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ABSTRACT
Exploratory Data Analysis (EDA), is an important yet challenging
task, that requires profound analytical skills and familiarity with
the data domain. While Deep Reinforcement Learning (DRL) is
nowadays used to solve AI challenges previously considered to
be intractable, to our knowledge such solutions have not yet been
applied to EDA.

In this work we present ATENA, an autonomous system capable
of exploring a given dataset by executing a meaningful sequence of
EDA operations. ATENA uses a novel DRL architecture, and learns
to perform EDA operations by independently interacting with the
dataset, without any labeled data or human assistance. We demon-
strate ATENA in the context of cyber security log analysis, where
the audience is invited to partake in a data exploration challenge:
explore real-life network logs, assisted by ATENA, in order to reveal
underlying security attacks hidden in the data.
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1 INTRODUCTION
Exploratory Data Analysis (EDA) is an important procedure in
any data-driven discovery process. It is ubiquitously performed
by data scientists and analysts in order to better understand the
nature of their datasets and to find clues about their properties and
underlying patterns.

EDA is known to be a difficult process, especially for non-expert
users, since it requires profound analytical skills and familiarity
with the data domain. Hence, multiple lines of previous work are
aimed at facilitating the EDA process[1, 3, 5, 9, 12], suggesting so-
lutions such as simplified EDA interfaces for non-programmers
(e.g., Tableau1, Splunk2), and analysis recommender-systems that

1https://www.tableau.com
2https://www.splunk.com
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assist users in formulating queries [5, 9] and in choosing data visu-
alizations [12]. Still, EDA is predominantly a manual, non-trivial
process that requires the undivided attention of the engaging user.

In recent years, artificial intelligence systems based on a DRL par-
adigm surpass human capabilities in a growing number of complex
tasks, such as playing sophisticated board games, autonomous driv-
ing, and more [6]. In such solutions, an artificial agent, controlled
by a deep neural-network, learns how to perform tasks merely by
trial and error, without any human data or guidance (e.g. labeled
samples, heuristics). While DRL is a promising, novel paradigm, to
our knowledge such solutions have not yet been applied to EDA.

In this work, we showcase ATENA, a prototype EDA “assistant”,
based on a DRL architecture. The goal of ATENA is to be able to
take a new dataset, and automatically “guide” the human analyst
through it, by performing an entire sequence of analysis operations
that highlight interesting aspects of the data. Importantly, ATENA
learns to perform meaningful EDA operations by independently
interacting with the dataset, and do not require training data or
any human assistance or supervision.

Typically in DRL, an artificial agent operates within a specific
predefined setting, referred to as an environment. The environment
controls the input that the agent perceives and the actions it can
perform: At each time t , the agent observes a state, and decides on
an action to take. After performing an action, the agent obtains a
positive or negative reward from the environment, either to encour-
age a successful move or discourage unwanted behavior. The goal
of the agent is learning how to obtain a maximal cumulative reward,
by leveraging the experience gained from repeatedly interacting
with the environment.

In the context of autonomous EDA, using a DRL based system
can be highly beneficial. For instance, as oppose to current solu-
tions for EDA assistance/recommendations that are often heavily
based on users’ past activity [5, 9] or real-time feedback [3], a DRL-
based solution has no such requirements since it trains merely
from self-interactions. Also, since its training process occurs of-
fline, a DRL-based system may be significantly more efficient in
term of running times, compared to current solutions that rely on
computing recommendations at interaction time [12].

However, designing a DRL solution for EDA poses theoretical
and practical challenges that we tackle in this work:

(1) Devise a machine-readable encoding for EDA opera-
tions and result sets. Typically in EDA, datasets are often large
and comprise values of different types and semantics. Also, EDA
interfaces support a vast domain of possible analysis operations
which may have a compound result sets, containing layers such
as grouping and aggregations. To facilitate the computerized in-
teraction with the dataset, we devise a DRL environment in which
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Figure 1: ATENA’s User Interface

EDA operations are parameterized (rather then using, e.g., a free-
form SQL interface) - the agent first chooses the operation type,
then the adequate parameters. The operation is then performed
on the dataset, and the agent receives a machine-readable encoded
representation of its results.

(2) Formulate a reward system for EDA operations. A cru-
cial component in any learning based system is an explicit and
effective loss/reward function, which is used in the optimization
process of the system’s model. To our knowledge, there is no such
explicit reward definition for EDA operations. We therefore design
a compound reward signal, encouraging the agent to perform a
sequence of analysis operations that are: (i) interesting - we em-
ploy a data-driven notion of interestingness; (ii) diverse from one
another - we use a distance metric between actions’ result sets, and
(iii) human understandable - we utilize a weak-supervision based
classifier [10] that employs a set of hand-crafted rules, and a small
set of EDA operations made by human experts as an exemplar.

(3) Design and implement a DRL agent architecture that
can handle thousands of different EDA actions. Typically in
DRL, at each state the agent chooses from a finite, small set of
possible actions. However, even in our simplified EDA environment
there are over 100K possible distinct actions. Since off-the-shelf
DRL architectures are inefficient in our case, we devise two novel
solutions for handling the large, yet parameterized action space,
and for choosing dataset tokens as action parameters.

A short paper describing our initial system design was recently
published in [8]. Based on that design, we developted a working
prototype of ATENA, presented in this work.

Demo Scenario. We demonstrate the ability of ATENA to effec-
tively explore datasets in the context of cyber security log analysis
(However, note that ATENA can explore datasets of any application
domain). The audience will be invited to partake in a data explo-
ration challenge: given a dataset of network traffic logs, the task
is to effectively explore it in order to shed light on an underlying
security attack that is hidden in the data (e.g. denial-of-service, port
scan). Using ATENA UI (see Figure 1) the audience will examine the
sequence of EDA operations performed by the artificial agent. We

show that the EDA process guided by ATENA is more effective and
faster, compared to a manual EDA interface.

2 ATENA SYSTEM DESCRIPTION
We first briefly overview basic concepts and notations for EDA
and Reinforcement Learning (RL), then describe the architecture of
ATENA w.r.t. the challenges and components described in the intro-
duction: (1) the EDA environment, comprising a machine-readable
encoding for analysis operations and result sets - Section 2.2, (2) a
novel reward signal for EDA operations - Section 2.3, and (3) the
DRL agent architecture with our solution for handling thousands
of different EDA actions - Section 2.4.

2.1 Technical Background
To set the ground for our work, we recall basic concepts and nota-
tions for EDA and RL.

The EDA Process. A (human) EDA process begins when a user
loads a particular dataset to an analysis UI. The dataset is denoted
by D = ⟨Tup,Attr ⟩ where Tup is a set of data tuples and Attr is
the attributes domain. The user then executes a series of analysis
operations (e.g., SQL queries) q1,q2, ..qn , s.t. each qi generates a
results display, denoted di . The results display often contains the
chosen subset of tuples and attributes of the examined dataset,
and may also contain more complex features (supported by the
particular analysis UI) such as grouping and aggregations, results
of data mining operations, visualizations, etc.

Reinforcement Learning. Typically, DRL is concerned with an
agent interacting with an environment. The process is often mod-
eled as a Markov Decision Process (MDP), in which the agent tran-
sits between state by performing actions. At each step, the agent
obtains an observation from the environment on its current state,
then it is required to choose an action. According to the chosen
action, the agent is granted a reward from the environment, then
transits to a new state. We particularly use an episodic MDP model:
For each episode, the agent starts at some initial state s0, then it
continues to perform actions until reaching a terminus state. The
utility of an episode is defined as the cumulative reward obtained
for each action in the episode. The goal of a DRL agent is learning
how to achieve the maximum expected utility.
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2.2 RL-EDA Environment
We developed a simple yet extensible RL-EDA environment (See
Figure 2), in which the actions are EDA operations and the states
are their corresponding results sets.

Each environment contains a collection of datasets - all sharing
the same schema, yet their instances are different (and indepen-
dent). In each episode (i.e., exploration session) of a predefined
length N , the agent is given a dataset D, chosen uniformly at ran-
dom, and is required to perform N consecutive EDA operations.
However, in order for a DRL agent to intelligently choose an EDA
operation, an effective, machine-readable encoding is required for
EDA operations and result sets, as described next.

EDA Operations Representation. In general, analysis operations
can be expressed using query languages (e.g. SQL), which is dif-
ficult for a machine agent to generate from scratch (to date). To
simplify, we therefore use parameterized analysis operations, that
allow the agent to first choose the operation type, then the adequate
parameters. Each such operation takes some input parameters and a
previous display d (i.e., the results screen of the previous operation),
and outputs a corresponding new results display. For the prototype
version of ATENA, we use a limited set of analysis operations (to be
extended in future work):
FILTER(attr ,op, term) - used to select data tuples that matches
a criteria. It takes a column header, a comparison operator (e.g.
=, ≥, contains) and a numeric/textual term, and results in a new
display representing the corresponding data subset (An example
FILTER operation is given at the bottom of Figure 2).
GROUP(д_attr ,aдд_f unc,aдд_attr ) - groups and aggregates the data.
It takes a column to be grouped by, an aggregation function (e.g.
SUM, MAX, COUNT, AVG) and another column to employ the
aggregation function on.
BACK() - allows the agent to backtrack to a previous display (i.e the
results display of the action performed at t − 1) in order to take an
alternative exploration path.

In a similar manner, more EDA operations (e.g. visualizations,
joins) can be integrated in ATENA.

Encoding Result Displays. Result displays are often compound,
containing both textual and numerical data which may also be
grouped or aggregated. However, a low-level numerical represen-
tation of the displays is required to maintain stability and reach
learning convergence. In our model, the agent observes at time t a
numeric vector, denoted d⃗t , that represents a compact, structural
summary of the results display dt obtained after executing an anal-
ysis operation at t − 1. d⃗t contains the following numerical values:
(1) three descriptive features for each attribute: its values’ entropy,
number of distinct values, and the number of null values. (2) one
feature per attribute stating whether it is currently grouped/aggre-
gated, and three global features storing the number of groups and
the groups’ size mean and variance.

In the first state in an episode, denoted s0, the agent observes
the numeric representation of the initial display d0, i.e., the dataset
instance before any action was taken.

dt
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Figure 2: DRL Environment for EDA

2.3 Reward signal for EDA operations
We devise a reward signal for EDA actions with three goals in mind:
(1) Actions inducing interesting results set should be encouraged. (2)
Actions in the same session should yield diverse results describing
different parts of the examined dataset, and (3) the actions should
be coherent, i.e. understandable to humans. Correspondingly, our
reward signal comprises the following components:
(1) Interestingness. In our prototype we employ the Compaction-
Gain [2] method to rank GROUP actions (which favors actions yield-
ing a small number of groups that cover a large number of tuples).
To rank FILTER actions we use a relative, deviation-based measure
(following [12]) that favors actions’ results that demonstrate signif-
icantly different trends compared to the entire dataset. However,
other measures from the literature can be used alternatively.
(2) Diversity.We use a simple method to encourage the agent to
choose actions inducing new observations of different parts of the
data than those examined thus far: We calculate the average of the
Euclidean distances between the observation vector d⃗t (represent-
ing the current display) and the vectors of all previous displays
obtained at time < t .
(3) Coherency. Ranking the coherency of an analysis operations is
performed using an external classifier. Given the datasets’ schema
and application domain we use a set of heuristic classification-rules
composed by domain experts (e.g. “a group-by employed on more
than four attributes is non-coherent” ), then employ Snorkel [10] to
build a weak-supervision based classifier that lifts these heuristic
rules to predict the coherency level of an analysis operation.

The overall reward is a weighted sum of the components above
(Weights are hyper-parameters of ATENA).

2.4 DRL Agent Architecture
Different than most DRL settings, in our EDA environment, the
action-space, comprising all possible EDA operations - is param-
eterized, very large, and discrete. Therefore, directly employing
off-the-shelf DRL architectures is extremely inefficient since each
distinct possible action is often represented as a dedicated node in
the output layer (see, e.g. [4, 6]). We therefore use a novel, twofold
solution to decrease the size of the network:
1. Efficient action selection. Our model utilizes the parametric
nature of the action space, and allows the agent to choose an action
type and a value for each parameter, rather than choosing a single
action out of the entire action domain. This design significantly
reduces the size of the output layer of the actor-network. To do so,
we change the actor-network architecture as follows (See Figure 3):
we add a “pre-output” layer, containing a node for each action type,
and a node for each of the parameters’ values. Then, by employing
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a “multi-softmax” layer, we generate separate probability distribu-
tions, one for the action types and one for each parameters’ values.
Finally, the action selection is done according to the latter proba-
bility distributions, by first sampling from the distribution of the
action types, then by sampling the values for each of its parameters.
2. Efficient selection of dataset values for FILTER “term” pa-
rameter. The parameter term of the FILTER operation may be
prohibitively large, even when the selection is restricted only to
tokens appearing in the current results display.

Therefore, to avoid having a dedicated node for each dataset
token in our “pre-output” layer, we use a simple, effective solution
that maps the individual tokens to a single yet continuous parameter.
The mapping is done according to the frequency of appearances of
each token in the current display. Finally, instantiating this param-
eter is done merely with two entries in our “pre-output” layer: a
mean and a variance of a Gaussian (See Figure 3). A numeric value is
then sampled according to this Gaussian, and translated back to an
actual dataset token by taking the one having the closest frequency
of appearance to the value outputted by the actor-network.

User Interface. ATENA features user interaction via a designated
UI (See Figure 1). First, the user chooses a dataset to explore. ATENA
then begins an automatic exploration process, allowing the user to
examine the results display of each EDA operation. At any time,
the user can pause the automatic exploration, and traverse back
and forth through the different displays.

3 DEMONSTRATION
We demonstrate how ATENA effectively assist users in exploring
datasets in the context of cyber security log analysis.
Demonstration datasets. We collected 4 datasets containing net-
work traffic logs, obtained from online cyber-security challenges
(e.g. the HoneyNet Project3). Each dataset contains a unique secu-
rity attack hidden in the data, such as a denial-of-service attack on
a Web server, port-scanning issued by an attacker on an internal
network IP range, etc. All datasets share the same schema of 12
attributes and contains between 8K to 200K tuples.
Implementation and Training.We implemented the DRL-EDA
environment as described in Section 2 and plugged the datasets
collection in it. We fixed the number of EDA operations to 10 per
episode. We then trained an ATENA agent, using the Advantage
Actor Critic (AAC) basic architecture with the Proximal Policy Op-
timization algorithm [11]. The model hyper-parameters (including
the reward weights) were tuned to obtain a maximal reward.
Engaging theAudience.Wewill beginwith an overview of ATENA
and essential concepts in cyber security, then invite the audience to
partake in a data exploration challenge: volunteers will be asked to
choose a dataset from our collection, and perform a data exploration
process in order to shed light on the underlying security attack
hidden in the data.

The participants will be split into two groups: one using ATENA,
where the exploration is performed automatically, and the second
will use a standard, manual EDA interface. Once the exploration is
completed, the participants will be asked to describe the timeline of
the security attack found in the data, and will be given a correctness

3https://www.honeynet.org
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Figure 3: ATENA’s Neural Network Architecture.
score. Then, in order to gauge the effectiveness of ATENA we will
compare the average correctness scores of the two groups, as well as
the overall exploration time. Finally, we will present a “behind the
scenes” view of the system, allowing the participants to examine the
reward obtained for each EDA operation performed in their session,
the machine-readable encoding of the result sets, information on
the training process of the system, and more.

Related Work. As mentioned above, a battery of tools have been
developed over the last years to assist analysts in interactive data
exploration[1, 3, 5, 7, 9, 12], by e.g. suggesting adequate visual-
izations [12], SQL/OLAP query recommendations [1, 5], and rec-
ommendations of general exploratory steps [9]. Particularly, [3]
presents a system that iteratively presents the user with interesting
samples of the dataset, based on manual annotations of the tuples.
Different from previous work, ATENA is a completely autonomous
agent, capable of self-learning how to intelligently perform a mean-
ingful sequence of EDA operations on a given dataset.

DRL is unanimously considered a breakthrough technology, used
in solving a growing number of AI challenges previously consid-
ered to be intractable (See [6] for a survey). Our system is backed
by state-of-the-art methods such as the Advantage Actor Critic
(AAC) model [6] and the Proximal Policy Optimization (PPO) algo-
rithm [11], used to optimize the training process.
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