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ABSTRACT
Deep Reinforcement Learning (DRL) is unanimously considered
as a breakthrough technology, used in solving a growing number
of AI challenges previously considered to be intractable. In this
work, we aim to set the ground for employing DRL techniques
in the context of Exploratory Data Analysis (EDA), an important
yet challenging, that is critical in many application domains. We
suggest an end-to-end framework architecture, coupled with an
initial implementation of each component. The goal of this short
paper is to encourage the exploration of DRLmodels and techniques
for facilitating a full-fledged, autonomous solution for EDA.

CCS CONCEPTS
•Mathematics of computing→ Exploratory data analysis; •
Theory of computation → Reinforcement learning;
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1 INTRODUCTION
Exploratory data analysis (EDA) is an important step in many data
driven processes. The purpose of EDA is to better understand the
nature of data and to find clues about its properties and quality. EDA
is known to be a difficult process, especially for non-expert users,
as it requires a deep understanding of the investigated domain as
well as the particular context and task at hand [4, 6].

A large body of previous work suggests means for facilitating the
EDA process. For example, novel analysis platforms (e.g. Tableau,
Kibana, and Splunk) feature simplified interfaces, suitable even for
users lacking knowledge in SQL and programing languages. Fur-
thermore, analysis recommender systems assist users in formulating
queries [1, 6], exploring a data cube [12], and choosing adequate
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Figure 1: RL-EDA Architecture

data visualizations [13]. However, EDA is still prominently manual,
and seems far from being fully automated.

Recently, artificial intelligence solutions based on deep neural
networks have demonstrated outstanding success, in matching,
and even outperforming humans at complex tasks such as play-
ing board games, driving a car, and conducting a natural language
dialogue [9]. In particular, many of these solutions employ unsuper-
vised Deep Reinforcement Learning (DRL), where a neural-network
based agent learns how to perform tasks merely by trial and error,
without any human data or guidance (e.g. labeled samples, heuris-
tics). While DRL algorithms successfully perform difficult tasks in a
continuously growing applications domain, to our knowledge such
solutions have not yet been applied to EDA.

In this work, we make an initial step towards constructing an in-
telligent, fully autonomous EDA "assistant", backed by a DRLmodel.
The goal of our EDA assistant is to be able to take a new dataset, and
automatically "guide" the human analyst through it, by performing
a coherent sequence of analysis operations that highlight interesting
aspects of the data. Moreover, it self-learns an optimal policy, by
independently interacting with a given dataset.

Typically in a DRL scenario, an autonomous agent is controlled
by a deep neural network, and operates within a specific predefined
setting, referred to as an environment. The environment controls
the input that the agent perceives and the actions it can perform:
At each time t , the agent observes a state, and decides on an action
to take, according to a self-taught policy . The action results in a
transition to a new state at time t +1. Additionally, after performing
an action the agent obtains a reward from the environment. Often,
a positive reward is granted for wanted behavior, e.g. winning a
game of chess, and negative reward is considered a "punishment",
e.g. a driving robot bumping into an obstacle. The goal of the DRL
agent is to learn a policy that maximizes the expected utility (i.e.
the cumulative reward for its actions).

Employing DRL techniques in the context of EDA is a theoret-
ical and practical challenge: First, one has to devise a machine-
compatible representation of the EDA environment, often compris-
ing of a large dataset with values of different types and semantics,
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a vast domain of possible analysis actions, and multifaceted result
"screens" that may contain features such as grouping and aggrega-
tions. Second, at least to our knowledge, there is no clear, explicit
reward definition for EDA actions and sessions. Engineering an
appropriate reward signal, that ensures that the agent’s actions are
interesting, diverse, and coherent to humans is a challenge. Third,
determining an adequate network architecture, input and output
values, as well as setting its hyper-parameters, are known as diffi-
cult tasks, often tailored to the application domain. Determining
these for the EDA settings is another challenge.

In this work we suggest an end-to-end DRL-EDA architecture,
coupled with an initial design of each component. The goal of this
short paper is to encourage the exploration of other approaches
and techniques, to facilitate EDA for AI agents. Our contribution
can be summarized as follows:

1. We define a generic yet extensible RL environment for EDA,
that allows the agent to perform analysis operations (actions) and
examine their results (states). At each state the agent observes a
concise numeric summary of the current results display. To interact
with the dataset, we devise a parameterized EDA action space,
where embedding techniques ([2, 10]) are employed to allow it to
choose dataset values as action parameters.

2. We formulate a compound reward function, which encourages
the agent to perform actions that are: (i) interesting - for that we
employ a data-driven notion of interestingness; (ii) diverse from one
another - we use a distance metric between actions’ result-sets, and
(iii) human understandable - for that we utilize real EDA sessions
made by human experts as an exemplar.

3. We sketch an end-to-end design of a DRL agent, utilizing
adaptations of state-of-the-art solutions for DRL where the action
space is parameterized ([8]), yet large and discrete ([5]).

In what comes next, we recall basic concepts and notations for
EDA and RL (Section 2), then describe the architecture and compo-
nents of our DRL-EDA framework (Section 3). We then overview
related work and outline future research directions (Section 4).

2 PRELIMINARIES
To set the ground for our work, we provide common notations from
the literature for EDA and for Reinforcement Learning (RL).

The EDA Process. A (human) EDA process starts when a user
loads a particular dataset to an analysis UI. The dataset is denoted
by D = ⟨Tup,Attr ⟩ where Tup is a set of data tuples and Attr is
the attributes domain. The user then executes a series of analysis
operations (e.g. SQL queries) q1,q2, ..qn , s.t. each qi generates a
results display, denoted di . The results display often contains the
chosen subset of tuples and attributes of the examined dataset,
and may also contain more complex features (supported by the
particular analysis UI) such as grouping and aggregations, results
of data mining operations, visualizations, etc.

Reinforcement Learning. As mentioned in Section 1, the RL pro-
cess describes the operations of an agent within an environment.
Typically, the process is modeled as aMarkov Decision Process (MDP)
that consists of: (1) a set S of all possible states, and (2) a set A of
possible actions; (3) A transition dynamics T (st+1 |st ,at ) that map
a state-action pair at time t onto a distribution of states at time
t + 1; (4) a reward function rt (st ,at ,st+1). The agent acts at time

t according to a policy π : S → p (a |S ). We use an episodic MDP
model: For each episode, exists an initial state s0, and the agent
reaches a terminate state sT after performing T actions. The utility
of an episode is defined as the cumulative (discounted) reward, i.e.
R =
∑T−1
t=0 γ

t rt+1 where γ ∈ (0,1] is a discount factor. The goal is to
learn an optimal policy, denoted π⋆ which achieves the maximum
expected utility.

3 DRL-EDA FRAMEWORK
In this section we overview our proposed RL framework for the
EDA problem setting. As a proof of concept, we focus on learning
within an EDA domain of cyber security, allowing the agent to
interact with 4 datasets comprising different network logs, using
a limited version of REACT-UI [11] - a modern, web-based EDA
interface used for research purposes.

First, we describe the RL environment designed for the context
of EDA, representing the EDA “world” in the eyes of the agent (Sec-
tion 3.1). We then define the reward signal (Section 3.2) and finally
describe the design of the agent’s deep neural networks (Section 3.3).
An illustration of the framework is provided in Figure 1.

3.1 EDA Environment
We developed a simple yet extensible RL environment, in which the
actions are EDA operations and the states are their corresponding
result sets. In each episode the agent operates on one out of four
datasets (selected uniformly at random). In our setting, all datasets
share the same schema (comprising 12 attributes), yet their content
is different (and independent). At time t , the agent performs a
single analysis operation. In general, analysis operations can be
expressed using query languages (e.g. SQL), which is difficult for
a machine agent to generate from scratch (to date). To simplify,
we therefore use parameterized analysis operations, that allow the
agent to intelligently choose the operation type, then the adequate
parameters. Each such operation takes some input parameters and a
previous display d (i.e., the results screen of the previous operation),
and outputs a corresponding new display. As our work presents a
proof of concept, we use a limited set of analysis operations (to be
extended in future work). The following actions are supported:
• FILTER(attr ,op,term) - used to select data tuples thatmatches
a criteria. It takes a column header, a comparison operator
(e.g. =,≥,contains) and a numeric/textual term, and results
in a new display representing the corresponding data subset.
• GROUP(д_attr ,aдд_f unc,aдд_attr ) - groups and aggregates
the data. It takes a column to be grouped by, an aggregation
function (e.g. SUM,MAX, COUNT, AVG) and another column
to employ the aggregation function on.
• BACK() - allows the agent to backtrack to a previous display
(i.e the results display of the action performed at t − 1) in
order to take an alternative exploration path.

An example FILTER operation is given at the bottom of Figure 1.
We next describe how the state observations and actions are

encoded for the RL agent.

State Representation. Result displays are often compound, con-
taining both textual and numerical data, that may also be grouped
or aggregated. However, a low-level numerical representation of
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the displays is required to maintain stability and reach learning
convergence. In our model, the agent observes at time t a numeric
vector, denoted d⃗t , that represents the results display dt obtained
after executing an analysis operation at t − 1. d⃗t contains 50 numer-
ical values representing: (1) 3 structural features for each attribute:
its value entropy, number of distinct values, and the number of null
values. (2) 1 feature per attribute stating whether it is currently
grouped/aggregated, and two global features storing the number
of groups and the groups’ size variance. At state s0 the agent ob-
serves the statistics of the initial display d0, representing the dataset
instance before any action was taken.

Action Representation. Inmany RL environments the action space
is small and discrete (e.g. in classic control problems, often the agent
can choose at time t if to move a step to the left or to the right),
which is hardly the case in our setting. As mentioned above, we use
a parameterized action space, in which most parameters (attributes,
filter operations, aggregation functions) are from a finite discrete
domain, but the parameter term, representing the value used in
the FILTER criteria, can be very large. Even when disregarding the
filter term parameter, the action space is of size 1K.

Our solution incorporates two state-of-the art techniques - we
use [8] to deal with the parameterized action space, and [5] to tackle
the large discrete space of the term parameter.

In accordancewith [8], we define the EDA action space as follows.
Let A={FILTER,GROUP,BACK} be the set of discrete action types.
Each a ∈ A has a domain of its parameters’ values Xa . An action is
a tuple (a,x ) where a ∈ A and x is an assignment for the parameters
Xa . For example, the EDA operation in Figure 1 is represented by
(FILTER, {‘Protocol’,=,“HTTP”}). The action space is thus defined
by A =

⋃
a∈A{(a,x ) |x ∈ X

a }.
As for representing the term parameter, that can theoretically

take any numeric/textual value from the domain of the specified
attribute, we employ the following solution, inspired by [5]. First,
we devise a low-dimensional vector representation for the dataset
values, and let the agent at time t generate such a vector. Next, as
the generated vector may not correspond to a valid term (i.e. among
the discrete action space), we index all term-vectors and perform a
nearest-neighbor lookup in order to output the valid action closest
to the one chosen by the agent.

To obtain a low-level representation of the data entities and to-
kens (i.e. all valid column values or a part thereof) we follow [2],
and use the well known embedding technique Word2Vec [10]. We
handle strings as well as numerical values as suggested in [2]. Per-
forming the lookup for the nearest valid term is done using a fast
approximate nearest-neighbor (ANN) index taken from [3].

3.2 Reward Signal Engineering
To our knowledge, there is no clear method for ranking analysis
sessions in terms of quality. We therefore design a reward signal
for the agent performing IDA sessions, with three goals in mind:
(1) Interestingness: Actions inducing interesting result-sets should
be encouraged. (2) Diversity: actions that yield a display that is
similar to the previous ones examined thus far should be penalized.
(3) Coherency: actions understandable to humans should induce a
higher reward. Correspondingly, our reward signal comprises the
following components:

(1) Interestingness. Many measures are suggested in previous
work that heuristically capture the interestingness of the output
(display) of a given EDA operation. Following [12, 13] we take a de-
viation based approach, in which displays that show different trends
compared to the entire dataset are considered more interesting. We
adapt the measure suggested in [13], originally for measuring the
interestingness of SQL group-by queries with a single aggregated
attribute, as follows: Given an action a at time t , we consider its
results display, denoted dt , that can currently be grouped-by some
column, or not: If dt is not currently grouped, we consider the value
probability distribution under each attribute attr in dt , denoted Pa .
Pa is defined as the relative frequency of the values in attr , that
sum to 1 (i.e. for each value v of attr in dt , pa (v ) is the probability
to randomly choose v). Then the interestingness of dt is measured
by comparing the value distribution (using, e.g., the KL Divergence
measure) of each attribute in dt to its equivalent in the original
dataset D (i.e., before any action is taken).

For the case that dt conveys grouping, the interestingness is
defined as follow: The grouping and aggregations settings in dt
are employed on the source dataset D, and the deviation (i.e. value
distribution distance) is compared only w.r.t. currently aggregated
attributes (rather than on all attributes, as above).

(2) Diversity. We want to encourage the agent to choose ac-
tions that induce new observations or different parts of the data
than those examined thus far. Since multiple sequences of analysis
operations may lead to the same results display, we discourage the
agent from choosing actions that yield similar result sets to the
ones already seen before. To do so, one can compare the similarity
between the last observed display dt to the previous ones. While a
handful of diversity definitions exist in previous work, mostly in
the domains of web search results and recommendations, we devise
a simple yet effective measure, adequate for our context: Since the
observation vector d⃗t is a numerical representation of display dt
(Recall from Section 3.1), we define the diversity reward to be the
sum of the squared Euclidean distances between d⃗t and the vectors
of all other displays obtained at time < t .

(3) Coherency. To ensure that the agent makes coherent analy-
sis actions, understandable to human analysts, we define a cumu-
lative coherency reward that corresponds to the agent’s ability to
predict actions of human analysts. To estimate this, we use EDA
sessions made by expert analysts as an exemplar. For our specific
setting, we recorded EDA sessions (actions as well as result dis-
plays) made by a group of expert analysts on the datasets used
in our environment1. The coherencey reward is thus defined as
follows: We consider the set of all displays that appeared in the ex-
perts’ sessions. For each such display, denoted du , we calculate the
observation vector d⃗u and use it as an input to our DRL agent. We
then examine if the particular action (type and parameters) chosen
by the agent corresponds to one of the EDA operations taken by
one of the human analysts after examining the display du Finally,
the coherency reward is defined by the count of all matches.

The overall reward for an action is a weighted sum of the com-
ponents above, where the coherency reward is cumulative - given

1Since our datasets are from the cyber security domain we recruited participants via
dedicated forums, network security firms, and volunteer senior students from the
Israeli National Cyber-Security Program.
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retroactively to each action after the episode (analysis session)
terminates. Additionally, we provide a negative reward for illegal
actions (such as grouping by an attribute already grouped, etc.),
and a neutral (0) reward for a BACK action - since it is only used
to enable the agent to explore different facets of the data that may
yield high interestingness scores.

3.3 DRL Agent Design
The agent is designed according to the actor-critic approach, a
preferable DRL model when the action space is extremely large [7].
In the Actor-Critic model the learning process is decoupled to two
different roles: the actor performs the action selection, and the critic
learns a value function, fromwhich the action policy is derived. Each
of these roles is performed using an independent neural network,
as follows: The actor-network, denoted µ with a parameters set θµ
takes as input a state s and outputs an action a in the format of
three output vectors (we explain below how these are translated
to a single EDA operation). The critic-network, denoted Q , with
parameters set θQ , takes as input a state s and the action vector a
and outputs a scalar Q-Value ,Q (s,a), which is the expected utility
(i.e., the cumulative discounted reward) of action a at state s .

Learning Process. For space constraints, we only provide a brief
overview of the process. The learning process of the RL agent
interweaves the input and output of both networks: At the end of
each episode, both networks update their internal parameters w.r.t.
loss functions, derived from the utility gained for the actions taken.

The critic-network parameters θQ are updated to optimize the
Q-function, by minimizing a loss function derived from the actual
utility gained at the end of each episode. Then, the critic-network
produces gradients that indicate how the actor’s actions should
be changed in order to increase the Q-Value. The actor uses these
gradients to update its parameters θµ , by minimizing a loss function,
determined by the cumulative distance between the actor’s action
and the approximated "optimal" actions.

Actions to EDA Operations. At each state t , the agent passes the
actor-network’s output action to the environment. The output ac-
tion comprises three parts: (1) A numeric score for each action type.
(2) A numeric score for each discrete parameter. (3) A continuous
term vector (recall from Section 3.1). The corresponding EDA oper-
ation is obtained as follows: First, the operation type is determined
according to the score in (1) that obtained the highest value. Then,
the corresponding discrete parameters (e.g. attr, agg_func) are deter-
mined from (2) in a similar manner. Last, if the chosen action type
is FILTER - a the output term vector is translated to a valid term,
using the nearest-neighbor lookup, as explained in Section 3.1.

4 CHALLENGES & RELATEDWORK
A battery of tools have been developed over the last years to assist
analysts in interactive data exploration[4, 6, 13], by e.g. suggest-
ing adequate visualizations [13] and SQL/OLAP query recommen-
dations [1, 6]. Particularly, [4] presents a system that iteratively
presents the user with interesting samples of the dataset, based on
manual annotations of the tuples. As opposed to previous work, we
propose a self-learning agent, capable of intelligently performing a
sequence of EDA operations on a given dataset.

However, our framework is merely an initial step towards fa-
cilitating a full-fledged, machine-learning based solution for EDA.
Future challenges and questions are as follows.

Evaluation and benchmark. As the implementation of our
framework is still a work in progress, an experimental evaluation
is called for. This raises the question of how one can devise bench-
mark tests, evaluating the interestingness, comprehensiveness, and
coherency of machine-generated analysis sessions.

Broad analysis capabilities. Supporting more types of anal-
ysis actions (e.g. visualizations, data mining), and the ability to
analyze datasets of different schemata and for different purposes is
a challenging future research.

Optimized representations. Recent techniques for embedding-
based representation learning (e.g. [10]) obtain tremendous success
in finding low-level representation for compound elements (e.g.
words, graph nodes, multimedia images), such techniques can be
used to investigate how one may find more comprehensive, yet
low-dimensional, representations in the context of EDA: e.g., for
analysis operations, dataset values, and entire displays.

Applications and use cases. The application possibilities for
an autonomous EDA agent are endless, since EDA is ubiquitous
in almost every domain. For example, combining it with state-of-
the-art question-answering systems may vastly expand the range of
questions that such agents can answer. Additionally, using the EDA
agent in the context of fraud-detection and cyber-security threat
analysis may also be of great importance.
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