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ACKGROUND CONTEXT: While several models for predicting independent ambulation early

after traumatic spinal cord injury (SCI) based upon age and specific motor and sensory level find-

ings have been published and validated, their accuracy, especially in individual American Spinal

Injury Association [ASIA] Impairment Scale (AIS) classifications, has been questioned. Further,

although age is widely used in prediction rules, its role and possible modifications have not been

adequately evaluated until now.

PURPOSE: To evaluate the predictive accuracy of existing clinical prediction rules for indepen-

dent ambulation among individuals at spinal cord injury model systems (SCIMS) Centers as well

as the effect of modifying the age parameter from a cutoff of 65 years to 50 years.

STUDY DESIGN: Retrospective analysis of a longitudinal database.

PATIENT SAMPLE: Adult individuals with traumatic SCI.

OUTCOME MEASURES: The FIM locomotor score was used to assess independent walking

ability at the 1-year follow-up.

METHODS: In all, 639 patients were enrolled in the SCIMS database between 2011 and

2015, with complete neurological examination data within 15 days following the injury and a

follow-up assessment with functional independence measure (FIM) at 1-year post injury. Two

previously validated logistic regression models were evaluated for their ability to predict

independent walking at 1-year post injury with participants in the SCIMS database. Area

under the receiver operating curve (AUC) was calculated for the individual AIS categories

and for different age groups. Prediction accuracy was also calculated for a new modified LR

model (with cut-off age of 50).

RESULTS: Overall AUC for each of the previous prediction models was found to be consis-

tent with previous reports (0.919 and 0.904). AUCs for grouped AIS levels (A+D, B+C) were

consistent with prior reports, moreover, prediction for individual AIS grades continued to

reveal lower values. AUCs by different age categories showed a decline in prognostication

accuracy with an increase in age, with statistically significant improvement of AUC when

age-cut off was reduced to 50.
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Table 1a

The five-variable clini

Age ≥65
Motor score L3

Motor score S1

Light touch score L3

Light touch score S1

Total

L, lumbar; S, sacra
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CONCLUSIONS: We confirmed previous results that former prediction models achieve strong

prognostic accuracy by combining AIS subgroups, yet prognostication of the separate AIS groups

is less accurate. Further, prognostication of persons with AIS B+C, for whom a clinical prediction

model has arguably greater clinical utility, is less accurate than those with AIS A+D. Our findings

emphasize that age is an important factor in prognosticating ambulation following SCI. Prediction

accuracy declines for older individuals compared with younger ones. To improve prediction of

independent ambulation, the age of 50 years may be a better cutoff instead of age of 65. © 2020

Elsevier Inc. All rights reserved.
Keywords: A
ging; Functional outcomes; Injury severity; Logistic regression; Prediction; Prognosis; Traumatic spinal cord

injury; Walking recovery
cal prediction rule by van Middendorp et al.

Range of test scores Weighted coefficient Minimum score

0−1 �10 �10

0−5 2 0

0−5 2 0

0−2 5 0

0−2 5 0

�10

l.
Introduction

After sustaining a spinal cord injury (SCI), individuals

want to know if they will be able to regain the ability to

walk. Walking is a priority among persons with SCI across

all degrees of severity, chronicity, and age [1]. Particularly

in recent years, when more injuries are classified as neuro-

logically incomplete, the potential for such recovery is

greatly enhanced.

For many years, determining who will walk after SCI

was based on work by Hussey and Stauffer that concluded

that functional ambulation requires strength of bilateral hip

flexor scores of ≥3/5 and knee extensor ≥3/5 in at least one

leg [2]. A limitation of this approach was that it described

the motor status of the individual at one year as opposed to

being able to predict early after injury future walking func-

tion. More recently, clinical prediction rules have been

described for estimating the likelihood of independence in

walking at one year post injury based upon motor and sen-

sory status early after injury [3,4]. The benefit of these mod-

els is that they have few predictors and rely on clinical

measures that are already commonly collected. van Mid-

dendorp et al. [3] established a prediction rule based on

clinical measures obtained within the first 15 days post

injury. This was validated on the European Multicenter

Study on Human Spinal Cord Injury (EM-SCI) database of

492 persons with SCI with 1-year ambulation outcomes

using the Spinal Cord Independent Measure (SCIM)[5] of

the ability to walk independently indoors (scores 4−8). The
five predictors included age (<65 years versus ≥65 years),

L3 and S1 motor and light touch scores (see Table 1a).

Area under the receiver-operating-characteristics [ROC]

curve (AUC) of this clinical prediction rule was high
(AUC=0.956, 95% confidence interval [CI]: 0.936−0.976).
Prediction accuracy was comparable (though marginally

less) in external validation studies [6,7].

Observation of a strong correlation between the L3 and

S1 motor score, as well as L3 and S1 sensory scores, led to

development of a more concise clinical prediction rule by

Hicks et al. [4], using data from the Rick Hansen Spinal

Cord Injury Registry, a Canadian multicenter SCI database.

Walking outcomes at one year post injury were estimated

based on measures acquired using the international stand-

ards for neurologic classification of spinal cord injury [8]

within 15 days of admission with acute SCI. For this predic-

tion rule, “independent walking” was defined based on a

functional independence measure (FIM) [9] locomotor

score of 6 or 7, and a mode of locomotion of either “walk”

or “both walk and wheelchair.” The three predictors for this

rule were age at injury (<65 years versus ≥65 years), L3

motor score and S1 dermatome light touch sensory score

(see Table 1b). The discriminative ability was high

(AUC=0.866; 95% CI 0.816−0.916).
Further, Hicks et al. observed that their study population

mostly consisted of persons with American Spinal Injury

Association (ASIA) Impairment Scale [AIS] A and D [4],

most likely presenting a bias on the models’ predictive abil-

ities as long-term outcomes of these individuals are gener-

ally predictable. Subsequently, Phan et al. [10] showed that

prognostication of individuals with AIS B+C, for whom

outcome prediction is most useful, was less accurate than

that of AIS A+D. Moreover, existing models also fail to

prognosticate ambulatory outcomes for those with AIS A

and AIS D separately, a failure that was masked due to the

merger of the two populations in previous work [10].
Maximum score
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Table 1b

The three-variable clinical prediction rule by Hicks et al.

Range of test scores Weighted coefficient Minimum score Maximum score

Age ≥65 0−1 �10 �10 0

Motor score L3 0−5 2 0 10

Light touch score S1 0−2 5 0 10

Total �10 20

L, lumbar; S, sacral.
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An additional concern with previous prediction models

[3,4] relates to the selected cut-off point for age. Other stud-

ies have suggested that dichotomizing patients at younger

age may improve outcomes [11,12]. We hypothesized that

the age of 50 would be a better cut off for prediction as

opposed to 65 years; Moreover, we expected a decline in

predictive accuracy for older individuals with SCI. This

study was set to explore modifications of prediction rules

using data from the United States Spinal Cord Injury Model

Systems (SCIMS) database to allow for greater prognosti-

cation of walking recovery in persons with acute SCI.

Methods

Analysis cohort

Data were obtained from participants enrolled in the

SCIMS database and admitted between January 2011 and

September 2015. Individuals injured after September 2015

were not included as in October 2016 FIM data collection

at the 1-year follow up was discontinued. All participants

provided informed consent according to protocols approved

by the institutional review boards of the SCIMS at which

they enrolled.

Case inclusion criteria for the current investigation

included: at least 18 years old at the time of injury, diag-

nosed with injuries with AIS grades of A through D at

admission, had a complete neurological examination within

15 days following the injury, and had a follow-up assess-

ment (with FIM mobility status) at least 1-year post injury.

Prediction model

Baseline assessment of severity and level of injury were

completed according to the international standards for neu-

rologic classification of spinal cord injury. To calculate the

prediction rule score for our sample data, we first used the

five prognostic variables that were outlined by van Midden-

dorp et al. [3] and then calculated the score based on the

three-variable rule described by Hicks et al. [4] (See Tables

1a and 1b).

Outcome measures

The primary functional outcome was defined as the abil-

ity to walk independently at 1-year post injury. Similar to

previous studies [4,10], we used the locomotion component
of FIM to predict independent walking ability. Independent

ambulation was defined as mode of locomotion=“walk” or

“both walk and wheelchair” with score of 6 or 7, that is,

modified or complete independence, respectively. Only

individuals who had a FIM assessment ≥1 year following

the injury were included.

Statistical analysis

Using both the van Middendorp and Hicks prediction

rules, we calculated the score for each participant and per-

formed a logistic regression (LR) analysis to investigate the

effect of each prediction rule on the probability of walking.

An ROC curve was plotted to assess the AUC in each

model in order to discriminate between patients who can

walk independently after one year and those who cannot.

For comparison with the Phan et al. analysis [10], we

calculated the classification accuracy, sensitivity, specific-

ity and AUC of the five-variable model, according to the

individual AIS categories (A, B, C, and D) as well as AIS A

+D and AIS B+C.

Subsequently, we plotted ROC curves of the different

age groups and compared the AUC among them. An LR

analysis with a new age cutoff was performed to recalibrate

the coefficients of the prediction rule and additional ROC

curves were plotted. F1-scores were calculated for the exist-

ing and the modified prediction models. We also calculated

the AUC of a modified model that uses age as a continuous

linear parameter.

Relationships between variables were quantified using

Spearman correlation coefficients. Associations between

categorial variables were tested by chi-square and Fisher’s

exact tests. A p value of <.05 was considered statistically

significant. All statistical analyses were performed using

SPSS (version 23), except for comparison of ROC curves,

which was performed with MedCalc (version 19.0.5).

Results

Cohort description

Of the 2,634 individuals admitted to a SCIMS center

during the study period, a total of 639 patients with SCI ful-

filled the inclusion criteria. The clinical characteristics of

the individuals included in our cohort and a comparison

with the reference models, that is, van Middendorp and

Hicks, are described in Table 2. Clinical characteristics of



Table 2

Baseline admission characteristics compared with the reference models

Analysis cohort (n=639) van Middendorp et al. (n=492) Hicks et al. (n=278)

Setting 14 SCIMS centers 19 European SCI centers 31 Canadian SCI centers

Inclusion period January 2011 to September 2015 July 2001 to June 2008 2004 to 2014

Sex (male) 506 (79%) 381 (77%) 221 (79.5%)

Mean age at injury in years (SD, range) 43 (17, 18−91) 44 (17, 18−92) 44 (18, 18−85)
Age ≥ 65 years at time of injury 60 (9.4%) 77 (15.6%) 38 (13.6%)

Age ≥ 50 years at time of injury 232 (36.3%)

Mean timing of examination after injury in days (SD, range) 9.8 (3.3, 1−15) 7.7 (4.7, 0−15)*
Severity of initial neurological deficit

AIS A 210 (33%) 240 (49%) 113 (41%)

AIS B 74 (12%) 66 (13%) 30 (11%)

AIS C 126 (20%) 76 (15%) 55 (20%)

AIS D 229 (36%) 110 (22%) 74 (27%)

Tetraplegia 378 (59%) 271 (55%)

Outcome measure FIM SCIM FIM

Independent walker at 1 year 303 (47%) 200 (41%) 123 (44%)

Data are n (%) unless otherwise stated. AIS, American Spinal Injury Association (ASIA) Impairment Scale; FIM, functional independence measure;

SCIM, Spinal Cord Independence Measure; SD, standard deviation

* Assessed in the full cohort before exclusion criteria(n=1,282)
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individuals included were mostly similar to those excluded

from the study. One-third of the sample included were clas-

sified as AIS A, while 36% were AIS D. Within the group

of individuals excluded from our cohort, 42% were AIS A

compared with 22% with AIS D. Within the 1,995 individu-

als that were excluded from the study, 10.6% were older

than 65, a nonsignificant change from the 9.4% of those

included. However, within the exclusion group we noted

that an early follow-up (<12 months) was associated with

an older age (p<.0001): 15% of the 545 individuals with an

early follow-up were ≥ 65 years, while only 8.9% of the

remaining 1,450 individuals with late follow-up were older

than 65.

Because the effect of age on ambulation was a key ques-

tion, differences in demographics and clinical presentation

based on age are presented (Table 3). Older individuals

were more likely to have less severe injuries (AIS D) and

sustain a cervical injury regardless of age cutoff. They were

also more likely to be independent walkers at the 1-year
Table 3

Comparison between individuals <65 and ≥65, <50 and ≥50

Age < 65 (n=579) Age

Sex (male) 467 (81%) 39

Mean age at injury in years (SD) 39.9 (14) 73.2

Mean timing of examination after injury in days (SD) 9.8 (3.2) 9.7

Severity of initial neurological deficit

AIS A 203 (35%) 7

AIS B 73 (13%) 1

AIS C 117 (20%) 9

AIS D 186 (32%) 43

Tetraplegia 330 (57%) 48

Independent walker at 1 year 263 (45%) 40

Mean timing from injury to follow-up (SD) 521 (120) 500

Data are n (%) unless otherwise stated. AIS, American Spinal Injury Associati
follow-up. Gender differences were noted between age

groups when 65 years was used as a cutoff but not when

50 years was used as a cutoff.
Prediction models

The AUC of the van Middendorp model based on our

data was 0.919 (95% CI 0.896−0.941), compared with

0.956 in the original van Middendorp’s analysis [3]. High

correlations between L3 and S1 motor scores (0.908 corre-

lation) and L3 and S1 light touch sensory score (0.782 cor-

relation) were observed. The AUC of the Hicks three-

variable model based on our data was 0.904 (95% CI 0.880

−0.929), compared with 0.889 in the original study [4].

A concordance matrix with cutoff 0.5 was used to assess

the degree of agreement between the predicted and the true

walking status. The overall classification accuracy, sensitiv-

ity and specificity generated by each model are summarized

in Table 4.
≥ 65 (n=60) p Value Age < 50 (n=407) Age ≥ 50 (n=232) p Value

(65%) .012 332 (82%) 174 (75%) .09

(6) 32.3 (10) 61.7 (8)

(3.5) 9.9 (3.2) 9.7 (3.3)

<.0001 <.0001
(12%) 174 (43%) 36 (15.5%)

(2%) 59 (14%) 15 (6.5%)

(5%) 72 (18%) 54 (23%)

(72%) 102 (25%) 127 (55%)

(80%) .002 202 (50%) 176 (76%) <.0001
(67%) .001 174 (43%) 129 (56%) .002

(113) 521 (118) 515 (122)

on (ASIA) Impairment Scale; SD, standard deviation.



Table 4

Concordance matrix for the van Middendorp and Hicks models, cutoff 0.5

Predicted outcome (n)

Model Actual outcome (n) Not walk Walk OCA(%) Sensitivity(%) Specificity(%)

van Middendorp Not walk 288 48 86.1 86.5 85.7

Walk 41 262

Hicks Not walk 285 51 85 85.1 84.8

Walk 45 258

OCA, overall classification accuracy.

Table 6
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Prediction errors (van Middendorp model)

In our analysis of the vanMiddendorp model, there were 89

individuals (13.9%) that were not predicted correctly (Table 4).

In reviewing the characteristics of these individuals, we noted

that the type of prediction error (false positive or false nega-

tive) was associated with age: In the younger age group, which

consisted of 45 individuals <50 years, 69% were false nega-

tives, that is, predicted not to be able to walk independently

but actually regained this ability. Within the remaining group

of 44 individuals ≥50 years, 77% were false positives, that is,

predicted to walk but did not.

A chi-square analysis confirmed that individuals

<50 years of age were more prone to be erroneously pre-

dicted not to walk, while individuals ≥50 were more likely

to be erroneously predicted to walk (p< .0001).
AUC of the van Middendorp and Hicks model for the different age

categories

van Middendorp Hicks

Age N (%) AUC (95% CI) AUC (95% CI)

18−29 206 (32%) 0.948 (0.913−0.984) 0.945 (0.904−0.972)
30−39 93 (15%) 0.947 (0.902−0.991) 0.949 (0.882−0.984)
40−49 108 (17%) 0.942 (0.900−0.983) 0.929 (0.863−0.969)
≥50 232 (36%) 0.855 (0.802−0.908) 0.815 (0.757−0.872)

AUC, area under the receiver operating characteristics curve; CI, confi-

dence interval.
AIS classification analysis (van Middendorp model)

LR analyses based on the van Middendorp model were

performed individually for each of the AIS classifications

(A, B, C, and D), as well as for the AIS A+D and B+C sub-

groups. Analyses of the Hicks model showed strikingly

similar results and are therefore not presented.

A concordance matrix with cutoff set at 0.5, the overall

classification accuracy, sensitivity and specificity, as well
Table 5

Concordance matrices (cutoff 0.5) and predictive accuracy for AIS A, B, C, and

dorp logistic regression model

Predicted

AIS grade Actual outcome Cannot walk Walk OCA (

A (n=210) Cannot walk 195 3 96.2

Walk 5 7

B (n=74) Cannot walk 48 5 81.1

Walk 9 12

C (n=126) Cannot walk 35 23 66.7

Walk 19 49

D (n=229) Cannot walk 1 26 88.2

Walk 1 201

A+D (n=439) Cannot walk 200 25 92

Walk 10 204

B+C (n=200) Cannot walk 87 24 72.0

Walk 32 57

AIS, American Spinal Injury Association (ASIA) Impairment Scale; AUC, ar

val; OCA, overall classification accuracy.
as the AUC, were calculated separately for each subgroup

(Table 5). Similar to the analysis from Phan et al. [10], the

prediction accuracy for AIS A+D was superior to AIS B+C

(p<.0001).
Age classification analysis

The individuals in our cohort were classified according

to the different age groups (by decade starting at age 18),

similar to work performed elsewhere [13]. AUCs were cal-

culated separately for each subgroup (Table 6).

Prediction accuracy of independent ambulation in both

models was highest for the three younger age groups. In an

analysis of the van Middendorp model on our SCIMS data,
D individually, and AIS A+D and B+C cohorts, based on the van Midden-

%) Sensitivity (%) Specificity (%) AUC (95% CI)

58.3 98.5 0.899 (0.775−1.0)

57.1 90.6 0.809 (0.685−0.932)

72.1 60.3 0.702 (0.609−0.795)

99.5 3.7 0.657 (0.528−0.786)

95.3 88.9 0.950 (0.927−0.973)

64.0 78.4 0.779 (0.714−0.843)

ea under the receiver operating characteristics curve; CI, confidence inter-



Fig. 1. Area under the operating curve for the five-variable model (blue line) and the age-modified five-variable model (green line).

Table 7

Concordance matrix for the modified five and three variable models, cutoff

0.5

Predicted outcome (n)

Model

Actual

outcome (n) Not walk Walk
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the differences in AUC between each of the three younger

age groups (18−29, 30−39 and 40−49), and the ≥50 age

group were all statistically significant, with p=.003, p=.008,

p=.010, respectively. We obtained similar results using the

Hicks model on our data, with p=.0001, p=.0003 and

p=.002, respectively.

Modified five-variable Not walk 292 44

Walk 44 259

Modified three-variable Not walk 292 44

Walk 47 256
Modification of the age parameter

For the van Middendorp five-variable model, using a

cutoff age of 50 instead of 65 improved the AUC to 0.929

(95% CI 0.910−0.949), a statistically significant increase

from 0.919 (p=.005). A comparison of the ROC curves of

the original five-variable model and the age-modified five-

variable model is presented in Fig. 1.

Based on an LR analysis of the new age-modified five-

variable prediction rule, the estimated probability of being

able to walk independently one year following the injury

was:

e�2:44þ0:16 �score

1þ e�2:44þ0:16 �score

A concordance matrix for the modified prediction rule is

presented in Table 7.

A comparison of the five-variable age-modified rule with

the original five-variable rule indicated that AUC of AIS A

increased from 0.899 to 0.914 (p=.055), AIS B from 0.809

to 0.856 (p=.005), AIC C changed from 0.702 to 0.719

although this change was not statistically significant

(p=.44), and AIS D increased from 0.657 to 0.732, with a

trend towards significance (p=.06). The combined A+D
group did not show a significant difference between the

original model and the modified age model, nor did B+C.

For the Hicks et al. model, using 50 years of age as the

cutoff resulted in an AUC of 0.899; This was not a signifi-

cant change from the AUC of 0.904 we obtained for the

original Hicks model with age 65 as the cutoff (p=.56). We

then sought to modify the prediction rule, as the weighted

coefficients that were previously used for the three-variable

rule (�10 for age, 2 for motor score, 5 for light touch score)

were obtained from LR of the five-variable rule and were

optimized for it.

Following an LR analysis of the coefficients, we con-

cluded that the best representation of a simplified three-var-

iable prediction rule in our cohort was:

score ¼ L3 motor scoreþ S1 light touch score

þ �2 age�50

0 otherwise

�

The probability of walking based on LR analysis the

newly modified three-variable rule was:



Fig. 2. Area under the operating curve for the three-variable model (blue line) and the modified three-variable model with new coefficients (green line).

1672 E. Engel-Haber et al. / The Spine Journal 20 (2020) 1666−1675
e�2:22þ0:88 �score

1þ e�2:22þ0:88 �score

This prediction rule showed excellent discrimination

between patients who were able to walk independently

and those who were not (AUC 0.927, 95% CI 0.907

−0.947). A statistically significant change from the origi-

nal AUC of 0.904 (p=.001). Fig. 2 shows a comparison

of ROC curves of the original three-variable Hicks model

and our modified three-variable model. The concordance

matrix of the modified three-variable LR model is shown

in Table 7.

F1-scores were calculated for the original and modified

models and the obtained scores were very similar. The F1-

scores were 0.855 and 0.849 in the original and modified

five-variable models, respectively, and 0.843 and 0.849 in

the original and modified three-variable models, respec-

tively.

As age is continuous by its nature, we attempted to

replace the dichotomized parameter with a continuous lin-

ear variable. The equation for the new variable was:

agescore ¼ 4�0:2 � age

Using the new score, a 20 years old would score 0 and a

70 years old would score �10, fitting the values in the origi-

nal prediction models. The AUC of the five-variable and

three-variable rules using age as a linear parameter were

0.923 and 0.909, respectively. These improvements were

not statistically significant.
Discussion

In this study, we investigated the effects of age and

injury severity on the performance of the van Middendorp

and Hicks multivariate LR prediction models utilizing data

from the SCIMS database. In the sections describing classi-

fication according to the different AIS groups and the analy-

sis of the prediction errors, merely the original van

Middendorp model was described since the Hicks model

showed remarkably similar results.

When individuals with different injury severities were

grouped together, both models achieved a high predictive

accuracy for discrimination between those who will be able

to walk at one year following the injury and those who will

not. However, similar to the results obtained by Phan et al.

[10], when we applied the five-variable prediction model to

the individual AIS classifications (A, B, C and D), each

classification had a lower predictive accuracy than the com-

bined cohort. We also found (similarly to Phan et al.), that

the failure to effectively prognosticate AIS A and AIS D

separately was masked by amalgamating the two patient

populations. In the analysis of the five-variable model in

the SCIMS database, prognostication for AIS A was

impaired (AUC 0.899) with low sensitivity (58.3%), and

prognostication for AIS D was markedly impaired (AUC

0.657) with extremely low specificity (3.7%). When com-

bined into a single cohort of AIS A+D, prognostication

strikingly improved (AUC 0.950), effectively masking the

actual poor prognostication of the model for the separate

AIS classifications.
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Furthermore, the five-variable model demonstrated a

lower predictive accuracy for AIS B+C (AUC 0.779) com-

pared with AIS A+D (AUC 0.950). This effect is expected

as prognosis of AIS B and AIS C is more variable while

outcomes are usually more certain in AIS A and AIS D.

However, due to the high proportion of A+D patients in our

cohort (68.7%), the model that consists of all AIS grades

has a misleadingly high prediction accuracy.

These findings reflect some of the main issues with the

complex problem of prognostication of ambulation follow-

ing SCI. Although the majority of individuals with AIS A

have unfavorable ambulation outcomes, there are some for

whom AIS grades will improve and a small group, specifi-

cally those with paraplegia, may even achieve independent

ambulation [14,15]. It is reported that 5.8% to 13.9% of

individuals initially diagnosed with cervical AIS A tetraple-

gia within the first 30 days convert to motor incomplete sta-

tus at one year, although only a smaller percent may regain

ambulation [16−18].
The opposite is seen with AIS D, as ambulation is

expected, yet not all individuals achieve independent ambu-

lation, especially those older than 50 [11,19]. As mentioned

earlier, individuals with AIS B or AIS C have a more vari-

able outcome, adding to the difficulty of correctly predict-

ing ambulation [15].

The ineffectiveness of the models to predict independent

ambulation when evaluating within a single AIS classifica-

tion level, suggests that future prediction rules may benefit

from the addition of variables that would represent the dif-

ferent AIS grades. Using more advanced analytical methods

from the data sciences fields, as described further in this

paper, may also improve prediction accuracy for the indi-

vidual AIS grades.

In the second part of this study, we examined the effect

of age on prediction rules. At first, we investigated the dif-

ferent types of prediction errors in our cohort. We noted

that individuals older than 50 were more likely to be errone-

ously predicted to walk, while individuals <50 had a higher

chance of being erroneously predicted not to walk.

In the van Middendorp and Hicks models, as well as in

several subsequent studies [12,20], the age of 65 was a

dichotomized variable. This age division is common and is

used to denote the “elderly” population [21−23]. The age

of 50 as a cutoff for predicting SCI outcomes has also been

widely used before [11,24−26]. Lowering the cutoff age in

the prediction algorithm has been previously suggested

[12].

We observed a decline in prediction accuracy as age

increases, emphasizing the fact that age is important in pre-

diction of independent ambulation. Similar to other medical

conditions, older individuals with a SCI tend to have worse

functional outcomes compared with younger individuals

[21,27,28]. Therefore, the recovery course of the older SCI

patient is more variable, and it is more difficult to predict

who will or will not walk. Another factor that probably con-

tributed to the decline in accuracy is the dichotomization of
the age parameter at 65. In the case of two theoretical

patients, aged 64 and 66, with the same L3 and S1 motor

and sensory scores, the slightly younger person will be pre-

dicted to have a significantly higher chance of independent

ambulation compared with the older person (even 70% vs.

20% in our simulations).

In the five-variable prediction model, prediction accu-

racy significantly improved when the dichotomized age

parameter was reduced to 50 instead of 65. With the new

age cutoff at 50, a significant increase in AUC was also

seen in the subgroup of individuals with AIS B grade injury,

and to a lesser extent in AIS A and AIS D. As previously

noted [4], we also observed high collinearity between pre-

dictors in the five-variable model. Since multicollinearity is

known to adversely affect prediction [29,30], no further

modifications of the five-variable model were performed.

The original three-variable prediction model did not

show a significant change in AUC when age was dichoto-

mized at 50. Subsequently, we conducted a new multivari-

ate LR analysis to obtain the new coefficients for the three

variables. Using the new coefficients, we derived a very

simple prediction rule for the three variables, described in

the results section. This rule showed excellent prediction

capabilities, with an AUC of 0.927.

In an external validation study of the van Middendorp

model that was performed by Malla [6], an LR analysis of

the five-variable rule yielded coefficients that were quite

different from the original coefficients. Nevertheless, AUC

calculated using the re-estimated coefficients was still ade-

quate and was comparable with the original AUC. Clearly,

there are additional modifications that can be made to opti-

mize the prediction, however, limitations of LR, such as

collinearity and the complex interactions between predic-

tors, will probably interfere with further major optimiza-

tions of prediction rules [31−33].
In a recent study, DeVries et al. suggested that F1-scores

may be superior to the commonly used AUCs in prediction

of ambulation following SCI, especially when the data are

imbalanced [20]. Nevertheless, in our study, in which the

data is rather balanced (with a similar number of positive

and negative instances) F1-scores remain unchanged for

both the original and modified models. Indeed, work by

Saito et al. demonstrated that F1-scores are more accurate

when predicting performance of imbalanced data, but when

datasets are balanced, it is comparable to AUC studies [34].

Furthermore, DeVries et al. showed that an increase in false

negative predictions is not well detected in AUC, while the

F1-score measure is more sensitive in this scenario [20]. By

lowering the cut-off age in the modified prediction models,

we are in fact increasing the number of false negatives, but

this increment was minimal and insignificant.

Age is a continuous parameter. In an additional attempt

to improve prediction accuracy, we chose an implementa-

tion of a linear continuous variable for age. A linear param-

eter was chosen to maintain model simplicity, as it was one

of the main goals of the van Middendorp and Hicks
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prediction models. Prognostication did not significantly

improve using linear score instead of a dichotomized

parameter for age. This is evidence for the nonlinear effect

of age. While out of the scope of this study, additional

implementations of the age parameter, for example as a sig-

moid variable, should be explored.

In addition to the regression models described above,

other methodologies have been described for prediction of

outcomes following SCI. Wilson et al. used both logistic

and linear regression, and a combination of clinical and

imaging data to predict FIM motor scores at 1-year post

injury [35]. Tanadini et al. developed a novel technique,

unbiased recursive partitioning regression with conditional

inference trees, to predict upper extremity motor recovery

among individuals with SCI [33]. Facchinello et al. also uti-

lized regression tree analysis for predicting functional out-

comes following SCI [36]. Belliveau et al. and Rowland

et al. used artificial neural networks to predict ambulation

and functional outcomes [12,37]. Regression trees and neu-

ral networks are supervised machine learning algorithms.

Very recently, DeVries et al. developed an unsupervised

machine learning algorithm for prognostication of walking

ability in SCI patients [20].

Both machine-learning based algorithms by Belliveau

et al. [12] and DeVries et al. [20] use the dichotomized age

variable with a cutoff of 65. This highlights the importance

of the age variable in the prediction models, and our find-

ings suggest that lowering the age cutoff to 50 may further

improve their prediction accuracy.

We also anticipate that prediction models may be able to

achieve a higher accuracy by using data science methodolo-

gies, including but not limited to support vector machines,

classification trees and deep neural networks if dataset size

permits.

Strengths of our study include the coverage of SCIMS, a

large multicenter database that represents about 6% of new

SCI cases in the United States each year. Furthermore,

although previous studies referred to the impact of age on

functional outcomes, this is the first paper that provides an

extensive analysis of the age parameter within prediction

models.

This study has several limitations. Although the cohort

in our study is larger compared to the previous prediction

studies, the size of the cohort is still limited. In addition,

reducing the cutoff age to 50 does not solve the dichotomi-

zation problem, that is, in prognostication of individuals

around the age of 50 we will still observe large variations in

prediction accuracy. Further, only 9.4% of individuals

in our study were older than 65 compared with 14% to 17%

in the previously mentioned prediction papers [3,4,6,7].

The low proportion observed in our cohort may be

explained by the fact that only individuals whose timing of

FIM assessment was more than one year following the

injury were included. We observed a statistically significant

relationship between older age and earlier examination, and

since we only included patients who had a FIM assessment
one year and later, this probably explains the higher propor-

tion of younger individuals in our cohort. Furthermore, in at

least one of the other prediction studies there was a substan-

tial higher proportion of persons with tetraplegia, which

tend to be older [6].
Conclusions

Age is an important factor in prognosticating of indepen-

dent ambulation following SCI. We have shown that using

the age of 50 instead of 65 is more accurate for prediction

of independent ambulation. Since earlier prediction studies

have mostly used the age 65 as a dichotomized variable,

this is a significant consideration for future studies. In addi-

tion, we have validated previous results and demonstrated

that prediction rules are less effective at prognosticating

patients when evaluating within a single AIS classification

level. Further, results demonstrate prognostication of per-

sons with AIS B+C, for whom a clinical prediction model

has arguably greater clinical utility, is less accurate than

those with AIS A+D

As further major improvements in prediction of ambula-

tion and functional outcomes may be limited in traditional

statistical analysis, including logistic regression studies, to

further improve prediction rules, advanced methodologies

using machine learning should be explored. In particular,

these methodologies would enable further investigation of

the age parameter.
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