), and µ is
the average group size in the current display.

Mining layer. describing currently presented outcomes of data mining
actions, by a multiset of labels representing particular data mining results (e.g.
clustering, outliers, association rules). Formally, we denote the mining layer by
M = {(oi, Li)}, associates each object oi ∈ O a (possibly empty) set of labels
Li ⊆ L, where L denotes the domain of data mining labels.

A.2 Distance metric for analysis contexts
Recall that an n-contexts, as a tree-based model comprises of the actions (edges),
their corresponding displays (nodes), and the particular order of execution (pre-
order traversal). To account for all available contextual information, recall that
we base our notion of context distance, denoted δ, on tree edit distance, using
two ground metrics for actions and displays, denoted δq, δd (resp) each in range
[0, 1].

We first detail the groun metrics for measuring the distance between actions,
and between displays then give the explicit context distance definition.

A.2.1 Action Distance

Our distance notions for analysis actions, compares two actions (namely, KVP
parameter sets) by using the actions partial order (See Section 2.2). Intuitively,
given two analysis (abstract) actions q̂1, q̂2, we calculate the distance according
to the length of the “paths” from the actions to their minimal generalization
MG({q̂1, q̂2}), compared to the length of their paths to the most general tem-
plate, (∗, ∗). Paths are defined on the DAG G = (V,E) induced by the actions
partial order, s.t. each node v ∈ V represensts an action, and an edge exists
between q̂1 and q̂2 iff q̂1 ≤ q̂2 and @q̂3 6= q̂1, q̂3 6= q̂2 s.t. q̂1 ≤ q̂3 ≤ q̂2. We denote
by |q̂1 q̂2| the size of the shortest path from template q̂1 to q̂2, namely their
“graph-distance”. Finally, we define the distance for any two actions δq(q̂1, q̂2)
by their graph-distance from their MG, divided by their graph-distance from
(∗, ∗). More formally:

δq(q̂1, q̂2) :=
|q̂1 MG(q̂1, q̂2)|+ |q̂2 MG(q̂1, q̂2)|

|q̂1 〈∗, ∗〉|+ |q̂2 〈∗, ∗〉|

A.2.2 Display Distance

Our notion of display distance considers the distance between each pair of correspond-
ing layers. We currently support three types of layers: (1) the data layer, containing
statistics about the curerntly projected tuples and attribuets, (2) Granularity layer

21

which describes the level of abstraction for columns that are grouped-by, or aggregated,
and (3) Mining layer that represents the results of ML actions. We present below the
explicit representation of each layer and its corresponding distance metric, then state
the overall display distance notion.

Data layer. Recall that for a set of currently projected attributes A, the data
layer LD = {〈IaU , IaN , IaH〉|∀a ∈ A} consists of three indices for each column: (1) IU
indicates The number of unique values, (2) IN marks the number of NULL values,
and (3) IH stands for the normalized value entropy, given for a categorical column
a containing the unique values x1,2 , ..xn as H = −

∑
x∈a

px log px
log |a| , where px denotes

the frequency of the unique value x ∈ X. For numeric columns, since they may be
sparse, we first perform equi-width binning, dividing the value range to B different
buckets ranging from the minimal value to the maximal. The normalized entropy
H = −

∑
b∈B

pb log pb
log |a| where pb denotes the frequency of column’s values associated to

the bucket b.
The data distance between data layers, denoted δ〈O,A〉(LD, L′D), gives higher scores

if the displays differ in their projected attributes, and lower scores for columns appear-
ing in both displays and that have similar statistics. Formally:

δ〈O,A〉(LD, L
′
D) := |A4A′|+

∑
a∈A∩A′

∑
j∈{U,N,H}

(
1

3
−

min(Iaj , I
′a
j)

3max(Iaj , I
′a
j)

)

where |A4A′| = |(A ∪A′) \ (A ∩A′)|.
We can show the following:

Proposition A.1 (δ〈O,A〉 is a proper distance metric).

The latter proposition holds, as one can see that δ〈O,A〉 is an addition of two proper
metrics - the Jaccard set distance, and the extended Jaccard distance for vectrs. This
yields a proper metric.

To scale the distance values between [0, 1] while preserving the metric characteris-
tics, we employ the Steinhaus transform [16]:

δ̂〈O,A〉(LD, L
′
D) =

2δ〈O,A〉(LD, L
′
D)

|A|+ |A′|+ δ〈O,A〉(LD, L′D)

Granularity layer. As explained earlier in this section, given a setG of grouped/ag-
gregated attributes, the granularity layer is denoted by LG = 〈{IaG|∀a ∈ G}, IC , IV 〉,
where for an aggregated column (1) IaG = l(a) , i.e. the height of the current level in
the OLAP hierarchy (when such hierarchy is absent, l(a) is always equal to 1). If the
column a is aggregated, then, IaG = IaH , where IH stand for the normalized value en-
tropy (as defined for numeric columns above). (2) IaC denotes the number of different

groups and (3) IaV marks their size-variance, i.e. IV =
IC∑
i=1

(pi−µ)2 where pi stands for

the probability for group i (i.e its size divided by the number of tuples), and µ is the
average group size in the current display.

Our granularity distance measure examines the differences in grouping and aggre-
gations currently applied. if a given column is grouped in both displays, the difference
in granularity (according to the OLAP hierarchy) is measured, and if aggregated in
both - we compare the normalized value entropy. Last, we compare the difference in
the number of present groups, and their size variance. We define first the distance
measure for the granularity indices, then depict the notion for two arbitrary granular-
ity layers. More formally, granularity distance function for a single pair of columns, is
defined as follows:

δg(I
a
G, I

′a
G) :=

{
1− min(IaG,I

′a
G)

max(Ia
G
,I′a

G
)

if IaG ∼= I ′ag

1 otherwise

22

Where IaG ∼= I ′ag iff column a is either grouped/aggregated in both corresponding
displays. Next, similarly to distance notion of the raw-data layer, we extend the above
formula for grouping sets G and G′ as:

δg(LG, L
′
G) := |G4G′|+

∑
a∈G∩G′

(δg(I
a
G, I

′a
G))

and scale, similarly to δ〈O,A〉 by: δ̂g(LG, L′G) :=
2δG(G,G′)

|G|+|G′|+δG(G,G′)
Last, we define the granularity distance w.r.t. the column-wise distance, the num-

ber of groups, and their size variance:

Definition A.2 (Granularity Distance). Given two granularity layers LG, L′G having
a grouping attribute sets G and G′ their distance is defined as:

δG(LG, L
′
G) :=

∑
j∈{V,C}

(
1

3
−

min(Ij , I
′
j)

3max(Ij , I ′j)
) +

δ̂g(LG, L
′
G)

3

Mining-labels Distance Recall that the mining layer, in our model, denoted by
M = {(oi, Li)}, associates each object oi ∈ O a (possibly empty) set of labels Li ⊆ L.
However, since two displays may contain different objects, rather than comparing the
mining labels attached to individual objects we consider the multiset consisting of
all mining labels attached to the objects of the display. We use standard multiset
definitions, thereby consider a multiset as a mapping m : L → Z≥0, where L is the
mining labels domain. m(x) represents the multiplicity of a label x ∈ L. Thus, to
measure the distance between two mining layers, we simply use a multiset variation
of the generalized Jaccard index. Formally:

Definition A.3 (Mining Labels Distance). Given two mining labels multisets M,M ′

with corresponding mappingsm,m′ and the labels domain L, their distance is calculated
as follows.

δM (M,M ′) := 1−
∑
x∈L

min{m(x),m′(x)}
max{m(x),m′(x)}

Example A.4. The mining settings for d5 and d10 convey clustering results. There are
3 clusters in d5 and only 2 in d10. Their mining distance is given by δM (M5,M10) =
1− 132+86+0

220+311+40
≈ 0.62.

Display Distance

Using the the distance notions defined above, we complete our definition for display
distance as a weighted average of the data, granularity, and mining distances.

Definition A.5 (Display Distance). Given two distinct displays d = (R,G,M), d′ =
(R′, G′,M ′) and a set of weights W = {wR, wG, wM} summing to 1, the distance
between d and d′ is defined by:
δd(d, d

′) := wRδ̂R(R,R
′) + wGδ̂G(G,G

′) + wMδM (M,M ′).

Weights may be adjusted according to the importance of each layer in a given
analysis UI. E.g., if a UI is focused on data mining, then wM should be set corre-
spondingly. As described in Section 4.2, the system parameters can be tuned by a grid
search, using an offline, predictive evluation. Last, we can show that δd is a distance
metric, and its value range is [0, 1]

23

A.2.3 n-context distance

Putting it all together, we plug the ground metrics δq,δd in the tree edit distance
notion obtaining the context distance metric as follow.

The distance between two n-contexts c1, c2 is defined as the minimal cumulative
cost of transforming c1 to c2 by using a sequence ES = es1, es2, ...esN of edit operations
on nodes or edges:delete/add a node or an edge, and alter the label of a node or an
edge. The cost of an edit operation γesi is defined as follows

γ(esi) :=

1 add/delete a node/edge
δq(e, e

′) alter edge
δd(v, v

′) alter node

Finally, the contexts distance is given by δ(T, T ′) = min{γ(ES)}.

B Additional Experiments
Following Section 4.5, in which we provide a brief overview regarding the effect of the
system parameters on the predictive accuracy and execution time, we now provide
further deatails. We first discuss the parameters effect on the predictive accuracy and
coverage, then on the system response times.

B.1 Predictive Accuracy
As described in Section 4.5, we examine the effect of each system parameter on the
accuracy measures and the coverage.Recall that in each experiment we varied one
parameter while keeping the rest at their default values, as stated in Table 1.

n-context. Figure 4a depicts the predictive accuracy and coverage as a factor
of n, the context limit. Observe that all accuracy scores increases as we increase the
n-context size, but stabilizes at n = 3. On the other hand, larger values of n have
negative effect on the coverage, because naturally there are fewer “very similar” large
n-contexts.

Size of the top-k set. As depicted in Figure 4b, when we increase k the accuracy
score improves (up to the point of k = 30 where they stabilize), while the coverage
decreases. This is expected, since the input size for the generalization procedure is
large enough, the system is able to find more meaningful and relevant abstract actions.
The coverage decreases, as there are fewer cases where a large set of similar n-contexts
can be found.

Distance threshold. Figure 7a depicts the results when relaxing the distance
threshold. Here we can see that a tighter (low) threshold leads to more accurate
results, yet at the cost of covering less cases. In the sequel, we also show that setting
a tighter threshold has a positive effect of running times due to our bounded top-k
search strategy.

Frequency threshold. As shown in Figure 7b, a threshold of 0.1 yields optimal
accuracy and coverage results. Naturally, higher thresholds decrease coverage and
accuracy, as less recommendations are produced.

Concluding, we can see that the parameters described above control how tight
are the similarity and frequency constraints of our system. Naturally, when finding
a large set of highly similar contexts the system will have optimal performance in
terms of predictive accuracy, at the cost of predictive accuracy. However, our default
configuration retain a fairly good coverage while obtaining high accuracy scores. In
the sequel, we show that REACT loaded with the default configuration, outperformed
all baselines in the offline evaluation, while proven effective in the online evaluating
using real users.

24

0.4 0.6 0.8 1.0
Distance Threshold

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
co

re

(a) Dist. Threshold

0.10 0.15 0.20 0.25 0.30
Frequency Threshold

0.6

0.7

0.8

0.9

1.0

S
co

re

(b) Freq. Threshold

Figure 7: Predictive Accuracy

0 10 20 30
Value of k

0.2

0.4

0.6

0.8

1.0

E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

Bounded Top-K
kNN
BruteForce

(a) Size of top-k

1 2 3 4 5 6 7
n-context size

0

1

2

3

4

5

6

E
xe

cu
tio

n
Ti
m
e
(S
ec

on
ds

)

(b) Contexts Size

Figure 8: Execution Times

B.2 Execution Times
Here also, at each experiment we varied one parameter while keeping the rest at their
default values as in Table 1. The default log size used is 10K.

We next overview the results. Recall that as baselines, we give the performance of
the our solution, while replacing the Bounded top-k strategy (Definition 3.2) with (1)
the original metric-tree unbounded kNN search, and (2) Bruteforce similarity search,
which compare the current n-context to all other n-contexts in the log.

Distance Threshold. Figure 5a depicts the execution times as a factor of the
distance threshold. We can see that tighten the threshold reduces the execution time
for REACT using the Bounded Top-K, while naturally the Unbounded kNN and Brute-
force are not effected. In our default setting (θ = 0.45), we obtain execution time
faster than the kNN by 24%.

n-context size. The results depicted in Figure 8b shows a rather linear increase in
execution times of REACT as we increase the value of n. While the Brute-force baseline
increases quadratically, due to the increasing cost of computing the edit distance for
larger trees, REACT’s time increase almost linearly. This effect stems from a more
efficient traversal of the metric tree, induced by the fact that the n-contexts metric
space is more evenly distributed.

Frequency threshold. While increasing the frequency threshold in our general-
ization process decreased execution times (as more candidate actions are infrequent,
thus pruned when performing FIM), it had a marginal effect on the overall execution
times (decrease in 0.8 millisecond). Graph omitted.

Size of the top-k set The results depicted in Figure 8a demonstrate a moderate
increase in execution time as we increase k. This effect is expected, as retrieving a
larger set of nearest neighbors requires a longer traversal in the metric tree. While
negligible w.r.t. the overall execution times, varying k also effects the performance
of the generalization process, as its input size increase. Indeed, we measured an

25

increase in the running time of the generalization, from 3.2milliseconds (at k = 10) to
4.6milliseconds (k = 40).

26

