
3 Lessons Learned from Implementing a Deep
Reinforcement Learning Framework for Data Exploration

Ori Bar El, Tova Milo, and Amit Somech

Tel Aviv University, Israel

ABSTRACT
We examine the opportunities and the challenges that stem
from implementing a Deep Reinforcement Learning (DRL)
framework for Exploratory Data Analysis (EDA). We have
dedicated a considerable effort in the design and the devel-
opment of a DRL system that can autonomously explore a
given dataset, by performing an entire sequence of analysis
operations that highlight interesting aspects of the data.

In this work, we describe our system design and develop-
ment process, particularly delving into the major challenges
we encountered and eventually overcame. We focus on three
important lessons we learned, one for each principal compo-
nent of the system: (1) Designing a DRL environment for
EDA, comprising a machine-readable encoding for analysis
operations and result-sets, (2) formulating a reward mecha-
nism for exploratory sessions, then further tuning it to elicit
a desired output, and (3) Designing an efficient neural net-
work architecture, capable of effectively choosing between
hundreds of thousands of distinct analysis operations.

We believe that the lessons we learned may be useful for
the databases community members making their first steps
in applying DRL techniques to their problem domains.

1. INTRODUCTION
Exploratory Data Analysis (EDA) is an important proce-

dure in any data-driven discovery process. It is ubiquitously
performed by data scientists and analysts in order to under-
stand the nature of their datasets and to find clues about
their properties, underlying patterns, and overall quality.

EDA is known to be a difficult process, especially for non-
expert users, since it requires profound analytical skills and
familiarity with the data domain. Hence, multiple lines of
previous work are aimed at facilitating the EDA process [5,
14, 17, 3], suggesting solutions such as simplified EDA in-
terfaces for non-programmers (e.g., Tableau1, Splunk2), and

1https://www.tableau.com
2https://www.splunk.com

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and AIDB 2019.
1st International Workshop on Applied AI for Database Systems and Appli-
cations (AIDB’19), August 26, 2019, Los Angeles, California, CA, USA.

analysis recommender-systems that assist users in formulat-
ing queries [5, 14] and in choosing data visualizations [17].
Still, EDA is predominantly a manual, non-trivial process
that requires the undivided attention of the engaging user.

In recent years, artificial intelligence systems based on a
Deep Reinforcement Learning (DRL) paradigm have sur-
passed human capabilities in a growing number of com-
plex tasks, such as playing sophisticated board games, au-
tonomous driving, and more [10]. Typically in such solu-
tions, an artificial agent is controlled by a deep neural net-
work, and operates within a specific predefined setting, re-
ferred to as an environment. The environment controls the
input that the agent perceives and the actions it can per-
form: At each time t, the agent observes a state, and de-
cides on an action to take. After performing an action, the
agent obtains a positive or negative reward from the envi-
ronment, either to encourage a successful move or discourage
unwanted behavior.

In this work, we examine the opportunities and the chal-
lenges that stem from implementing a DRL framework for
data exploration. We have dedicated a considerable effort in
the design and the development of a DRL system that can
autonomously explore a given dataset, by performing an en-
tire sequence of analysis operations that highlight interesting
aspects of the data. Since it uses a DRL architecture, our
system learns to perform meaningful EDA operations by in-
dependently interacting with multiple datasets, without any
human assistance or supervision.

At first sight, the idea of applying DRL techniques in
the context of EDA seems highly beneficial. For instance,
as opposed to current solutions for EDA assistance/recom-
mendations that are often heavily based on users’ past ac-
tivity [5, 14] or real-time feedback [3], a DRL-based solution
has no such requirements since it trains merely from self-
interactions. Also, since its training process is performed
offline, a DRL-based system may be significantly more effi-
cient in terms of running times, compared to current solu-
tions that compute recommendations at interaction time.

However, employing a DRL architecture for EDA also
poses highly non-trivial obstacles that we tackled through-
out our development process:

(1) EDA Environment Design: What information
to include and what to exclude? Since (to our knowl-
edge) DRL solutions have not yet been applied to EDA,
our first challenge was to design an EDA environment, in
which an artificial agent can explore a dataset. The envi-
ronment is a critical component in the DRL architecture as
it controls what the agent can “see” and “do”. In the con-

1



text of EDA, the agent can “do” analysis operations (e.g.
filter, group, aggregations) and “see” their result sets. How-
ever, in EDA, datasets are often large and comprise values
of different types and semantics. Also, EDA interfaces sup-
port a vast domain of analysis operations with compound
result sets, containing layers such as grouping and aggre-
gations. Correspondingly, it is particularly challenging to
design a machine-readable representation for analysis oper-
ations and result sets, that facilitates an efficient learning
process. For example, including too little information in
the results-encoding may not be informative enough for the
agent to make “correct” decisions, thereby hinder the learn-
ing convergence. On the other hand, including too much
information may negatively effect the generalization power
of the model, and encourage overfitting.

(2) Formulate a reward system for EDA opera-
tions. Another crucial component in any learning based
system is an explicit and effective reward function, which is
used in the optimization process of the system. As opposed
to most existing DRL scenarios (such as board games, video
games), to our knowledge, there is no such explicit reward
definition for EDA operations. Ideally, we want the agent to
perform a sequence of analysis operations that are both (i)
interesting, (ii) diverse from one another, and (iii) coherent,
i.e., human understandable. The challenge in formulating a
new reward signal is twofold: first, to properly design and
implement the reward components and achieve a positive,
steady learning curve. Second, even after successfully im-
plementing the reward components, the agent still demon-
strated unwanted behavior. Therefore, one has to further
analyze the reward mechanism and learning process, and
derive the appropriate adjustments.

(3) Design a deep network architecture that can
handle thousands of different EDA Operations. Typ-
ically in Deep Reinforcement Learning (DRL), at each state
the agent chooses from a finite, small set of possible ac-
tions. However, even in our simplified EDA environment
there are over 100K possible distinct actions. Experiment-
ing first with off-the-shelf DRL architectures (such as DQN
and A3C [10]) that assume a small set of possible actions, we
observed that the learning process does not converge. Also,
applying dedicated solutions from the literature (e.g., [6, 4])
resulted in unstable and ineffective learning. Therefore, the
challenge here is to utilize the structure of the action-space
in designing a novel network architecture that is able to pro-
duce a successful, converging learning process.

A short paper describing our initial system design was
recently published in [13]. In this work, we revisit that initial
design, contemplating on the ideas that indeed worked in
practice and the ideas that were abandoned or modified. We
believe that the lessons we learned during the development
process may be useful for the databases community members
making their first steps in applying DRL techniques to their
problem domains.

Paper Outline. We start by recalling basic concepts and
notations for EDA and DRL (Section 2). Then, in Section 3
we examine our development process and provide insights
regarding each of the “lessons” we learned: EDA environ-
ment design (Section 3.1), Reward Signal Formulation (Sec-
tion 3.2), and Neural-Network Construction (Section 3.3).
Last, we conclude and review related work in Section 4.

dt
!"

Agent

Results Display dt

at+1

Term-Vectors Index

Term vector  

t
!
= (0.42,0.1,...)

FILTER(‘Protocol’,=,”SSL”)

EDA Operation

Reward Calculator

“HTTP”

Reward rt

Experts EDA 
Sessions 

Environment

Encoding

Action 
Translator

dt
!"
= (0.81,6,0,0,0.42,...)

at+1 = {(0.71,0.06,0.4),(1.14,..),...}

Figure 1: DRL Environment for EDA

2. TECHNICAL BACKGROUND
We recall basic concepts and notations for EDA and DRL.
The EDA Process. A (human) EDA process begins when

a user loads a particular dataset to an analysis UI. The
dataset is denoted by D = 〈Tup,Attr〉 where Tup is a set
of data tuples and Attr is the attributes domain. The user
then executes a series of analysis operations q1, q2, ..qn, s.t.
each qi generates a results display, denoted di. The results
display often contains the chosen subset of tuples and at-
tributes of the examined dataset, and may also contain more
complex features (supported by the particular analysis UI)
such as grouping and aggregations, results of data mining
operations, visualizations, etc.

Reinforcement Learning.
Typically, DRL is concerned with an agent interacting

with an environment. The process is often modeled as a
Markov Decision Process (MDP), in which the agent transits
between state by performing actions. At each step, the agent
obtains an observation from the environment on its current
state, then it is required to choose an action. According to
the chosen action, the agent is granted a reward from the
environment, then transits to a new state. We particularly
use an episodic MDP model: For each episode, the agent
starts at some initial state s0, then it continues to perform
actions until reaching a terminus state. The utility of an
episode is defined as the cumulative reward obtained for
each action in the episode. The goal of a DRL agent is
learning how to achieve the maximum expected utility.

3. LESSONS FROM DEVELOPING A DRL
SYSTEM FOR EDA

We describe our system development process, particularly
delving into the major obstacles and challenges we encoun-
tered and eventually overcame. Each lesson summarizes our
insights regarding a main component of the DRL system.

3.1 Lesson #1: DRL Environment Design
The first challenge we encountered in developing a DRL

system was to design a computerized environment for EDA.
The principal idea, as we also described in [13], was to

define the environment’s action-space as the set of allowed
EDA operations, and its state-space as the overall set of
possible result-displays. The environment contains a col-
lection of datasets - all sharing the same schema, yet their
instances are different (and independent). In each episode
(i.e., EDA session) of length N , the agent is given a dataset
D, chosen uniformly at random, and is required to perform
N consecutive EDA operations. Figure 1 provides a high-
level illustration of the proposed DRL-EDA environment.

The crux of environment design, from our perspective, is
twofold: (1) How to represent and control what the agent
can “do”? For instance, should we allow it an expressive,

2



flexible interface such as free-form SQL? (2) How to properly
encode what the agent is “seeing”? Namely, how to devise a
machine-readable representation of result-displays, that are
often large and complex?

How to define the EDA action-space. Our initial idea for
EDA operations representation, was to simply use an estab-
lished query language for structured data (e.g., SQL, MDX),
mainly since these languages are highly expressive, and fre-
quently used in both research and industry for the past sev-
eral decades. However, generating structured queries is a
known difficult problem, currently in the spotlight of ac-
tive research areas such as question answering over struc-
tural data [18] and natural language database-interfaces [8].
In both these domains, existing works rely on (1) the exis-
tence of a sufficiently large annotated queries repository, and
(2) the fact that useful information (such as the WHERE
clause) can be extracted from the natural-language input
question. In the context of EDA, both these requirements
are irrelevant, as the system is expected to generate queries
without any human reference.

Correspondingly, our EDA environment supports param-
eterized EDA operations, allowing the agent to first choose
the operation type, then the adequate parameters. Each
such operation takes some input parameters and a previous
display d (i.e., the results screen of the previous operation),
and outputs a corresponding new results display. In our
prototype implementation, we use a limited set of analysis
operations (to be extended in future work):
FILTER(attr, op, term) - used to select data tuples that

match a criteria. It takes a column header, a comparison
operator (e.g. =,≥, contains) and a numeric/textual term,
and results in a new display representing the corresponding
data subset (An example FILTER operation is given at the
bottom of Figure 1).
GROUP(g attr, agg func, agg attr) - groups and aggregates

the data. It takes a column to be grouped by, an aggregation
function (e.g. SUM, MAX, COUNT, AVG) and another
column to employ the aggregation function on.
BACK() - allows the agent to backtrack to a previous dis-

play (i.e the results display of the action performed at t−1)
in order to take an alternative exploration path.

While complex queries (comprising joins, sub-queries, etc.)
are not yet supported, the advantages of our simple action-
space design are that (1) actions are atomic and relatively
easy to compose (e.g., there are no syntax difficulties). (2)
queries are formed gradually (e.g., first employ a FILTER op-
eration, then a GROUP by some column, then aggregate by
another, etc.), as opposed to SQL queries where the entire
query is composed “at once”. The latter allows fine-grained
control over the system’s output, since each atomic action
obtains its own reward (See Section 3.2).

Nevertheless, even in our simplified EDA environment the
size of the action space reaches hundreds of thousands of ac-
tions, which poses a crucial problem for existing DRL mod-
els. We explain how we confronted this issue in Section 3.3.

How to define the environment’s states representation.
The agent decides which action to perform next mostly based
on the observation-vector it obtains from the environment at
each state. Therefore, the information, as well as the way it
is encoded in the observation-vector, is of high importance.

Intuitively, the observation should primarily represent the
results display of the last EDA operation performed by the
agent. However, result displays are often compound, con-
taining both textual and numerical data which may also be
grouped or aggregated. Therefore, the result displays can-
not be passed to the agent “as-is”. The main challenges in
designing the observation-vector are thus (i) to devise a uni-
form, machine-readable representation for results-displays
and (ii) to identify what information is necessary for the
agent to maintain stability and reach learning convergence.

i. Result-displays representation. We devised a uni-
form vector representation for each results display, repre-
senting a compact, structural summary of the results. It
comprises: (1) three descriptive features for each attribute:
its values’ entropy, number of distinct values, and the num-
ber of null values. (2) one feature per attribute stating
whether it is currently grouped/aggregated, and three global
features storing the number of groups and the groups’ size
mean and variance.

While this representation ignores the semantics of a results-
display (as it contains only a structural summary), a similar
approach was taken in an EDA next-step recommender sys-
tem [14] developed by a subset of the authors of this work.
It is empirically demonstrated in [14] that such representa-
tion of result displays is useful for predicting the next-step
in an EDA session, and also for transfer-learning, i.e., bet-
ter utilization of EDA operations performed over different
datasets (exploiting structurally similar displays).

ii. Include session information. Indeed, when using
just the encoded vector of the last results-display, our pro-
totype implementation reaches learning convergence (i.e.,
maximizing the cumulative reward as described in Section 3.2).
The orange line in Figure 2 depicts the learning curve of the
agent when using a single encoded results-display as an ob-
servation vector. However, see that the learning process is
rather slow and fluctuating, which may imply that the in-
formation encoded in the observation is insufficient for the
agent to obtain a steady learning rate. Now, the question is

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Num. of Training Steps 1e6

0

20

40

60

Av
er

ag
e 

Re
wa

rd

Display+Step No.
+2 Prev. Displays
Last Display

Figure 2

what additional information should be encoded in the ob-
servation? Intuitively, if the agent is required to perform a
sequence of operations, it may be useful to encode informa-
tion about the entire session, rather than just the current
display. However, encoding too much information may slow
down and even hinder the learning process.

We attempted two approaches for including session infor-
mation: First, we tried to include the agent’s current step-
number (using one-hot encoding). This is a rather small
yet informative addition to the observation. The blue line
in Figure 2 depicts the learning curve when using this ap-
proach. At first sight it may seem that adding the step
number to the observation is useful, as the blue learning
curve converges much faster and to a higher value than the

3



orange one (describing the single-display observation). How-
ever, when further analyzing this approach - we noticed that
regardless of the given dataset, the output EDA operations
sequence hardly varied. This means that it overfits the step-
number, ignoring the rest of the information provided.

Our third (and successful) idea was to form a more elab-
orate observation that includes, in addition to the current
display vector, the vectors of the last two previous displays
(Here also, a similar approach was taken in our EDA next-
step recommender system [14] and was proven useful). While
this approach triples the size of the original observation vec-
tor, the convergence of the learning curve (see the green line
in Figure 2) is faster than the first approach (single display),
much more stable and reaches the highest average reward.

Lesson #1 - insights summary: (1) limiting the en-
vironment’s supported actions to simple, atomic operations
allows for a controllable, easier to debug DRL environment.
(2) The kind of information encoded in the observation vec-
tor is critical to obtain a converging learning curve.

3.2 Lesson #2: Reward Signal Development
Since EDA is a complex task, designing an effective reward

mechanism that elicit desired behavior is quite a challenge.
In the absence of an explicit, known method for ranking
analysis sessions, we developed a reward signal for EDA ac-
tions with three goals in mind: (1) Actions inducing inter-
esting result sets should be encouraged. (2) Actions in the
same session should yield diverse results describing different
parts of the examined dataset, and (3) the actions should
be coherent, i.e. understandable to humans.

We next discuss two major obstacles that we tackled:
(i) effectively implementing the reward signal’s components,
and (ii) further tuning the reward signal to effectively en-
courage desired behavior.

Reward Signal Implementation. The cumulative reward
is defined as the weighted sum of the following individual
components. The first two components, interestingness and
diversity were rather straightforward to implement. It was
particularly challenging to develop the coherency reward.

(1) interestingness. To rank the interestingness of a
given results-display we use existing methods from the liter-
ature. We employ the Compaction-Gain [2] method to rank
GROUP actions (which favors actions yielding a small num-
ber of groups that cover a large number of tuples). To rank
FILTER actions we use a relative, deviation-based measure
(following [17]) that favors actions’ results that demonstrate
significantly different trends compared to the entire dataset.

(2) Diversity. We use a simple method to encourage
the agent to choose actions inducing new observations of
different parts of the data than those examined thus far:
We calculate the Euclidean distances between the display-

vector ~dt (representing the current results display dt) and
the vectors of all previous displays obtained at time < t.

(3) Coherency. Encouraging coherent actions is a rather
unique task in the field of DRL. For example, when playing a
board game such as chess or Go, the artificial agent‘s objec-
tive is solely to win the game, rather than performing moves
that make sense to human players. Yet, in the case of EDA,
the sequence of operations performed by the agent must be
understandable to the user, and easy to follow. We first

briefly explain our original implementation and the reason
it failed, then explain the changes that we made to develop
a working solution.

Our initial idea for implementing a coherency reward was
to utilize EDA sessions made by expert analysts as an ex-
emplar (We already had a collection of relevant exploratory
sessions, from the development of [14]). Hence, we devised
an auxiliary test to evaluate the agent’s ability to predict ac-
tions of human analysts. Intuitively, if the agent performs
similar EDA operations to the ones employed by human
users at the same point of their analysis sessions - then the
agent’s actions are coherent. The coherency test was per-
formed after each training batch, then a delayed reward, cor-
responding to the coherency score obtained in the test, was
granted uniformly to all actions in the following episodes.

The orange line in Figure 3 depicts the learning curve,
particularly for the prediction-based coherency reward. See
that the obtained coherency reward remains close to 0 even
at the end of the training process. We believe that the fail-
ure to learn stems from two reasons: first, the states of the
human sessions examined in the auxiliary test were often
unfamiliar states that the agent did not encounter during
training. Second, the coherency reward was divided uni-
formly over all actions, hence the learning agent was not able
to “understand” which particular actions contribute more to
the coherency reward, and which do not.

0.00 0.25 0.50 0.75 1.00
Num. of Training Steps 1e6

0

1

2

Co
he

re
nc

y 
Re

wa
rd

Weak-Supervision
Prediction-Based

Figure 3

We then developed a second (successful) coherency signal,
based on weak-supervision. Learning from the flaws of the
prediction-based solution, we built a classifier for ranking
the degree of coherency of each action (rather than provide
an overall score, distributed to all actions uniformly). How-
ever, since a training dataset containing annotated EDA ac-
tions does not exist, we employed a weak-supervision based
solution. Based on our collection of experts’ sessions, we
composed a set of heuristic classification-rules (e.g. “a group-
by employed on more than four attributes is non-coherent”),
then employed Snorkel [15] to build a weak-supervision based
classifier that lifts these heuristic rules to predict the co-
herency level of a given EDA operation. The coherency
classifier is then used to predict the coherency-level of each
action in the agent’s session, and grants it a corresponding
reward. The green line in Figure 3 depicts the learning curve
w.r.t. the weak-supervision coherency reward. Indeed, this
time the learning process steadily converges.

Tuning the reward signal. Using the combined reward sig-
nal described above, our model achieved a positive, con-
verging learning curve for each component. However, when
inspecting the outputted sequences of EDA operations the
results were still not satisfying, i.e., the agent displayed un-
wanted behavior. For example, we noticed the two following

4



issues: (i) the agent largely prefers to employ GROUP opera-
tions and hardly performs FILTER operations. (ii) The first
few EDA operations in each session were considerately more
suitable, compared to the later actions in the same session.

To understand the origin of such behavior, we performed
an extensive analysis of the reward signal and learning pro-
cess. We discovered, indeed, that both these issues stem
from the reward signal distribution, and can be easily cor-
rected. As for the first issue, Figure 4 shows the cumulative
reward granted for each action type (green bars), in com-
parison to the proportional amount it was employed by the
agent (blue bars). Interestingly, GROUP operations are, on

Back Filter Group
Action Type

0.0

0.2

0.4

Ac
tio

n 
Pr

op
or

tio
n Proportion

Mean Reward

0.0

0.5

1.0

1.5

2.0

M
ea

n 
Re

wa
rd

Figure 4

average, more rewarding than FILTER operations, which ex-
plains the agent’s bias towards GROUP operations. Examin-
ing the second issue, Figure 5 depicts the averaged reward
obtained at each step in a session (with a translucent error
band). It is visibly clear that the first few steps obtain a
much larger reward than the later ones.

1 2 3 4 5 6 7 8 9 10
Step Number

0.6

0.8

1.0

1.2

1.4

1.6

Re
wa

rd

Figure 5

To overcome both issues, we corrected the reward sig-
nal by (i) modifying the cumulative signal by adding more
weight to FILTER actions, and (ii) adding a monotone de-
creasing coefficient to the signal, w.r.t. the step number.

Lesson #2 - insights summary: When designing a
reward mechanism from scratch, one has to first make sure
that a positive learning curve can be obtained with the devel-
oped signal. Once this is done, it is also required to analyze
the agent’s behavior, reward distribution and learning pro-
cess, then adjust the signal to elicit desired behavior.

3.3 Lesson #3: Network Architecture Design
As oppose to most DRL settings, in our EDA environ-

ment the action-space is parameterized, very large, and dis-
crete. Therefore, directly employing off-the-shelf DRL archi-
tectures is extremely inefficient since each distinct possible
action is often represented as a dedicated node in the output
layer (see, e.g. [4, 10]).

Fully- Connected Layers and ReLU Activations

State

Action 
Types

Group 
Attr.

Aggr.
Attr.

Aggr. 
Func.

Filter 
Attr.

Filter 
Oper.

Filter 
Term 
Mean

Filter 
Term 

Variance

Softmax 
Sampling

Softmax 
Samp. Gaussian Sampling Output 

Layer

Pre-
Output
Layer

Softmax 
Samp.

Softmax 
Samp.

Softmax 
Samp.

Softmax 
Samp.

Figure 6: Network Architecture

Our first architecture was based on the adaptation of two
designated solutions from the literature ([6, 4]). While this
approach did not work as desired, after analyzing its per-
formance we devised a second, successful architecture based
on a novel multi-softmax solution. We next briefly outline
both architectures.3

Architecture 1: Forced-Continuous. Briefly, [6] sug-
gests an architecture for cases in which the actions are pa-
rameterized yet continuous. Rather than having a dedicated
node per distinct action - the output layer in [6] comprises
a node for each action type, and a node for each parameter.
While this approach dramatically decreases the network’s
size, the output of each node is a continuous value, which
is not the case in our EDA environment (the parameters
have a discrete values domain). Therefore, to apply this
approach in our context we formed a continuous space for
each discrete parameter, by dividing the continuous space
to equal segments, one for each discrete value. Then, to
handle the value selection for the term parameter of the
FILTER operation, that can theoretically take any numer-
ic/textual value from the domain of the specified attribute,
we followed [4] which tackles the action selection from a
large yet discrete space. The authors suggest first devising
a low-dimensional, continuous vector representation for the
discrete values (the dataset tokens, in our case), then let-
ting the agent generate such a vector as part of its output.
Encoding the dataset tokens was done following [1] using an
adaptation of Word2Vec [12].

The blue line in Figure 7 depicts the learning curve when
using the solution mentioned above. While the convergence
rate is unstable, it eventually reaches a rather high reward.
However, its main drawback is that when performing a ran-
dom shuffle in the way the values are discretized (e.g., shuffle
the attributes’ order) - a much lower reward is obtained (as
depicted by the orange line in Figure 7). Namely, the per-
formance of this model is greatly affected by the particular
discretization of the continuous parameters space.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Num. of Training Steps 1e6

0

20

40

60

Av
er

ag
e 

Re
wa

rd

Forced-Cont.
Forced-Cont. (Shuff.)
Multi-Softmax

Figure 7

Architecture 2: Multi-Softmax. Our novel architec-
ture utilizes the parametric nature of the action space, and
allows the agent to choose an action type and a value for each
parameter. This design reduces the size of the output layer
to (approximately) the cumulative size of the parameters’
value domains. While the output layer is larger than that of

3Both are based on the Actor-Critic paradigm (See [10]).

5



Architecture 1, it is still significantly smaller than in the off-
the-shelf solutions, where each parameters’ instantiation is
represented by a designated node. Architecture 2 is depicted
in Figure 6. Briefly, we use a “pre-output” layer, contain-
ing a node for each action type, and a node for each of the
parameters’ values. Then, by employing a “multi-softmax”
layer, we generate separate probability distributions, one for
action types and one for each parameter’s values. Finally,
the action selection is done according to the latter probabil-
ity distributions, by first sampling from the distribution of
the action types (a ∈ A), then by sampling the values for
each of its associated parameters.

Then, to handle the “term” parameter selection, we uti-
lize a simple solution to map individual dataset tokens to
a single yet continuous parameter. The continuous term-
parameter, computed ad-hoc at each state, represents the
frequency of appearances of the dataset tokens in the cur-
rent results-display. Finally, instantiating this parameter is
done merely with two entries in our “pre-output” layer: a
mean and a variance of a Gaussian (See Figure 6). A nu-
meric value is then sampled according to this Gaussian, and
translated back to an actual dataset token by taking the
one having the closest frequency of appearance to the value
generated by the network.

The green line in Figure 7 depicts the learning curve when
using Architecture 2. Indeed, it converges much faster than
Architecture 1, obtains a higher reward on average and,
most importantly, it is not depended on a particular order
of the parameters’ values.

Lesson #3 - insights summary: Handling a DRL en-
vironment with a large, discrete action space is a non-trivial
challenge. In our case, we utilized the parametrized nature
of the actions to design an effective network architecture.

4. CONCLUSION & RELATED WORK
A battery of tools have been developed over the last years

to assist analysts in data exploration [7, 5, 17, 3, 14], by e.g.
suggesting adequate visualizations [17] and SQL query rec-
ommendations [5]. Particularly, [3] presents a system that
iteratively presents the user with interesting samples of the
dataset, based on manual annotations of the tuples. Differ-
ent from these solutions, our DRL based system for EDA
is capable of self-learning how to intelligently perform a se-
quence of EDA operations on a given dataset, solely by au-
tonomous self-interacting.

DRL is unanimously considered a breakthrough technol-
ogy, with a continuously growing number of applications
and use cases [10]. While it is not yet widely adopted in the
databases research community, some recent works show the
incredible potential of DRL in the context of database ap-
plications. Interestingly, while these works present solutions
for different problem domains, inapplicable to EDA, they
mention some similar DRL-related difficulties to the ones
described in our work. For example, [9] describes a DRL-
based scheduling system for distributed stream data process-
ing. Although work scheduling and EDA are completely
different tasks, similar DRL challenges are tackled in [9],
e.g., designing a machine-readable encoding for the states (in
their case, describing the current workload and scheduling
settings), and handling a large number of possible actions
(assignment of tasks to machines). Additionally, [16] and
[11] present prototype systems for join-order optimization

for RDBMS. These two short papers also encounter DRL-
related challenges, such as designing a state-representation
(that can effectively encode join-trees and predicates), for-
mulate a reward signal (based on query execution cost mod-
els), and more. We therefore believe that the lessons and
insights obtained throughout our system development pro-
cess may be useful not only for EDA system developers yet
to many more database researchers experimenting with DRL
to solve other databases problems.

Acknowledgements. This work has been partially funded
by the Israel Innovation Authority, the Israel Science Foun-
dation, Len Blavatnik and the Blavatnik Family foundation,
and Intel® AI DevCloud.

5. REFERENCES
[1] R. Bordawekar, B. Bandyopadhyay, and O. Shmueli.

Cognitive database: A step towards endowing relational
databases with artificial intelligence capabilities. arXiv
preprint arXiv:1712.07199, 2017.

[2] V. Chandola and V. Kumar. Summarization - compressing
data into an informative representation. KAIS, 12(3), 2007.

[3] K. Dimitriadou, O. Papaemmanouil, and Y. Diao. Aide:
An active learning-based approach for interactive data
exploration. TKDE, 2016.

[4] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag,
T. Lillicrap, J. Hunt, T. Mann, T. Weber, T. Degris, and
B. Coppin. Deep reinforcement learning in large discrete
action spaces. arXiv preprint arXiv:1512.07679, 2015.

[5] M. Eirinaki, S. Abraham, N. Polyzotis, and N. Shaikh.
Querie: Collaborative database exploration. TKDE, 2014.

[6] M. Hausknecht and P. Stone. Deep reinforcement learning
in parameterized action space. arXiv preprint
arXiv:1511.04143, 2015.

[7] R. E. Hoyt, D. Snider, C. Thompson, and S. Mantravadi.
Ibm watson analytics: automating visualization,
descriptive, and predictive statistics. JPH, 2(2), 2016.

[8] F. Li and H. Jagadish. Constructing an interactive natural
language interface for relational databases. PVLDB, 8(1),
2014.

[9] T. Li, Z. Xu, J. Tang, and Y. Wang. Model-free control for
distributed stream data processing using deep
reinforcement learning. PVLDB, 11(6), 2018.

[10] Y. Li. Deep reinforcement learning: An overview. arXiv
preprint arXiv:1701.07274, 2017.

[11] R. Marcus and O. Papaemmanouil. Deep reinforcement
learning for join order enumeration. In aiDM, 2018.

[12] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and phrases
and their compositionality. In NIPS, 2013.

[13] T. Milo and A. Somech. Deep reinforcement-learning
framework for exploratory data analysis. In aiDM, 2018.

[14] T. Milo and A. Somech. Next-step suggestions for modern
interactive data analysis platforms. In KDD, 2018.

[15] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and
C. Ré. Snorkel: Rapid training data creation with weak
supervision. PVLDB, 11(3), 2017.

[16] I. Trummer, S. Moseley, D. Maram, S. Jo, and
J. Antonakakis. Skinnerdb: regret-bounded query
evaluation via reinforcement learning. PVLDB, 11(12),
2018.

[17] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and
N. Polyzotis. Seedb: efficient data-driven visualization
recommendations to support visual analytics. PVLDB,
8(13), 2015.

[18] V. Zhong, C. Xiong, and R. Socher. Seq2sql: Generating
structured queries from natural language using
reinforcement learning. arXiv preprint arXiv:1709.00103,
2017.

6


