
Artificial Intelligence 227 (2015) 190–213
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Optimal social choice functions: A utilitarian view ✩

Craig Boutilier a,1, Ioannis Caragiannis b, Simi Haber c, Tyler Lu a,2, 
Ariel D. Procaccia d,∗, Or Sheffet e

a Dept. of Computer Science, University of Toronto, Canada
b Computer Technology Institute “Diophantus” and Dept. of Computer Engineering and Informatics, University of Patras, Greece
c Dept. of Mathematics, Bar-Ilan University, Israel
d Computer Science Dept., Carnegie Mellon University, United States
e Center for Research on Computation and Society, Harvard SEAS, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 April 2014
Received in revised form 11 June 2015
Accepted 14 June 2015
Available online 25 June 2015

Keywords:
Computational social choice

We adopt a utilitarian perspective on social choice, assuming that agents have (possibly 
latent) utility functions over some space of alternatives. For many reasons one might 
consider mechanisms, or social choice functions, that only have access to the ordinal 
rankings of alternatives by the individual agents rather than their utility functions. In 
this context, one possible objective for a social choice function is the maximization of 
(expected) social welfare relative to the information contained in these rankings. We 
study such optimal social choice functions under three different models, and underscore 
the important role played by scoring functions. In our worst-case model, no assumptions 
are made about the underlying distribution and we analyze the worst-case distortion—or 
degree to which the selected alternative does not maximize social welfare—of optimal 
(randomized) social choice functions. In our average-case model, we derive optimal 
functions under neutral (or impartial culture) probabilistic models. Finally, a very general 
learning-theoretic model allows for the computation of optimal social choice functions (i.e., 
ones that maximize expected social welfare) under arbitrary, sampleable distributions. In 
the latter case, we provide both algorithms and sample complexity results for the class of 
scoring functions, and further validate the approach empirically.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Classic models in social choice theory assume that the preferences of a set of agents over a set of alternatives are 
represented as linear orders; a social choice function, given these preferences as input, outputs a single socially desirable 
alternative. A host of clever social choice functions have been designed to satisfy various normative criteria. Most work in 
computational social choice studies computational aspects of these models, addressing questions such as the complexity of 
computing social choice functions [5,17] or manipulating them (see the survey by Faliszewski and Procaccia [13]).

✩ A preliminary version of this paper appeared in the proceedings of EC’12.
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Under ordinal preferences, an axiomatic approach to obtaining a socially desirable outcome seems—on the face of it—
necessary, absent concrete measures of the quality of an alternative. In contrast, some work in economics assumes cardinal
preferences and takes a utilitarian approach. This viewpoint dates to the work of Bentham at the end of the 18th century, 
who argued that “it is the greatest happiness of the greatest number that is the measure of right and wrong.” This axiom suggests 
that happiness can be quantified, and indeed, having coined the term utility, Bentham proposed that the goal of government 
is to maximize the sum of individual utilities—the social welfare (defying contemporary wisdom that the goal of government 
is to enrich the coffers of the ruler). The utilitarian approach is prevalent, for example, in mechanism design, and perhaps 
even more so in algorithmic mechanism design [25].

In this paper we view the social choice problem through this utilitarian lens. Our premise is that agents have (possibly 
implicit) utility functions, and the goal of a social choice function is to maximize the (utilitarian) social welfare3—i.e., 
(possibly weighted) sum of agent utilities—of the selected alternative. The utilitarian perspective is not appropriate for 
all social choice problems (a point we discuss further below). However, the methods of social choice—especially voting 
systems—are finding increasing application in recommender systems, web search, product design, and many more practical 
domains, in which the primary aim is often, as in much of mechanism design, to aggregate preferences so that utility or 
efficiency is maximized. Indeed, one motivation for our work is the development of group recommendation systems for a 
variety of domains, including low-stakes consumer applications and higher profile public policy and corporate decisions. 
Our work can be viewed as a step toward supporting groups of users making decisions using social choice functions that 
are automatically optimized for their needs. In these settings, a utilitarian perspective is often called for.

If we could directly access the utilities of agents, the socially desirable alternative could be easily identified. However, 
such access is often not feasible for a variety of reasons. As a result, we use agent preference orders as a proxy for their 
utility functions; and the social choice function, taking preference orders as input, should perform well with respect to the 
underlying utilities. From this point of view, a social choice function is optimal if it maximizes social welfare given the 
available information. Using a preference order as proxy for utility in this fashion serves several purposes. First, behavioral 
economists have argued that people find it difficult to construct utilities for alternatives. Second, the cognitive and commu-
nication burden of articulating precise utilities has long been recognized within decision analysis, behavioral economics, and 
psychology. By contrast, simply comparing and ordering alternatives is considerably easier for most people, which makes 
soliciting preference orders more practical than eliciting utilities. Furthermore, choice behavior among alternatives can of-
ten be interpreted as revealing ordinal (rather than cardinal) preference information, providing ready access to (sometimes 
incomplete) orders in many of the domains described above. Hence we content ourselves with orders as inputs.

1.1. Our results

Our study of optimal social choice functions incorporates three distinct but related models, each with its own assump-
tions regarding available information and therefore its own notion of optimality. One common thread is that the family 
of scoring functions—social choice functions that score alternatives based only on their position in each agent’s preference 
order—plays a key role in optimizing social welfare.

In Section 3 we study a model where no information about agents’ utility functions is available when constructing the so-
cial choice function. A worst-case analysis is thus called for. We believe that the study of this model is of theoretical interest, 
but it is certainly the least practical of our three models. Specifically, given a collection of agents’ preferences—a preference 
profile—there are many consistent collections of utility functions—utility profiles—that induce this preference profile in the 
natural way (by ranking alternatives with higher utility closer to the top). The distortion of a social choice function on 
a preference profile is the worst-case ratio (over feasible utility profiles) of the social welfare of the best alternative to the 
social welfare of the alternative that is selected by the function. A worst-case optimal social choice function minimizes the 
distortion on every preference profile.

We first derive upper and lower bounds on the least distortion that one can hope for, focusing on randomized social 
choice functions. We show that there exists a preference profile where every randomized social choice function must have 
distortion at least �(

√
m), where m is the number of alternatives. We complement this result with a randomized social 

choice function whose distortion on every preference profile is O(
√

m log∗ m). A slightly weaker upper bound is obtained 
via a randomized variation of a natural scoring function that we call the harmonic scoring function (a new canonical scoring 
function that may be of independent interest). Finally, we establish that the worst-case optimal social choice function (which 
achieves minimum distortion on every profile) is polynomial-time computable. The proof is based on linear programming, 
and (roughly speaking) relies on embedding the dual of a sub-problem within a carefully constructed larger LP, in order to 
avoid quadratic constraints.

In Section 4 we study an average-case model, assuming a known distribution D over utility functions. We assume that 
the utility function of each agent is drawn independently from D . Given reported agent preferences, one can compute the 
expected utility any agent has for an alternative with respect to D . An average-case optimal social choice function selects 
an alternative that maximizes expected social welfare given the reported profile. We show that when D is neutral, i.e., 
symmetric with respect to alternatives, the average-case optimal social choice function must be a scoring function. The 

3 Hereinafter, we simply write “social welfare” to refer to “utilitarian social welfare”.
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proof leverages Young’s [36] characterization of the family of scoring functions. As a corollary, we show that when D is 
uniform over an interval, the average-case optimal social choice function is the famous scoring function known as the Borda 
count.

In Section 5 we develop and analyze a learning-theoretic model. Rather than assuming a known distribution D over utility 
profiles, we have access only to sampled utility profiles from D . We use these profiles to compute sample-optimal social 
choice functions. The quality of a sample-optimal function is measured by comparing its expected social welfare to that 
of the (truly) optimal social choice function for D . We address two natural questions. First we derive sample complexity 
results for two classes of social choice functions, k-approval functions and more general scoring functions; specifically, we 
derive necessary and sufficient bounds on the number of samples such that the sample-optimal function in this class will 
have social welfare that is within a small tolerance of the optimal choice function with high probability. Second, we show 
that computing the sample-optimal scoring function is APX -hard, but describe a mixed integer programming formulation 
of this problem that solves it in practice. Empirical results on a random utility model and a real data set suggest that 
sample-optimal scoring functions (as well as several more stylized functions, including Borda count) have very low expected 
distortion.

1.2. Perspective and related work

While the utilitarian perspective on social choice—especially the goal of optimizing the (possibly weighted) sum of indi-
vidual utilities—has been overshadowed by the more axiomatic perspective to a great extent, its foundations are nonetheless 
firm [15], and it does have its advocates. Our work adopts this utilitarian perspective, and assumes that social welfare is 
measured using the sum of individual agent utilities in the classic “Benthamite” fashion. Naturally, this position requires 
making a number of assumptions about the problem domain including: the existence of agent (cardinal) utility functions; 
the validity of interpersonal comparison of utilities; and having as one’s goal the maximization of the sum of individual 
utilities.

None of these assumptions is valid in all social choice settings. The foundations of von Neumann and Morgenstern [32]
expected utility theory treat the strength of preference for alternatives expressed by a utility function as representing an 
individual’s (ordinal) preferences over lotteries or gambles involving those alternatives. While this theory can be operational-
ized to (roughly) determine an individual’s utility function (e.g., using standard gamble queries, as is common in decision 
analysis), it provides little foundation for a satisfactory account of interpersonal utility comparison. Furthermore, even if one 
accepts that such interpersonal comparisons are meaningful, many social choice functions and voting schemes studied in 
the social choice literature cannot, in any sense, be interpreted as maximizing the sum of individual utilities, or as assuming 
that individual utilities even exist.

Despite this, the three key assumptions above hold (at least approximately) in many settings, including those of interest 
in computational economics, algorithmic mechanism design, and e-commerce. Most work in mechanism design assumes that 
agents possess real-valued utility or valuation functions over alternatives, and while arbitrary social choice functions may 
be considered, one of the most common is social welfare maximization, which is, for example, the social choice function 
implemented by the celebrated VCG mechanism [25], which requires monetary transfers (in order to achieve truthfulness). 
Other papers also assume cardinal utilities and deal with truthfulness and social welfare maximization but in settings 
without money. For example, in a recent paper, Azrieli and Kim [4] characterize social choice functions that maximize social 
welfare subject to truthfulness when there are two alternatives—they are weighted majority rules with appropriate weights. 
In this light, our work can be viewed as providing the means to approximately maximize social welfare, while reducing the 
elicitation burden of classic mechanisms by having agents rank alternatives rather than specify valuations.

While many of our results on the optimality of scoring rules in the worst-case and average-case models depend on using 
the sum of utilities as our social choice function, our learning-theoretic model and corresponding empirical optimization 
framework could, in principle, be adapted to other measures of social welfare (including the “Rawlsian” maximin and other 
measures) that take as input the utility functions of a collection of agents. In this sense, our framework does not require a 
commitment to maximizing the sum of individual utilities.

Some researchers argue that agents should express their preferences by explicitly reporting utilities. While very common 
in decision analysis, this perspective is also sometimes adopted in social choice. For example, utilitarian voting [18] (or 
range voting) allows voters to express utilities for alternatives in some predefined range, e.g., {1, . . . , 10}, {−1, 0, 1}, or 
{0, 1} (the last coincides with approval voting [8]). While utilitarian in approach, such work differs from ours, as we take 
the (prevalent) view that human voters are far more comfortable expressing ordinal preferences—we seek to optimize the 
choice of alternative with respect to implicit utility functions.

The worst-case model in Section 3 is closely related to work by Procaccia and Rosenschein [27]. Their work shares the 
premise that ordinal utilities are a proxy for underlying cardinal utilities. They too argue that a social choice function should 
maximize social welfare, and introduce the notion of distortion to quantify the gap between optimum social welfare and the 
total utility of the social choice based on the induced preference orders. The main difference from our approach is that they 
consider deterministic social choice functions, whereas we focus on randomized functions. Deterministic functions inevitably 
have trivially high distortion, which Procaccia and Rosenschein mitigate by focusing attention on highly structured utility 
functions. In contrast, our study provides rich theoretical results under a very mild assumption on utility functions.
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Fig. 1. A comparison of our worst-case model (Section 3) with Caragiannis and Procaccia [10]. The text above (resp., below) the arrows describes our (resp., 
their) work. SCF stands for social choice function.

A recent paper by Caragiannis and Procaccia [10] builds on [27], and is also closely related to our worst-case results. Al-
though they also aim to optimize social welfare, their work is fundamentally different on a conceptual level: they consider 
settings where agents are software agents that can easily compute exact utilities for alternatives, and the need for voting 
arises because of communication restrictions. Hence they focus on simple, fixed social choice functions with low commu-
nication requirements, and optimize the embedding by which agents translate their utility functions into reported votes. 
For example, an agent can map its utility function to a plurality vote—which designates a single, favorite alternative, and 
therefore requires only log2 m bits—by voting for each alternative with probability proportional to that alternative’s utility. 
While such embeddings are well-motivated in cooperative multiagent systems, in our setting, agents may be people whose 
utility functions are translated into preference orders in the natural way; thus we optimize the social choice function. Fig. 1
illustrates the two different optimization processes.

Several papers study models that are similar to our average-case model in Section 4. For example, Pivato [26] shows 
that when cardinal utilities are drawn from a distribution satisfying certain assumptions, a Condorcet winner exists and 
maximizes the social welfare with high probability. And early empirical work by Bordley [7] and Merrill [24] shows that 
plurality achieves lower social welfare than other social choice functions.

The unpublished work of Weber [34] is even more closely related. His motivation is similar to ours, but his model and 
results differ in several important ways. First, he optimizes a measure different from ours. Second, he restricts attention to 
(a slight generalization of) the family of scoring functions (whereas we identify optimal social choice functions, which just 
happen to be scoring functions). Third, he assumes that the utility of each agent for each alternative is independently and 
uniformly distributed on an interval, while our assumptions are less restrictive. Weber’s main result is that Borda count is 
asymptotically optimal (w.r.t. his measure) among scoring functions. Interestingly, under his more restrictive assumptions 
we show that Borda count is average-case (exactly) optimal (w.r.t. our measure, expected social welfare of the winner) 
among all social choice functions.

Section 4 is also closely related to independent4 work by Apesteguia et al. [3], who prove a result that is very similar 
to our Theorem 4.2. Our result is somewhat stronger, in that we assume that the utility function of each agent is drawn 
i.i.d. from a neutral distribution D , whereas they assume that each agent’s utility for each alternative is drawn i.i.d. Moreover, 
our proof—which builds on a result by Young [36]—is completely different.

The learning-theoretic model in Section 5 is related to a study of the learnability of social choice functions by Procaccia 
et al. [28]. They consider the reconstruction of a scoring function based on examples, where an example is a preference 
profile and a winning alternative for that profile. In contrast, in our learning-theoretic setting we optimize expected social 
welfare, and examples are utility profiles. On a conceptual level, their motivation is fundamentally different; on a technical 
level, we require new tools, but leverage some of their results to derive novel results in our setting.

Finally, we are seeing increasingly more work in computational social choice that views the social choice problem as an 
optimization problem [21,12]. One such approach views social choice functions as maximum likelihood estimators [11]. This 
line of work, dating to the 18th century, was revived by Young [37], who studied “optimal” voting rules, but his notion of 
optimality is very different from ours. Specifically, the maximum likelihood perspective assumes that agents order alterna-
tives reflecting their personal assessment of the relative likelihood that particular alternatives are “objectively best”. Voting 
is intended to determine the alternative (or ranking) with maximum likelihood of being the best given these assessments, 
assuming that each agent is more likely to rank any pair of alternatives correctly than incorrectly. Young’s view of optimal-
ity (and the MLE perspective more broadly) is thus purely statistical and does not address issues of social welfare or utility 
maximization.5

2. Preliminaries

Let N = {1, . . . , n} be a set of agents and A = {a1, . . . , am} a set of alternatives. Each agent has a preference order over A, 
which is a strict total order. Letting [k] = {1, . . . , k}, we can equivalently view a preference order as a bijection σ : A → [m]
mapping each alternative to its rank. Let Sm be the set of such bijections. The alternative ranked in position k under 
ranking σ is given by σ−1(k).

For each i ∈ N , let σi be the preference order of agent i. The vector of agent preferences �σ = (σ1, . . . , σn) ∈ (Sm)n is a 
preference profile. A social choice function f : (Sm)n → A maps preference profiles to alternatives. We draw special attention 
to a class of social choice functions known as scoring functions. A scoring function is defined by a vector �s = (s1, . . . , sm). 

4 The conference version of this paper was published in 2012, shortly after the publication of the paper of Apesteguia et al. [3].
5 Even in his discussion of compromise among preference orderings using Kemeny’s rule, Young appeals to a statistical justification, namely, the median

relative to Kemeny’s distance metric.
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Given preference profile �σ , the score of a ∈ A is 
∑

i∈N sσi(a) , i.e., a is awarded sk points for each agent who ranks it in 
position k. The scoring function f�s induced by �s selects some a ∈ A with maximum score with ties broken in some fashion 
(we revisit tie breaking as it becomes relevant). The well-known Borda scoring function (or count) is induced by the vector 
(m − 1, m − 2, . . . , 0).

Unlike classical social choice models, we assume that agents have utility functions over alternatives. As discussed above, 
however, these are not reported or used by the social choice function. Let u : A → R+ be a utility function. We say a 
ranking σ is consistent with u if u(a) > u(a′) implies σ(a) < σ(a′); i.e., alternatives with higher utility must be ranked 
higher than those with lower utility.

Let p(u) be the set of rankings consistent with (or induced by) u; p(u) is a set to account for ties in utility. We 
occasionally presume agents use some (randomized) method for selecting a specific ranking σ ∈ p(u) when they possess 
utility function u; in such a case, we use σ(u) to denote the corresponding random variable (with domain p(u)). Abusing 
notation slightly, let p−1(σ ) be the set of utility functions u such that σ ∈ p(u), i.e., the set of utility functions consistent
with σ . The vector �u = (u1, . . . , un) of agent utility functions is a utility profile. Let p(�u) = p(u1) × · · · × p(un) be the set 
of preference profiles consistent with �u. Similarly, let �σ(�u) denote the random variable over p(�u) representing the (joint) 
choice of rankings, and p−1(�σ) denote the set of utility profiles consistent with preference profile �σ .

Positing a utility model allows one to quantify the social welfare of an alternative. For utility profile �u , let sw(a, �u) =∑
i∈N ui(a) be the (utilitarian) social welfare of a.

3. The worst-case model

We begin our study of optimal social choice functions with a worst-case model. A social choice function has access only 
to a preference profile, but this preference profile is induced by some unknown utility profile. To quantify the quality of 
a social choice function, we use the notion of distortion [27,10], which reflects the degree to which the social choice can 
become distorted when cardinal preferences are mapped to ordinal preferences. More precisely, the distortion of social 
choice function f on a preference profile �σ is given by

dist( f , �σ ) = sup
�u∈p−1(�σ)

maxa∈A sw(a, �u)

sw( f (�σ), �u)
.

In other words, distortion is the worst-case ratio (over consistent utility profiles) of the social welfare of the optimal alter-
native to that of the alternative selected by f .

As observed by Procaccia and Rosenschein [27], deterministic social choice functions must have high distortion. For 
example, consider a preference profile where n/2 agents rank a first, and n/2 agents rank b first. Assume (w.l.o.g.) a social 
choice function selects a. Suppose the agents that rank b first have utility 1 for b and 0 for other alternatives, while 
agents that rank a first have utility 1/m for all alternatives. The ratio between the social welfare of b and a is �(m). To 
reduce potential distortion, Procaccia and Rosenschein [27] adopt an extremely restrictive assumption on utility functions 
(specifically, that utilities are Borda scores). We instead turn to randomization.

We consider randomized social choice functions f : (Sm)n → �(A), in which f (�σ) is a distribution (or random variable) 
over A. We extend the definition of distortion to randomized functions in the natural way:

dist( f , �σ ) = sup
�u∈p−1(�σ)

maxa∈A sw(a, �u)

E[sw( f (�σ), �u)] .

In general, even randomized social choice functions cannot achieve a distortion lower than �(m). Consider a preference 
profile where each a ∈ A is ranked first at least once. Given a randomized social choice function, there is some alternative 
a∗ ∈ A that is selected with probability at most 1/m given this preference profile. However, this profile is induced by the 
utility profile where one agent gives arbitrarily high utility to a∗ , and all other utilities are arbitrarily low. The ratio between 
the social welfare of a∗ and the function’s expected social welfare would therefore be �(m).

To avoid this, we make the following assumption in this section:

Assumption 3.1. (Only in Section 3.) For each agent i ∈ N , 
∑

a∈A ui(a) = 1.

This ensures that agents have equal “weights,” or equal pools of “utility points” to distribute among the alternatives. 
Otherwise, if, say, agent 1 has utility 1 for a and 0 for the rest, and agent 2 has utility 1/2 for b and 0 for the rest, then 
agent 1 has twice as much influence as agent 2 in determining the socially optimal alternative. The same assumption is also 
made by Caragiannis and Procaccia [10].

Our first result establishes a lower bound on the distortion of randomized social choice functions under Assumption 3.1
(which is almost tight, see below).

Theorem 3.2. Assume that n ≥ √
m. Then there exists a �σ ∈ (Sm)n such that for any randomized social choice function f , dist( f , �σ) =

�(
√

m).
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Proof. For ease of exposition assume that 
√

m divides n. Partition the agents into 
√

m equal subsets N1, . . . , N√
m . Consider 

the preference profile �σ where σi(ak) = 1, for all i ∈ Nk , and the remaining alternatives are ranked arbitrarily.
For any randomized f there must be a k∗ ∈ {1, . . . , 

√
m} such that Pr[ f (�σ) = ak∗ ] ≤ 1/

√
m. Let �u be a utility profile such 

that for all i ∈ Nk∗ , vi(ak∗ ) = 1 and ui(a) = 0 for all a ∈ A \ {ak∗ }. For all i /∈ Nk∗ and a ∈ A, vi(a) = 1/m. It holds that

n√
m

≤ sw(ak∗ , �u) ≤ 2n√
m

,

and for all a ∈ A \ {ak∗ }, sw(a, �u) ≤ n/m. Therefore:

dist( f , �σ ) ≥
n√
m

1√
m

· 2n√
m

+
√

m−1√
m

· n
m

≥
√

m

3
. �

We next establish the existence of a randomized social choice function that nearly achieves this lower bound on every
preference profile, leaving a tiny gap of only log∗ m (iterated logarithm of m).

Theorem 3.3. There exists a randomized social choice function f such that for every �σ ∈ (Sm)n, dist( f , �σ) =O(
√

m · log∗ m).

The rather intricate proof of this theorem is provided in Appendix A. Here we present a much simpler proof of a weaker 
upper bound of O(

√
m log m). This latter proof uses the novel harmonic scoring function, given by score vector (h1, . . . , hm), 

where hk = 1/k.

Proof of weaker upper bound of O(
√

m log m). Let sc(a, �σ) be the score of a under �σ using the harmonic scoring function. 
It holds that ui(a) ≤ 1/σi(a) for all i ∈ N and a ∈ A, because if i ∈ N ranks a ∈ A in position k and gives it utility ui(a), each 
of the k − 1 alternatives ranked above a must have utility at least ui(a), but the sum of utilities is one. Therefore, for any 
�u ∈ p−1(�σ) and any a,

sw(a, �u) ≤ sc(a, �σ). (1)

In addition, note that for any �σ ,

∑
a∈A

sc(a, �σ ) = n ·
m∑

k=1

1

k
≤ n(ln m + 1). (2)

Consider the randomized f that chooses one of the following two schemes (each with probability 1/2): (i) select an 
alternative uniformly at random, and (ii) select an alternative with probability sc(a, �σ)/(

∑
a′∈A sc(a′, �σ)) (i.e., proportional 

to sc(a, �σ)). Let �σ ∈ (Sm)n , �u ∈ p−1(�σ), and a ∈ A. It is sufficient to show that

sw(a, �u)

E[sw( f (�σ), �u)] ≤ 2
√

m(lnm + 1).

We consider two cases. First, assume that sc(a, �σ) ≥ n
√

(ln m + 1)/m. With probability 1/2, a winner is selected propor-
tionally to its score. Using Eq. (2), the probability that a is selected is at least

1

2
·

n ·
√

ln m+1
m

n(ln m + 1)
= 1

2
√

m(lnm + 1)
.

It follows that

E[sw( f (�σ), �u)] ≥ Pr[ f (�σ) = a] · sw(a, �u) ≥ 1

2
√

m(ln m + 1)
· sw(a, �u).

Second, assume that sc(a, �σ) < n · √(ln m + 1)/m. From Eq. (1) it follows that sw(a, �u) < n · √(ln m + 1)/m. With proba-
bility 1/2, a winner is selected uniformly at random. We have that

E[sw( f (�σ), �u) | uniform selection] =
∑

i∈N

∑
a∈A ui(a)

m
= n

m
,

and therefore E[sw( f (�σ), �u)] ≥ n/(2m). We conclude that

sw(a, �u)

E[sw( f (�σ), �u)] ≤
n ·

√
ln m+1

m
n = 2

√
m(lnm + 1). �
2m



196 C. Boutilier et al. / Artificial Intelligence 227 (2015) 190–213
An interesting aspect of this proof is its use of the harmonic scoring function. Despite a large body of (especially com-
putational) work on scoring functions (see, e.g., [16,35,28]), only three scoring functions are considered canonical: Borda 
count; plurality, defined by vector (1, 0, . . . , 0); and veto (or anti-plurality), defined by vector (1, . . . , 1, 0). We hope that the 
harmonic function, with natural parameters and attractive theoretical properties, may in time be accepted into this exclusive 
club.

While Theorem 3.3 offers attractive theoretical guarantees, its randomized social choice function need not be optimal. 
While there are preference profiles where distortion must be at least �(

√
m), there may be many profiles where low 

distortion is achievable but this function nevertheless yields relatively high distortion. We are thus most interested in 
worst-case optimal (randomized) social choice functions. By this, we simply mean that for every �σ ∈ (Sm)n , the function f
has minimum possible distortion on �σ . We can show that such a social choice function is polynomial-time computable via 
linear programming duality.

Theorem 3.4. The worst-case optimal randomized social choice function is polynomial-time computable.

Proof. For an alternative a∗ ∈ A and �σ ∈ (Sm)n , let

U (�σ ,a∗) =
{

�u ∈ p−1(�σ) : a∗ ∈ argmax
a∈A

{sw(a, �u)}
}

.

Given a preference profile �σ ∈ (Sm)n , an alternative a∗ ∈ A, a vector of non-negative values {pa}a∈A , and non-negative β , 
define the set of inequalities INEQ({pa}a∈A, β, �σ , a∗) as follows:

∑
j∈N

y( j,a∗) ≥ 0

β +
∑
a∈A

x(a,a∗) ≤ 0

∀ j ∈ N,∀a ∈ A : σ j(a) = 1, pa + x(a,a∗) − y( j,a∗) − z(σ j(a), j,a∗) ≥ 0
∀ j ∈ N,∀a ∈ A : 2 ≤ σ j(a) ≤ m − 1, pa + x(a,a∗) − y( j,a∗) − z(σ j(a), j,a∗) + z(σ j(a) − 1, j,a∗) ≥ 0
∀ j ∈ N,∀a ∈ A : σ j(a) = m, pa + x(a,a∗) − y( j,a∗) + z(σ j(a) − 1, j,a∗) ≥ 0
∀a ∈ A \ {a∗}, x(a,a∗) ≥ 0
x(a∗,a∗) ∈ (−∞,+∞)

∀ j ∈ N, y( j,a∗) ∈ (−∞,+∞)

∀k ∈ [m − 1], j ∈ N, z(k, j,a∗) ≥ 0

(3)

The connection of this set of inequalities to randomized social choice functions is revealed in the following statement.

Lemma 3.5. A randomized social choice function f that uses probability distribution {pa = Pr[ f (�σ) = a]}a∈A for profile �σ
has distortion at most β−1 when β ∈ (0, 1] with respect to utility profiles in U (�σ, a∗) if and only if the set of inequalities 
INEQ({pa(�σ)}a∈A, β, �σ , a∗) is satisfied.

Proof. The fact that the distortion is at most β−1 is equivalent to the following linear program having a non-negative 
objective value.

minimize
∑
j∈N

∑
a∈A

pau j(a) − βq

subject to
∑
j∈N

u j(a
∗) = q

∀a ∈ A \ {a∗}, ∑
j∈N u j(a) ≤ q

∀ j ∈ N,
∑

a∈A u j(a) = 1
∀ j ∈ N,k ∈ [m − 1], u j(σ

−1
j (k)) ≥ u j(σ

−1
j (k + 1))

∀ j ∈ N,a ∈ A, u j(a) ≥ 0
q ≥ 0

In the above LP, the variable u j(a) denotes the utility of agent j ∈ N for alternative a ∈ A while the variable q is the 
maximum social welfare among all alternatives. The constraints guarantee that �u ∈ U (�σ , a∗).

Next, consider the dual linear program using the variable x(a∗, a∗) for the first constraint, the variables x(a, a∗) for 
the second set of constraints, the variables y( j, a∗) for the third set of constraints, and the variables z(k, j, a∗) for the 
fourth set of constraints. This program maximizes 

∑
j∈N y( j,a∗), subject to the constraints in INEQ({pa}a∈A, β, �σ , a∗) except 

Equation (3). By LP duality, the maximum objective value of the dual LP should be non-negative as well. Observe that this 
is exactly the requirement that INEQ({pa(�σ)}a∈A, β, �σ , a∗) is satisfied. �



C. Boutilier et al. / Artificial Intelligence 227 (2015) 190–213 197
We are now ready to define the worst-case optimal randomized social choice function f ∗ , i.e., the one that achieves 
optimal distortion β(�σ )−1 with respect to every profile �σ ∈ (Sm)n . To do so, we consider the probability distribution 
{pa(�σ) = Pr[ f ∗(�σ) = a]}a∈A as a set of variables and β(�σ ) as our objective that has to be maximized. We employ an LP that 
is defined as follows.

maximize β(�σ)

subject to ∀a∗ ∈ A, INEQ({pa(�σ)}a∈A, β(�σ ), �σ ,a∗) is satisfied∑
a∈A

pa(�σ) = 1

∀a ∈ A, pa(�σ) ≥ 0

Using Lemma 3.5 we find that the probability distribution obtained as (part of) the solution to this LP induces the lowest 
possible distortion β(�σ )−1 with respect to �σ .

We conclude that in order to compute the worst-case optimal social choice function f ∗ with respect to any preference 
profile, it suffices to solve a linear program with O(nm2) variables and O(nm2) constraints. We observe that leveraging LP 
duality is crucial to the proof, as naïvely embedding the primal LP presented in Lemma 3.5 into the above LP would result 
in a quadratic program. �

Interestingly, even though we can concisely describe the optimal function, we do not know whether its distortion on 
every profile is at most O(

√
m). Of course, by Theorem 3.3, we do know that its distortion on any profile can only be 

slightly larger: at most O(
√

m log∗ m).

4. The average-case model

We now consider a model in which agent utility functions are drawn from a probability distribution D . As discussed in 
Section 1, this model is closely related to independent work by Apesteguia et al. [3]. We do not assume that utilities are nor-
malized (as in Section 3), but we do assume (in this section only) that each agent’s utility function is drawn independently 
from the same distribution.

Assumption 4.1. (Only in Section 4.) Agent utility functions u1, . . . , un are drawn i.i.d. from D .

This assumption, while admittedly restrictive, enables us to prove strong results; it will not be used when we move to a 
more general learning-theoretic model in Section 5.

This model gives rise to the product distribution Dn over utility profiles. As above, utility profiles induce preference 
profiles in the natural way, but since we will need to reason about the induced distribution over preference profiles, we 
make the specific, but mild, assumption that ties in utility are broken uniformly at random; that is, if u(a) = u(b) then 
Pr[(σ (u))(a) < (σ(u))(b)] = Pr[(σ (u))(b) < (σ(u))(a)] = 1/2. This assumption is essentially without loss of generality under 
non-atomic distributions (since ties occur with probability zero).

The notion of optimality takes a slightly different meaning in this setting: instead of maximizing the ratio to the optimal 
social welfare, a social choice function should perform as well as possible on average. We say that a social choice function f
is average-case optimal if for every preference profile �σ it maximizes expected social welfare E[sw( f (�σ(�u)), �u) | �σ(�u)]. Note 
that expectation is conditional on the reported preference profile �σ (�u).

In this section, we consider distributions D that possess a special structure. Distribution D is neutral6 if for any measur-
able U ⊆ R

m+ and any permutation π ∈ Sm , we have D(U ) = D(U ◦ π), where U ◦ π = {u ◦ π : u ∈ U } (here u ◦ π denotes a 
permutation of utility function u). Informally, a neutral distribution is symmetric with respect to alternatives. A neutral dis-
tribution induces a distribution over preference profiles where each agent draws a ranking σ independently and uniformly 
at random; this is exactly the impartial culture assumption, a model that plays an important role in social choice theory [31,
30]. We now show that scoring functions play a crucial role in the average-case model, underscoring even more deeply the 
importance of this family in the study of optimal social choice functions.

Theorem 4.2. Assume a neutral distribution D over utility functions. Then the average-case optimal social choice function is a scoring 
function.

Apesteguia et al. [3] independently prove a similar theorem, but make the stronger assumption that each agent’s utility 
for each alternative is drawn i.i.d. Importantly, they use a direct proof, whereas we provide a completely different, potentially 
more broadly useful proof by exploiting machinery developed by Young [36].

To this end, we define a social choice correspondence as a function from preference profiles to nonempty subsets of A. 
A scoring correspondence is defined by a vector �s as before, but selects all alternatives with maximum score. An anonymous 

6 Neutrality is also known as exchangeability in this context.
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social choice correspondence operates on anonymous preference profiles, i.e., vectors �x ∈ N
m! that count the number of agents 

holding each of the m! possible rankings of A in the preference profile (i.e., without regard for which agent holds what 
preference). Let xσ denote the number of agents holding ranking σ in �x.

An anonymous social choice correspondence f is: consistent if f (�x + �y) = f (�x) ∩ f (�y) when f (�x) ∩ f (�y) �= ∅; continuous
if whenever f (�x) = {a} then for any anonymous profile �y there is T ∈ N such that f (�y + t�x) = {a} for every t ≥ T ; and 
neutral if f ◦ σ = σ ◦ f for every σ ∈ Sm . Denote by p∗(�u) the set of anonymous preference profiles consistent with �u.

Lemma 4.3. (See Young [36].) An anonymous social choice correspondence is a scoring correspondence if and only if it is neutral, 
consistent, and continuous.

Proof of Theorem 4.2. An optimal social choice function is clearly anonymous and neutral because agent utilities are i.i.d. 
and D is neutral. Thus, we restrict our attention to functions that receive anonymous preference profiles as input.

Let f ∗ be the social choice correspondence that, given an anonymous preference profile �x, returns all a ∈ A that maximize 
E[sw(a, �u) | �x ∈ p∗(�u)], i.e.,

f ∗(�x) = argmaxa∈AE[sw(a, �u) | �x ∈ p∗(�u)].
It is sufficient to show that f ∗ is a scoring correspondence. Indeed, if f ∗ is a scoring correspondence then any choice 
from f ∗ (i.e., a choice from f ∗(�σ) for every preference profile �σ ) is a scoring function. Moreover, the set of choices from f ∗
is exactly the set of optimal choice functions.

To show that f ∗ is a scoring correspondence, it suffices, by Lemma 4.3, to demonstrate that f ∗ is consistent and con-
tinuous. To see that f ∗ is consistent, let �x and �y be two anonymous profiles such that f ∗(�x) ∩ f ∗(�y) �= ∅, and let a, a′ ∈ A
such that a ∈ f ∗(�x) ∩ f ∗(�y) and a′ /∈ f ∗(�x) ∩ f ∗(�y). Then

E[sw(a, �u) | �x ∈ p∗(�u)] ≥ E[sw(a′, �u) | �x ∈ p∗(�u)]
and

E[sw(a, �u) | �y ∈ p∗(�u)] ≥ E[sw(a′, �u) | �y ∈ p∗(�u)],
where one of the inequalities is strict. Moreover, for any b ∈ A,

E[sw(b, �u) | �x + �y ∈ p∗(�u)] =
∑

σ∈Sm

(xσ + yσ ) ·E[u(b) | σ ∈ p(u)]

=
∑

σ∈Sm

xσ ·E[u(b) | σ ∈ p(u)] +
∑

σ∈Sm

yσ ·E[u(b) | σ ∈ p(u)]

= E[sw(b, �u) | �x ∈ p∗(�u)] +E[sw(b, �u) | �y ∈ p∗(�u)].
This last equality simply says that the overall expected social welfare of an alternative with respect to two separate 
electorates—whose preferences are represented as �x and �y on the right hand side—is equal to the expected social wel-
fare of that alternative when the two electorates are put together. We conclude that

E[sw(a, �u) | �x + �y ∈ p∗(�u)] > E[sw(a′, �u) | �x + �y ∈ p∗(�u)].
This shows that a ∈ f ∗(�x + �y) and a′ /∈ f ∗(�x + �y), proving that f (�x + �y) = f (�x) ∩ f (�y).

To prove continuity, assume f ∗(�x) = {a}. Then there exists an ε > 0 such that

E[sw(a, �u) | �x ∈ p∗(�u)] −E[sw(a′, �u) | �x ∈ p∗(�u)] ≥ ε

for every a′ ∈ A \ {a}. Let �y and let T > (E[sw(a′, �u) | �y ∈ p∗(�u)])/ε for every a′ ∈ A. Then for every t ≥ T and every 
a′ ∈ A \ {a},

E[sw(a, �u) | �y + t · �x ∈ p∗(�u)] −E[sw(a′, �u) | �y + t · �x ∈ p∗(�u)]
= E[sw(a, �u) | �y ∈ p∗(�u)] −E[sw(a′, �u) | �y ∈ p∗(�u)]

+ t · (E[sw(a, �u) | �x ∈ p∗(�u)] −E[sw(a′, �u) | �x ∈ p∗(�u)])
≥ T · ε −E[sw(a′, �u) | �y ∈ p∗(�u)] > 0

It follows that f ∗(�y + t�x) = {a} for every t ≥ T , and therefore continuity is satisfied. �
The proof implies that the optimal social choice function scores alternatives based only on their position in each agent’s 

preference order. This observation allows us to construct the optimal scoring function given the distribution D .
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Corollary 4.4. Assume a neutral distribution D over utility functions. For each k = 1, . . . , m, let s∗
k = E[u(a) | (σ (u))(a) = k] for some 

arbitrary a ∈ A. Then the average-case optimal social choice function is a scoring function with parameters (s∗
1, . . . , s

∗
m).

The optimal scoring function has an especially natural form: the score s∗
k for position k is simply the expected utility 

of any alternative a for any agent conditional on a being ranked kth by that agent. (Notice that the arbitrary choice of a
is justified by the neutrality of D .) We now consider the special case where agent utilities for each alternative are drawn 
uniformly from some interval (w.l.o.g., take this to be [0, 1]).

Corollary 4.5. Let D be the uniform distribution over [0, 1]m (i.e., the utility for each alternative is drawn independently and uniformly 
from [0, 1]). Then the average-case optimal social choice function is the Borda count.

Proof. It suffices to compute s∗
k for k = 1, . . . , m. A folk theorem about the expectation of k-order statistics immedi-

ately implies that s∗
k = (m + 1 − k)/(m + 1); we provide an informal proof for completeness. Consider the random vari-

ables X1, . . . , Xm , where Xk is the utility of the alternative ranked in position k. The lengths of the m + 1 intervals 
[0, Xm], [Xm, Xm−1], . . . , [X1, 1] are identically distributed (to see this, choose m +1 points on a circle uniformly at random—
their distances are identically distributed—and then cut the circle at the first point, which becomes both 0 and 1), and the 
sum of their lengths is 1. Thus the expected length of each interval is 1/(m + 1).

Now, clearly the scoring functions defined by the vectors �s and c · �s, or �s and �s + (c, . . . , c), are identical (up to tie 
breaking). The optimal scoring function defined by the vector (m/(m + 1), . . . , 1/(m + 1)) is therefore equivalent to the 
Borda count. �
5. The learning-theoretic model

We now consider a learning-theoretic model for computing optimal social choice functions that is likely to have the 
greatest practical impact of our three models. Similarly to the average case model in the previous section, we assume 
some (possibly unknown) distribution D over utility profiles (rather than utility functions, as in Section 4). However, strong 
analytical results were made possible in the average case model only by accepting strong assumptions about the distribution, 
essentially equivalent to the impartial culture assumption. This model is unrealistic for a variety of reasons (e.g., see critiques 
by Regenwetter et al. [29]).

Instead, we devise techniques to compute approximately optimal social choice functions—specifically, optimal scoring 
functions—for arbitrary distributions D over utility profiles, without assuming a specific parameterized or stylized form, or 
independence of agent preferences. Most realistic distributions are likely to be analytically intractable, so we develop a 
sample-based optimization framework for this purpose. We assume access only to a set of sampled profiles from D—or the 
ability to generate such samples from a known distribution. With sufficiently many samples, the optimal scoring function 
with respect to these samples will be approximately optimal for D .

Because we rely only on samples from D , the model can be interpreted as learning an optimal social choice function. 
We first address the question of sample complexity by deriving bounds on the number of samples needed to compute 
approximately optimal scoring functions (as well as the more restricted class of k-approval functions). We then consider the 
problem of computing an optimal scoring function for a given sample set. We show that this problem (i.e., computing scores 
to optimize social welfare) is APX -hard, but develop a mixed integer program (MIP) for its optimization. While we discuss 
the model in learning-theoretic terms, we emphasize that the approach is equally valid when D is known: sample-based 
optimization offers a viable and very general computational model in this case.7

5.1. Requisite concepts

To quantify sample complexity, we rely on two well-known measures of the complexity of a class of functions. Let F be 
some class of functions of the form f : X → A for some set A. We say a sample x1, . . . , xd ∈ X is shattered by F if there 
exist f , g ∈F such that f (xi) �= g(xi) for each i ≤ d, and for every boolean vector (b1, . . . , bd) ∈ {0, 1} there is an h ∈F such 
that h(xi) = f (xi) if bi = 1 and h(xi) = g(xi) if bi = 0. The generalized dimension DG(F) of F is the maximum d such that 
some sample x1, . . . , xd ∈ X is shattered by F .8 The pseudo-dimension is a variation of this concept defined for real-valued 
functions. If F is a class of functions of the form f : X → R, the pseudo-dimension D P (F) of F is the maximum d such 
that there are some x1, . . . , xd ∈ X and thresholds t1, . . . , td ∈ R such that, for every (b1, . . . , bd) ∈ {0, 1}d , there exists an 
h ∈F such that h(xi) ≥ ti if bi = 1 and h(xi) < ti if bi = 0.

We will use bounds on the pseudo-dimension to derive bounds on the sample complexity. We first observe:

Observation 5.1. For any finite function class F , its (generalized or pseudo-) dimension is no greater than log2 |F |.

7 Our sample complexity results make no distributional assumptions. If sampling a known distribution D for computational reasons, much tighter 
distribution-dependent sample size results should be possible.

8 The generalized dimension is a generalization of the VC dimension; the latter notion is only defined for Boolean-valued functions.
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Let Fn,m be some class of randomized social choice functions over n agents and m alternatives. For any f ∈Fn,m , we can 
adopt the usual perspective, where f : (Sm)n → �(A) maps preference profiles into distributions over alternatives—in this 
case, we focus on the generalized dimension of Fn,m , by which we refer to the generalized dimension of the correspondence 
defined by mapping �u to the support of f (�u). We can take a different perspective by transforming f as follows: define 
f̂ (�u) = E[sw( f (�σ(�u)), �u)], where f̂ maps a utility profile �u into the expected social welfare realized by applying f to the 
preference profile �σ(�u) induced by �u. Define F̂n,m = { f̂ : f ∈ Fn,m}. With this view, we focus on the pseudo-dimension 
of F̂n,m . These are not unrelated:

Lemma 5.2. For any set of randomized social choice functions Fn,m, DG(Fn,m) ≤ D P (F̂n,m).

Proof. Assume DG (Fn,m) = d. Let �σ 1, . . . , �σ d be d preference profiles that are shattered by Fn,m , and let f , g ∈ Fn,m be 
two social choice functions that differ on each of these profiles. Define utility profiles �u1, . . . , �ud that induce �σ 1, . . . , �σ d

such that E[sw( f (�σ i), �ui)] �= E[sw(g(�σ i), �ui)] for all i; this is always possible using some small perturbation in the utility 
of a relevant candidate. For each i ≤ d, let ti = (E[sw( f (�σ i), �ui)] +E[sw(g(�σ i), �ui)])/2.

Given any (b′
1, . . . , b

′
d) ∈ {0, 1}, we need to show that there is some ĥ ∈ F̂n,m such that ĥ(�ui) ≥ ti if b′

i = 1 and ĥ(�ui) < ti

if b′
i = 0. Let (b1, . . . , bd) be a binary vector which we set as follows: if E[sw( f (�σ i), �ui)] ≥ ti and E[sw(g(�σ i), �ui)] < ti , set 

bi = b′
i ; otherwise if E[sw( f (�σ i), �ui)] < ti and E[sw(g(�σ i), �ui)] ≥ ti , set bi = 1 − b′

i . Since Fn,m shatters �σ 1, . . . , �σ d , there is 
an h ∈Fn,m that serves as a witness for �σ 1, . . . , �σ d w.r.t. (b1, . . . , bd). By construction, its corresponding ĥ ∈ F̂n,m serves as 
a witness (relative to f̂ , ̂g) to the shattering of the same d profiles given (b′

1, . . . , b
′
d). Hence D P (F̂n,m) is at least d. �

5.2. Sample-based optimization

Let Fn,m be some class of social choice functions from which we must select an optimal function f ∗ relative to some 
(possibly unknown) distribution D over utility profiles. We assume access to t sampled profiles, �u1, . . . , �ut . These may be 
samples from a population of interest, or drawn randomly from a generative model or known distribution. For each �ui , we 
also sample, generate, or compute the corresponding (possibly random, due to ties) preference profile �σ i . We treat these 
collectively as our sample: T = [(�u1, �σ 1), . . . , (�ut , �σ t)]. A sample-optimal social choice function for sample T is

f̂ ∈ argmax
f ∈Fn,m

t∑
i=1

E f (�σ i)[sw( f (�σ i), �ui)].

In a learning-theoretic sense, f̂ is the empirical risk minimizer, while from an optimization standpoint, f̂ is the solution to a 
sample-based optimization problem.

In a sample-based model, we must content ourselves with approximate optimality. Let f ∗ be an optimal social choice 
function w.r.t. distribution D . We say a social choice function f̄ is ε-optimal for some ε ≥ 0 if, for any utility profile �u,

E[sw( f̄ (�σ(�u)), �u)] ≥ E[sw( f ∗(�σ(�u)), �u)] − ε.

This definition will also be used relative to restricted classes of functions Fn,m .

5.3. Sample complexity of k-approval

We first consider the class of social choice functions known as k-approval functions. For any 1 ≤ k ≤ m − 1, the k-approval 
function is the scoring function, denoted fk , with score vector �sk = (1, 1, . . . , 0, 0) that has exactly k ones and m − k zeros. 
We assume ties among highest-scoring alternatives are broken uniformly at random.

Given distribution D , the optimal k-approval function—where our only choice is over the value of k—maximizes expected 
social welfare w.r.t. D . We denote this function by f D

k∗ . With only a collection of t sample profiles, the best we can attain 
is approximate optimality with the sample-optimal function f̂ . We determine the required sample complexity t , that is, the 
number of samples needed to ensure that f̂ is approximately optimal to some desired degree ε with high probability 1 − δ

(for some δ > 0).
Our class of social choice functions is very limited: let Fn,m

app = { fk : 1 ≤ k ≤ m − 1} be the class of k-approval functions 
with n agents and m alternatives. Define, as above, F̂n,m

app = { f̂k : fk ∈ Fn,m
app }. Let sck(�σ , a) be the k-approval score of a ∈ A

under preference profile �σ . Sample complexity depends on the pseudo-dimension of k-approval functions; since there are 
only m − 1 such functions, we can provide an immediate upper bound using Observation 5.1:

Observation 5.3. D P (F̂n,m
app ) ≤ log2(m − 1).

This bound is asymptotically tight:
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Theorem 5.4. For all m ≥ 6 and n ≥ 2m − 3, D P (F̂n,m
app ) = �(log m).

Proof. Let d ≥ 1 be an integer. We will show that the generalized dimension DG (Fn,m
app ) of k-approval functions on pref-

erence profiles with m ≥ 2d+1 + 2 alternatives and n ≥ 2d+2 + 1 agents is at least d. We will first construct d preference 
profiles �σ 1, �σ 2, . . . , �σ d with exactly 2d+1 + 2 alternatives, including two special ones a and b, and exactly 2d+2 + 1 agents 
with the following property. For any integers k = 2, 3, . . . , 2d + 1 and t = 1, 2, . . . , d, k-approval returns as the sole winner 
in profile �σ t :

• alternative a, if the t-th bit in the binary representation of k − 2 is 1, and
• alternative b otherwise.

Then, we will show how to easily extend our construction for m ≥ 2d+1 + 2 alternatives and n ≥ 2d+2 + 1 agents. As a 
corollary, we will have obtained that the particular sample of d profiles is shattered by the class of k-approval functions. 
The theorem will then follow by Lemma 5.2 and by the relation between d, m, and n.

Our construction for preference profile �σ t is as follows. The set of alternatives contains the two special alternatives a
and b as well as two disjoint sets of alternatives A1 and A2, each of size 2d . Each profile has 2d+2 + 1 agents partitioned 
into five disjoint sets: a set of 2d agents Nq for q = 1, 2, 3, 4, and an extra agent. For q ∈ {1, 2}, the agents in Nq rank 
alternatives a and b in the first two positions (in arbitrary order), then the alternatives in Aq (in arbitrary order), and then 
the alternatives in A3−q (again, in arbitrary order). All the agents in N3 rank alternative a last. For j = 0, 1, . . . , 2d−t − 1, 
2t agents of N3 rank alternative b in position 2 + j2t . The remaining top 2d + 1 positions in the ranking of each agent in 
N3 are occupied by alternatives in A1 in arbitrary order; the next 2d positions are occupied by alternatives in A2 (again, in 
arbitrary order). All the agents in N4 rank alternative b last. For j = 0, 1, . . . , 2d−t − 1, 2t agents of N4 rank alternative a in 
position 2 + 2t−1 + j2t . The remaining top 2d + 1 positions in the ranking of each agent in N4 are occupied by alternatives 
in A2 in arbitrary order; the next 2d positions are occupied by alternatives in A1 (again, in arbitrary order). Finally, the 
extra agent ranks alternative a first, alternative b last, and the alternatives in A1 ∪ A2 in between in arbitrary order.

Now, note that each alternative in Aq is ranked in the first 2d + 1 positions by at most 2d+1 + 1 agents (the agents in 
Nq ∪ N2+q and, possibly, the extra agent). Hence, the k-approval score of each alternative in A1 ∪ A2 is at most 2d+1 + 1
for every k in {2, . . . , 2d + 1}. Also, observe that alternative b is ranked in one of the top two positions by at least 2d+1 + 2
agents (the agents in N1 ∪ N2 as well as 2t agents of N3). Hence, no alternative from A1 ∪ A2 is a winner in profile �σ t

under k-approval, for t = 1, . . . , d and k = 2, . . . , 2d + 1.
It remains to compute the k-approval score of alternatives a and b. Consider profile �σ t . Observe that, for every k =

2, . . . , 2d + 1, the number of agents in N3 that rank alternative b in the top k positions is

2t
(⌊

k − 2

2t

⌋
+ 1

)
= 2t

⌊
k − 2 + 2t

2t

⌋

and similarly the number of agents in N4 that rank alternative a in the top k positions is 2t� k−2+2t−1

2t �. Hence, the k-approval 
scores of a and b are 2d+1 + 1 + 2t� k−2+2t−1

2t � and 2d+1 + 2t� k−2+2t

2t �, respectively. Let bt be the t-th least significant bit 
in the binary representation of k − 2 and let λ, ν be unique integers such that 0 ≤ λ ≤ 2t−1 − 1, 0 ≤ ν ≤ 2d−t − 1, and 
k − 2 = λ + bt 2t−1 + ν2t . Then,

sck(a, �σ t) − sck(b, �σ t) = 1 + 2t
⌊

k − 2 + 2t−1

2t

⌋
− 2t

⌊
k − 2 + 2t

2t

⌋

= 1 + 2t
⌊

λ + bt2t−1 + ν2t + 2t−1

2t

⌋
− 2t

⌊
λ + bt2t−1 + ν2t + 2t

2t

⌋

= 1 + 2t
⌊

λ + bt2t−1 + ν2t + 2t−1

2t

⌋
− 2t(ν + 1)

= 1 + 2t
⌊

λ + bt2t−1 − 2t−1

2t

⌋

= 1 + 2t(bt − 1),

where the third and fifth equalities hold because 0 ≤ λ ≤ 2t−1 − 1 (and bt ∈ {0, 1}). Using the fact that t ≥ 1, observe that 
sck(a, �σ t) − sck(b, �σ t) is strictly positive if bt = 1 and strictly negative if bt = 0. Hence, the sole winner under k-approval is 
alternative a if bk = 1 and alternative b otherwise.

To complete the proof, it suffices to modify the construction above and capture the more general case of m ≥ 2d+1 + 2
alternatives and n ≥ 2d+2 +1 agents as follows. Each of the 2d+2 +1 agents in the above construction ranks the m −2d+1 −2
additional alternatives in the last positions of its ranking. In addition to these agents, there are n −2d+2 −1 agents that rank 
alternatives a and b in the first two positions (in arbitrary order) and then the remaining alternatives (again, in arbitrary 
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order). These modifications do not change the winner of profile �σ t under k-approval for every k ∈ {2, 3, . . . , 2d + 1}. This 
is due to the facts that alternative b still has strictly higher k-approval score than any other alternative different than a
(alternative b is ranked above all alternatives besides a by the additional agents and is clearly ranked above the additional 
alternatives by all agents), and the difference in the k-approval scores between a and b is not affected by the additional 
agents (since k ≥ 2). �

Observation 5.3 and Theorem 5.4 show that D P (F̂n,m
app ) = �(log m) provided that n ≥ 2m − 3. Standard learning-theoretic 

results [2] allow us to bound sample complexity for optimizing k-approval (within a constant factor).

Theorem 5.5. For any ε, δ > 0, there exists a C > 0 such that if t ≥ C log(m/δ)/ε2 , then for any distribution D over utility profiles, 
with probability at least 1 − δ over t i.i.d. utility profiles, the sample-optimal k-approval function f̂k is ε-optimal for D. Furthermore, 
for n ≥ 2m − 3, there is a C ′ > 0 such that no algorithm can construct an ε-optimal k-approval function, with probability at least 
1 − δ, if t < C ′ log(m/δ)/ε2 .

5.4. Sample complexity of scoring functions

The class of k-approval functions is quite restrictive, so we now consider construction of an approximately optimal 
scoring function without restricting score vector structure. Limiting attention to scoring functions does not ensure optimality 
within the class of arbitrary functions. However, it is a natural restriction, first, because of the prominence of scoring 
functions as illustrated above, and second, because of the natural interpretation and appeal of such social choice functions.9

Let f�s denote the scoring (social choice) function induced by score vector �s, and let Fn,m
s = { f�s : �s ∈ R

m} be the class of 
all scoring functions with n agents and m alternatives. We again assume ties among highest-scoring alternatives are broken 
uniformly at random. Define F̂n,m

s = { f̂�s : f�s ∈Fn,m
s }. We derive the sample complexity for scoring functions, i.e., the number 

of sampled utility profiles needed to ensure that the sample-optimal f̂�s is ε-optimal for some desired ε, with probability at 
least 1 − δ.

We first bound the pseudo-dimension of F̂n,m
s . Procaccia et al. [28] prove a lower bound of m − 3 on DG(Fn,m

s ) for all 
n ≥ 4 and m ≥ 4. By Lemma 5.2, we obtain the following statement.

Corollary 5.6. For all n ≥ 4 and m ≥ 4, D P (F̂n,m
s ) ≥ m − 3.

In the same paper, Procaccia et al. [28] prove that the number of distinct scoring functions is at most 2O(m2 log n) . 
Even though their original result assumes a deterministic tie-breaking rule, their proof can be adapted for randomized 
tie-breaking. Using this bound together with Observation 5.1, we immediately obtain that D P (F̂n,m

s ) = O(m2 log n). We can 
derive a significantly better upper bound that depends only on m:

Theorem 5.7. D P (F̂n,m
s ) =O(m log m).

We require the following result of Warren [33] (though we use an extension due to Alon [1], where the signum function 
takes values in {−1, 0, 1}):

Lemma 5.8. (See [33,1].) Let P be a set of K polynomials of degree τ on � real variables. Then, the number of different sign patterns P
may have is at most 

(
8eτ K

�

)�

.

In the context of the lemma, a sign pattern is a vector of values in {−1, 0, 1} that is obtained by applying each polynomial 
in P to the same input.

Proof of Theorem 5.7. Let A be a set of m ≥ 3 alternatives. Consider a sample of d preference profiles �σ 1, �σ 2, . . . , �σ d

from (Sm)n , corresponding utility profiles �u1, . . . , �ud , and real thresholds t1, t2, . . . , td such that for every binary vector b
with d entries, there exists a scoring function f�sb

, with score vector �sb , such that E[sw( f�sb
(�σ i), �ui)] ≥ ti if bi = 1 and 

E[sw( f�sb
(�σ i), �ui)] < ti otherwise. Denote by F∗ ⊆Fn,m

s the set of these scoring functions. We will show that d < 6m log2 m.
For i = 1, . . . , d, we partition the set of alternatives A into the sets A+

i = {a ∈ A : sw(a, �ui) ≥ ti} and A−
i = {a ∈ A :

sw(a, �ui) < ti}. By definition of the scoring functions in F∗ , the sets A+
i and A−

i are non-empty. In addition, for i = 1, . . . , d
and any pair of alternatives a+ ∈ A+

i and a− ∈ A−
i , define the function

9 Optimization over the class of arbitrary social choice functions may well give results that cannot be communicated without enumerating all possible 
profiles.
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Li
a+,a−(�s) = sc�s(a+, �σ i) − sc�s(a−, �σ i).

This is a linear function on m variables, the entries of the score vector �s. Let sgn :R → {−1, 0, 1} denote the signum function. 
The sign of Li

a+,a− (�s) denotes whether the score of alternative a+ under f�s on profile �σ i is lower than, equal to, or higher 
than the score of alternative a− , respectively. Let L denote the collection of the functions above and observe that there are 
at most dm2/4 such functions.

We will show that the score vectors of the functions in F∗ define at least 2d different sign patterns for L. Consider 
two binary vectors b1 and b0 that differ in the i-th coordinate. W.l.o.g., assume that b1

i = 1 and b0
i = 0. For k ∈ {0, 1}, let 

Ak = argmaxa∈A{sc�sbk
(a, �σ i)} be the set of alternatives with the highest score under f�sbk

(�σ i). Observe that the sets A+
i ∩ A1

and A−
i ∩ A0 are non-empty since E[sw( f�sb1

(�σ i), �ui)] ≥ ti and E[sw( f�sb0
(�σ i), �ui)] < ti .

We claim that there are two alternatives a1 ∈ A+
i ∩ A1 and a0 ∈ A−

i ∩ A0 such that either a0 /∈ A1 or a1 /∈ A0. Assume 
that this is not the case; it follows that A+

i ∩ (A1 \ A0) = ∅ and A−
i ∩ (A0 \ A1) = ∅. Hence, for every a ∈ A0 \ A1 (if any) 

it holds that a ∈ A+
i and hence sw(a, �ui) ≥ ti . Similarly, for every alternative a ∈ A1 \ A0 (if any) it holds that a ∈ A−

i and 
hence sw(a, �ui) < ti . Using these observations together with the fact that f�sb1

(�σ i) and f�sb0
(�σ i) select the winning alternative 

uniformly at random among A1 and A0, respectively, and E[sw( f�sb1
(�σ i), �ui)] ≥ ti > E[sw( f�sb0

(�σ i), �ui)], we obtain

∑
a∈A1∪A0

sw(a, �ui) =
∑

a∈A1

sw(a, �ui) +
∑

a∈A0\A1

sw(a, �ui) ≥ |A1| · ti + |A0 \ A1| · ti

= |A0| · ti + |A1 \ A0| · ti >
∑

a∈A0

sw(a, �ui) +
∑

a∈A1\A0

sw(a, �ui)

=
∑

a∈A1∪A0

sw(a, �ui),

a contradiction.
If a1 ∈ A1 \ A0, this means that sc�sb1

(a1, �σ i) ≥ sc�sb1
(a0, �σ i) and sc�sb0

(a1, �σ i) < sc�sb0
(a0, �σ i) (i.e., Li

a1,a0
(�sb1) ≥ 0 and 

Li
a1,a0

(�sb0) < 0). Similarly, if a0 ∈ A0 \ A1, then sc�sb1
(a1, �σ i) > sc�sb1

(a0, �σ i) and sc�sb0
(a1, �σ i) ≤ sc�sb0

(a0, �σ i) (i.e., Li
a1,a0

(�sb1 ) >
0 and Li

a1,a0
(�sb0) ≤ 0). Both cases imply that the sign patterns of L corresponding to �sb1 and �sb0 are different.

Hence, we have obtained a lower bound of 2d on the number of different sign patterns of L. By applying Lemma 5.8
(with K ≤ dm2/4, τ = 1, and � = m), we obtain an upper bound of (2edm)m on the number of different sign patterns for L. 
Hence, 2d ≤ (2edm)m and, equivalently, 2d/dm ≤ (2em)m .

For the sake of contradiction, assume that d ≥ 6m log2 m and observe that 2d/dm increases with d in this range. Then, 
2d/dm ≥

(
m6

6m log2 m

)m
which, together with the above inequality, yields m4 ≤ 12e log2 m; a contradiction since m ≥ 3. �

Again, standard results allow us to bound the sample complexity:

Theorem 5.9. For any ε, δ > 0, there exists a C > 0 such that if t ≥ C[m log2 m + log(1/δ)]/ε2 , then for any distribution D over 
utility profiles, with probability at least 1 − δ over t i.i.d. utility profiles, the sample-optimal scoring function f̂�s is ε-optimal for D. 
Furthermore, there is a C ′ > 0 such that no algorithm can construct an ε-optimal scoring function, with probability at least 1 − δ, if 
t < C ′[m + log(1/δ)]/ε2 .

5.5. Computing optimal scoring functions

We now turn our attention to the question of computing approximately optimal scoring functions. Specifically, given 
a sample T = [(�u1, �σ 1), . . . , (�ut , �σ t)], we must compute the scoring vector �s corresponding to the sample-optimal scoring 
function f̂�s:

f̂�s ∈ argmax
f�s

t∑
i=1

E f�s(�σ i)[sw( f�s(�σ i), �ui)].

This problem turns out to be computationally hard.

Theorem 5.10. Computing the sample-optimal scoring function is APX -hard.

The theorem, whose proof appears in Appendix B, implies that, if P �= NP , the problem does not even admit a polyno-
mial time approximation scheme.
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On the positive side, we formulate the problem of computing sample-optimal scoring functions as a MIP. Its primary 
variables are the scores si . We describe key variables and constraints in the MIP in turn.10

Any scoring vector �s = (s1, . . . , sm) can be normalized without impacting the choice function, so we constrain �s as 
follows:

s1 + · · · + sm = 1, si ≥ si+1 ∀i ≤ m − 1, and sm ≥ 0. (4)

Ties are again broken uniformly at random. Function f�s selects an alternative for each �σ i . To encode this, first abbreviate 
the score of a given �σ i via the linear expression

sc(a, �σ i) =
m∑

j=1

Jajis j ∀a ∈ A, i ≤ t, (5)

where Jaji is the number of agents in �σ i that rank a in position j. Note that Jaji is a constant and sc(a, �σ i) ∈ [0, n] is 
continuous as a function of �σ i . Let Iabi , for any alternatives a �= b and i ≤ t , be a binary variable indicating whether a’s score 
is at least that of b given �σ i . We encode this as follows:

(n + γ )Iabi − γ ≥ sc(a, �σ i) − sc(b, �σ i) ∀i ≤ t,a �= b, (6)

nIabi − n ≤ sc(a, �σ i) − sc(b, �σ i) ∀i ≤ t,a �= b, (7)

where γ is a (fixed) parameter that handles optimization-dependent floating point accuracy (corresponding to the level 
of discretization among scores). If the score difference is non-negative then constraint (6) forces Iabi = 1 and (7) must be 
satisfied. If the difference is negative, then (7) forces Iabi = 0 and (6) is satisfied. Let binary variable Iai indicate if a is 
selected (possibly tied), given �s under �σ i . We require:

m − 2 + Iai ≥
∑

b:b �=a

Iabi and (m − 1)Iai ≤
∑

b:b �=a

Iabi ∀a, i ≤ t. (8)

Our objective is to choose �s to maximize the average social welfare over our samples; however, we must account for random 
tie-breaking, leading to the following objective:

max
�s,I

t∑
i=1

∑
a sw(a, �ui) · Iai∑

a Iai
.

We can linearize the objective using indicator variables Ski , for k ≤ m and i ≤ t , where Ski = 1 iff k = ∑
a Iai , requiring that

m∑
k=1

kSki =
∑

a

Iai and
m∑

k=1

Ski = 1 ∀i ≤ t. (9)

Our objective then becomes

max
�s,I,S

t∑
i=1

m∑
k=1

∑
a sw(a, �ui) · Iai

k
· Ski.

Finally, let Zaki indicate if Iai · Ski = 1, which is encoded as

1 + Zaki ≥ Iai + Ski and 2Zaki ≤ Iai + Ski ∀a ∈ A,k ≤ m, i ≤ t. (10)

Pulling these together, our MIP is:

max
�s,I,S,Z

t∑
i=1

m∑
k=1

∑
a

1

k
sw(a, �ui) · Zaki (11)

subject to (4,6,7,8,9,10),

which has (2m2 + m + 1)t variables and 4m2t + 2t + m + 1 constraints.

10 With suitable constraints on scores, the MIP can be used to compute optimal k-approval functions; however, direct evaluation of the small number of 
such restricted functions is feasible (if m is small).
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Fig. 2. Histograms of distortion ratios for uniform and jester experiments (average distortions are shown).

5.6. Experiments

We now empirically investigate the performance of both average-case optimal social choice functions and sample-optimal 
scoring functions by measuring their distortion. In the former case, we consider random utility profiles, while in the latter, 
we use a real data set with user-provided ratings of alternatives as a surrogate for utilities.

Our first experiment (uniform) investigates the uniform utility distribution described in Section 4. While Borda op-
timizes expected social welfare in this model (Corollary 4.5), it may not minimize distortion. We empirically measure its 
expected distortion by randomly generating t = 1000 profiles from the uniform model for various values of m and n, and 
computing the distortion of Borda count (vis-à-vis the socially optimal alternative). Results are shown in the four leftmost 
histograms of Fig. 2. Each histogram shows the distortions of the 1000 utility profiles, for a fixed m and n (note the log-
arithmic scaling on the y-axis). Clearly, overall distortion is very small: average distortion is much less than 1.01 in each 
case, and never exceeds 1.1 for any random profile. We also see that average distortion decreases as either m or n increases.

Our second experiment uses the jester dataset [14], which consists of 4.1M user ratings of 100 different jokes by over 
60,000 users. Ratings are on a continuous scale between [−10, 10], which we rescale to the range [0, 20]. We define the set 
of alternatives to be the eight most-rated jokes, and draw agents from the set of 50,699 users who rated all eight. We create 
a sample of 100 “training profiles” from this data set, each with 100 voters, and use this sample to learn an approximately 
optimal scoring function.11 The score vector that results is �s∗ = (0.25, 0.15, 0.14, 0.13, 0.12, 0.11, 0.1, 0.0). Note the signif-
icant dip from s1 to s2, the gradual drop to s7, then the significant drop to s8, which is rather “un-Borda-like.” We divide 
the remaining users into 406 test profiles (each with 100 users), and evaluate the distortion of the learned function f�s∗
on each. For comparison, we also evaluate the Borda, harmonic and 3-approval functions on the same profiles. Results are 
shown in the four rightmost histograms of Fig. 2. We see clearly that distortion is almost negligible for the f�s∗ , Borda and 
harmonic functions, with average distortion less than 1.009 (and at worst roughly 1.1). By contrast, 3-approval is somewhat 
worse, with average distortion of 1.0113 (and in the worst case about 1.15). The sample-optimal function f�s∗ performs 
slightly worse than Borda, due to mild overfitting on the training profiles (note that the theoretical sample complexity for 
this problem is much greater than the 100 samples used). These results are of course limited, and merely suggestive; but 
they do indicate that scoring functions, either empirically optimized, or relying on stylized scoring vectors like Borda and 
harmonic score, can very closely approximate optimal social choice functions in practice.

6. Discussion

Our work offers three different but related perspectives on utilitarian social choice. Each model makes fundamentally dif-
ferent assumptions about the mechanism’s knowledge of the agents’ utility information. In the worst-case model, we study 
the distortion of randomized social choice functions assuming no information about the underlying utilities. In the average-
case model, we derive the optimal social choice function with respect to distributions that are i.i.d. and neutral. Finally, 
in the learning-theoretic model, we develop a method for approximately optimizing (scoring-based) social choice functions 
under arbitrary utility distributions, establish sample complexity bounds and provide encouraging empirical results.

Our work raises a number of important questions and directions for future research. Access to sampled utility profiles, as 
assumed in our learning-theoretic model, may be difficult to obtain in practice. However, techniques from decision analysis 

11 CPLEX 12.2 on a modern workstation took 23.6 hrs. to solve the resulting MIP (accuracy gap of 1.52%).
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and preference elicitation using lotteries, or more readily comprehensible queries involving simple comparisons, can be used 
to assess the utility functions of specific agents [9], while econometric techniques often use revealed preference or stated 
choice data to develop probabilistic models of utilities [20]. Applying these methods to the design of optimal (ranking-based) 
social choice functions is an important direction for future work.

One of our motivations is to reduce the cognitive and communication burden associated with utilities or valuations 
by allowing the agents to specify rankings. This burden can be further reduced by intelligent elicitation of partial ranking 
information [19,22]. Our utilitarian model offers a novel perspective on vote elicitation and raises the possibility of designing 
schemes that perform well with respect to utilitarian social welfare.

The utilitarian perspective also suggests new ways of assessing the potential manipulation of social choice functions. 
By assuming agents have utility functions, and probabilistic information about the utilities of their counterparts, one can 
quantify the gains of potential misreports in terms of expected utility, providing a Bayesian view of manipulation [23]. The 
design of scoring functions that make appropriate trade-offs between degree of optimality and degree of manipulability is 
another important problem to which our methods may be adapted.
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Appendix A. Proof of Theorem 3.3

We begin by defining a randomized social choice function f . For a non-negative integer i, define the sets of alterna-
tives Bi(�σ ) as follows. Set B0(�σ) consists of all alternatives in A. For i ≥ 1, an alternative a ∈ Bi−1(�σ) belongs to Bi(�σ ) if 
there exists a utility profile �ua ∈ p−1(�σ) in which a has maximum social welfare and, furthermore,

|B�(�σ)|
3
√

m
sw(a, �ua) ≥

∑
a′∈B�(�σ)

sw(a′, �ua) (12)

for all � ∈ {0, i − 1}.
Given the preference profile �σ ∈ (Sm)n , our randomized social choice function f first computes the sets B0(�σ), 

B1(�σ), . . . , Bk(�σ ) where k is the smallest integer such that either |Bk(�σ)| < 3
√

m or Bk+1(�σ) = ∅. Deciding whether an 
alternative of Bi−1(�σ) is included in Bi(�σ ) can be done in polynomial time by checking the feasibility of a straightforward 
linear program. Then, the function f picks an integer i ∈ {0, . . . , k} uniformly at random, and selects equiprobably among 
the alternatives in Bi(�σ).

In the remainder of the proof we show that for every �σ ∈ (Sm)n , dist( f , �σ) = O(
√

m · log∗ m). Specifically, we will 
establish that the distortion is less than 3

√
m(log∗ m + 1) for m ≥ 9.

Given a preference profile �σ , consider a utility profile �u consistent with �σ , and let a∗ be an alternative with the highest 
social welfare. Let t be the largest integer in {0, 1, . . . , k} such that a∗ ∈ Bt(�σ ). First consider the special case where t = k
and |Bk(�σ)| < 3

√
m; f picks alternative a∗ with probability higher than 1

3(k+1)
√

m
.

In any other case, alternative a∗ does not belong to set Bt+1(�σ). This means that �u (and every other utility profile 
in p−1(�σ ) in which a∗ has the highest social welfare) satisfies

1

|B�(�σ)|
∑

a′∈B�(�σ)

sw(a′, �u) >
1

3
√

m
sw(a∗, �u)

for some � ∈ {0, t}. With probability 1
k+1 , the algorithm picks a random alternative from B�(�σ). Therefore, its expected social 

welfare is at least

1

(k + 1)|B�(�σ)|
∑

a′∈B�(�σ)

sw(a′, �u) >
1

3(k + 1)
√

m
sw(a∗, �u).

The theorem will follow by proving that k ≤ log∗ m. To do this, we assume that m ≥ 9, and show that, for every integer 
i ≥ 1 such that |Bi−1(�σ)| ≥ 3

√
m, it holds that

2|Bi(�σ)|
3
√

m
≤ log2

2|Bi−1(�σ)|
3
√

m
. (13)

This implies that |B log∗ (
2
√

m/3
)(�σ)| < 3

√
m and, hence,
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k ≤ log∗ (
2
√

m/3
) ≤ log∗ m.

The remainder of the proof is therefore devoted to establishing Equation (13).
In the following, we will show that inequality (13) is true for i ≥ 1 assuming that |Bi−1(�σ)| ≥ 3

√
m. For each alternative 

a ∈ Bi(�σ), let �ua be a utility profile satisfying inequality (12). For such an alternative, denote by N1(a) the set of agents 
which rank less than |Bi−1(�σ)|√

m
alternatives of Bi−1(�σ) above a. Let N2(a) = N \ N1(a). Also, for s ∈ {1, 2}, let

Us =
∑

a∈Bi(�σ)

∑
j∈Ns(a)

ua
j(a).

First, observe that for each agent j ∈ N2(a), there are at least |Bi−1(�σ)|√
m

alternatives a′ of Bi−1(�σ) with ua
j(a

′) ≥ ua
j(a). 

Hence, we have
∑

a∈Bi(�σ)

∑
a′∈Bi−1(�σ)

sw(a′, �ua) =
∑

a∈Bi(�σ)

∑
a′∈Bi−1(�σ)

∑
j∈N

ua
j(a

′)

≥
∑

a∈Bi(�σ)

∑
j∈N2(a)

∑
a′∈Bi−1(�σ)

ua
j(a

′)

≥ |Bi−1(�σ)|√
m

∑
a∈Bi(�σ)

∑
j∈N2(a)

ua
j(a) = |Bi−1(�σ)|√

m
U2. (14)

In addition, since each alternative in Bi(�σ) satisfies inequality (12) for � = i − 1, we have

∑
a∈Bi(�σ)

∑
a′∈Bi−1(�σ)

sw(a′, �ua) ≤
∑

a∈Bi(�σ)

|Bi−1(�σ)|
3
√

m
sw(a, �ua) = |Bi−1(�σ)|

3
√

m
(U1 + U2). (15)

It follows from (14) and (15) that U1 ≥ 2U2. Now, using inequality (12) for � = 0, we have

3U1 ≥ 2(U1 + U2) = 2
∑

a∈Bi(�σ)

∑
j∈N

ua
j(a) = 2

∑
a∈Bi(�σ)

sw(a, �ua)

≥ 6
√

m

|B0(�σ)|
∑

a∈Bi(�σ)

∑
a′∈B0(�σ)

sw(a′, �ua) = 6n√
m

|Bi(�σ)|, (16)

where the last equality follows from Assumption 3.1 and the fact that |B0(�σ)| = m. Also, observe that U1 is upper-bounded 
by the total harmonic score of alternatives in the first �|Bi−1(�σ)|/√m� positions in each agent’s preference, i.e.,

3U1 ≤ 3nH�|Bi−1(�σ)|/√m� ≤ 9n log2
2|Bi−1(�σ)|

3
√

m
, (17)

where Hk is the kth harmonic number. The second inequality follows from the fact that |Bi−1(�σ)| ≥ 3
√

m and H�t� ≤
3 log2

2t
3 for every t ≥ 3. By (16) and (17), we obtain inequality (13) as desired. The proof of Theorem 3.3 is therefore 

complete. �
Appendix B. Proof of Theorem 5.10

We will use a reduction from Independent Set in 3-regular graphs and an explicit inapproximability result due to Berman 
and Karpinski [6].

Theorem 6.1. (See Berman and Karpinski [6].) Given a 3-regular graph G with 284T nodes and 426T edges for some integer T ≥ 2
and any constant ε ∈ (0, 1/2), it is NP-hard to distinguish between the following two cases:

• G has an independent set of size at least (140 − ε)T .
• Any independent set of G has size at most (139 + ε)T .

The proof of Theorem 6.1 in [6] can be thought of as a polynomial-time reduction that transforms an instance φ of 
the generic NP-hard problem of Satisfiability to an instance of Independent set on a 284T -node 3-regular graph. The 
reduction is such that G has an independent set of size (140 − ε)T if φ is satisfiable while any independent set of G
has size at most (139 + ε)T otherwise. Our reduction will use the particular instances in the proof of [6]. Given such an 
instance with an integer parameter T ≥ 2 and any constant ε ∈ (0, 1/2), our reduction constructs in polynomial time a 
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N1 N2 N3 N4 N5

Rank ×(2T − 2) ×140T ×(2T − 2) ×140T ×1
1 a1 a1 b1 b1 b1

2 a2 a2 b2 b2 c2

· · · · ·
· · · · ·
v av av bv a1 cv

v + 1 av+1 b1 bv+1 bv cv+1

v + 2 av+2 av+1 bv+2 bv+1 cv+2

· · · · ·
· · · · ·

|V | + 1 b1 a|V | a1 b|V | a1

|V | + 2 c2 c2 a2 a2 b2

|V | + 3 c3 c3 a3 a3 b3

· · · · ·
· · · · ·

2|V | c|V | c|V | a|V | a|V | b|V |
2|V | + 1 b2 b2 c2 c2 a2

· · · · ·
· · · · ·

3|V | − 1 b|V | b|V | c|V | c|V | a|V |

Fig. 3. The preference profile corresponding to node v . The corresponding utility profile �uv is such that sw(a1, �uv ) = 70T , sw(b1, �uv ) = T , and sw(a, �uv ) ≤ T
for alternative a different than a1 and b1, so that it uniquely induces �σ v .

family of 710T utility profiles that uniquely defines a family R of corresponding preference profiles for some integer T ≥ 2, 
so that:

• If the input graph has an independent set of size at least (140 − ε)T , then there is a scoring vector �s such that the total 
expected social welfare of the winning alternatives under f�s over all profiles in R is at least (39,764 − 69ε)T 2.

• If any independent set of G has size at most (139 − ε)T , then for every scoring vector �s, the total expected social 
welfare of the winning alternatives under f�s over all profiles in R is at most (39,695 + 69ε)T 2.

In this way we will conclude that distinguishing between these two cases for the profiles returned by our reduction is 
an NP-hard problem. In other words, the problem is hard to approximate within a factor better than 39,764/39,695 ≈
1.00174.

The reduction Let G = (V , E) be a 3-regular graph with 284T nodes (and 426T edges). We assume that the nodes of V
are identified by the integers 1, 2, . . . , |V |. We construct |V | preference profiles corresponding to the nodes in V and |E|
preference profiles corresponding to the edges of E (i.e., 710T profiles in total). Denote by R the family of these prefer-
ence profiles. All profiles have 284T − 3 agents and 3|V | − 1 = 852T − 1 alternatives. Among them, there are two special 
alternatives a1 and b1 as well as alternatives ai , bi , and ci for i = 2, . . . , |V |. The corresponding utility profiles are such that 
the total utility of each agent for all alternatives is exactly 1 and, furthermore, these utilities are all different so that the 
corresponding preference profile is uniquely defined.

Specifically, for each node v , the preference profile �σ v is defined as follows. The agents are partitioned into 5 sets N1, 
. . . , N5:

• Set N1 consists of 2T −2 agents that rank alternative ai at position i for i = 1, . . . , |V |, alternative b1 at position |V | +1, 
and alternatives ci and bi at positions |V | + i and 2|V | + i − 1, respectively, for i = 2, . . . , |V |.

• Set N2 consists of 140T agents that rank alternative ai at position i for i = 1, . . . , v , alternative b1 at position v + 1, 
alternative ai at position i + 1 for i = v + 1, . . . , |V |, and alternatives ci and bi at positions |V | + i and 2|V | + i − 1, 
respectively, for i = 2, . . . , |V |.

• Set N3 consists of 2T − 2 agents that rank alternative bi at position i for i = 1, . . . , |V |, alternative ai at position |V | + i
for i = 1, . . . , |V |, and alternative ci at position 2|V | + i − 1 for i = 2, . . . , |V |.

• Set N4 consists of 140T agents that rank alternative a1 at position v , alternative bi at position i for i = 1, . . . , v − 1, 
alternative bi at position i + 1 for i = v + 1, . . . , |V | + 1, and alternatives ai and c2 at positions |V | + i and 2|V | + i − 1, 
respectively, for i = 2, . . . , |V |.

• Set N5 consists of one agent that ranks alternative b1 first, alternative ci at position i for i = 2, . . . , |V |, alternative a1
at position |V | + 1, and alternatives bi and ci at positions |V | + i and 2|V | + i − 1, respectively, for i = 2, . . . , |V |.

See Fig. 3 for an example. The corresponding utility profile �uv is such that sw(a1, �uv) = 70T , sw(b1, �uv) = T , and sw(a, �uv) ≤
T for alternative a ∈ A \ {a1, b1}, so that it uniquely induces �σ v . Observe that the 142T − 2 agents of N1 ∪ N2 always rank 
alternative a1 first and the 2T − 1 > T agents of N3 ∪ N5 always rank alternative b1 first; hence the definition of �uv is 
clearly feasible and the construction can be implemented in polynomial time.
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N1 N2 N3 N4 N5

Rank ×(71T − 1) ×(71T − 1) ×1 ×(71T − 1) ×(71T − 1)

1 a1 a1 a1 b1 b1

2 a2 a2 c2 b2 b2

· · · · · ·
· · · · · ·
v b1 av cv bv bv

v + 1 av av+1 cv+1 a1 bv+1

v + 2 av+1 av+2 cv+2 bv+1 bv+2

· · · · · ·
· · · · · ·

w aw−1 b1 cw bw−1 bw

w + 1 aw aw cw+1 bw a1

w + 2 aw+1 aw+1 cw+2 bw+1 bw+1

· · · · · ·
· · · · · ·

|V | + 1 a|V | a|V | b1 b|V | b|V |
|V | + 2 b2 b2 a2 c2 c2

|V | + 3 b3 b3 a3 c3 c3

· · · · · ·
· · · · · ·

2|V | b|V | b|V | b|V | c|V | c|V |
2|V | + 1 c2 c2 b2 a2 a2

· · · · · ·
· · · · · ·

3|V | − 1 c|V | c|V | b|V | a|V | a|V |

Fig. 4. The preference profile �σ e corresponding to edge e = (v, w) with v < w . The corresponding utility profile �ue is such that sw(a1, �ue) = 70T , 
sw(b1, �ue) = T , and sw(a, �ue) ≤ T for alternative a different than a1 and b1, so that it uniquely induces �σ e .

For each edge e = (v, w) with v < w , the preference profile �σ e is defined as follows. The agents are partitioned into 5
sets N1, . . . , N5:

• Set N1 consists of 71T − 1 agents that rank alternative b1 at position v , alternative ai at position i for i = 1, . . . , v − 1, 
alternative ai at position i + 1 for i = v, . . . , |V |, and alternatives bi and ci at positions |V | + i and 2|V | + i − 1, 
respectively, for i = 2, . . . , |V |.

• Set N2 consists of 71T − 1 agents that rank alternative ai at position i for i = 1, . . . , w − 1, alternative b1 at position w , 
alternative ai at position i + 1 for i = w + 1, . . . , |V |, and alternatives bi and ci at positions |V | + i and 2|V | + i − 1, 
respectively, for i = 2, . . . , |V |.

• Set N3 consists of one agent that ranks alternative a1 first, alternative ci at position i for i = 2, . . . , |V |, alternative b1
at position |V | + 1, and alternatives ai and bi at positions |V | + i and 2|V | + i − 1, respectively, for i = 2, . . . , |V |.

• Set N4 consists of 71T − 1 agents that rank alternative bi at position i for i = 1, . . . , v , alternative a1 at position v + 1, 
alternative bi at position i + 1 for i = v + 1, . . . , |V |, and alternatives ci and ai at positions |V | + i and 2|V | + i − 1, 
respectively, for i = 2, . . . , |V |.

• Set N5 consists of 71T − 1 agents that rank alternative bi at position i for i = 1, . . . , w , alternative a1 at position w + 1, 
alternative bi at position i + 1 for i = w + 1, . . . , |V |, and alternatives ci and ai at positions |V | + i and 2|V | + i − 1, 
respectively, for i = 2, . . . , |V |.

See Fig. 4 for an example. The corresponding utility profile �ue is such that sw(a1, �ue) = 70T , sw(b1, �ue) = T , and sw(a, �ue) ≤
T for a ∈ A \ {a1, b1}, so that it uniquely induces �σ e . Observe that the 71T agents of N1 ∪ N3 always rank alternative a1 first 
and the 142T − 2 agents of N4 ∪ N5 always rank alternative b1 first; hence the definition of �ue is clearly feasible and the 
construction can be implemented in polynomial time.

Proof of correctness We proceed with some definitions. For a preference profile �σ ∈ R, we use the notation �u(�σ) to denote 
its corresponding utility profile. Also, define

SW(�s) =
∑
�σ∈R

E[sw( f�s(�σ), �u(�σ))]

to be the total expected social welfare of the winning alternative under score �s. We remark that in order to simplify the 
proof (and avoid reasoning about monotonicity of the score vector entries), we consider each scoring rule as computing 
a linear combination of k-approval scores for k = 1, . . . , 3|V | − 1. The non-negative entries of the score vector are the 
multipliers of the corresponding approval score in this linear combination. In particular, denote by appk(a, �σ) the number 
of agents that rank alternative a in some of the first k positions in the preference profile �σ (i.e., the k-approval score 
of alternative a). Then, the score under the score vector �s is defined as sc�s(a, �σ) = ∑3|V |−1

k=1 appk(a, �σ) · sk . Clearly, this 
definition is equivalent to the standard one for scoring rules (by adjusting the score vector entries appropriately).
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The next three claims provide information about the winning alternatives in each profile depending on the entries of the 
score vector �s.

Claim B.2. Let �s be a score vector. In every profile of R, one of the alternatives a1 and b1 has the highest score under �s. If an alternative 
a /∈ {a1, b1} has the highest score under �s in some profile of R then sk = 0 for k = 1, . . . , |V | and alternatives a1 and b1 have the 
highest score as well.

Proof. Observe that in each profile, the 284T − 3 agents have one of the alternatives a1 and b1 in their top position. 
Furthermore, all agents rank alternatives a1 and b1 in one of the first |V | + 1 positions. Hence, the sum of the scores of 
these two alternatives is at least

(284T − 3)

|V |∑
k=1

sk + 2(284T − 3)

3|V |−1∑
k=|V |+1

sk.

For every other alternative a, the number of agents that rank it in some of the first |V | positions is at most 142T −2. Hence, 
the score of such an alternative is at most

(142T − 2)

|V |∑
k=1

sk + (284T − 3)

3|V |−1∑
k=|V |+1

sk.

Clearly, if sk > 0 for some k ∈ {1, . . . , |V |}, then at least one of the alternatives a1 and b1 has score strictly higher than a. 
Otherwise, the alternatives a1 and b1 still have the highest score (possibly together with some alternative a /∈ {a1, b1}). �
Claim B.3. Let v ∈ V be a node of G. Given a score vector �s, define

Witv(�s) = (140T − 1)sv −
∑

k∈V \{v}
sk.

Then

• Alternative a1 is the sole winner under �s in profile �σ v if and only if Witv(�s) > 0.
• Alternative b1 is the sole winner under �s in profile �σ v if and only if Witv(�s) < 0.
• Alternatives a1 and b1 are tied as highest-scoring alternatives under �s in profile �σ v if and only if Witv(�s) = 0.

Proof. Consider a node v ∈ V and its corresponding preference profile �σ v . By the definition of �σ v , we have that the 
difference appk(a1, �σ v) − appk(b1, �σ v) of the k-approval scores of alternatives a1 and b1 is −1 for k = 1, . . . , v − 1, v +
1, . . . , |V |, 140T − 1 for k = v , and 0 for k = |V | + 1, . . . , 3|V | − 1. Therefore

sc�s(a1, �σ v) − sc�s(b1, �σ v) =
3|V |−1∑

k=1

(appk(a1, �σ v) − appk(b1, �σ v))sk

= (140T − 1)sv −
∑

k∈V \{v}
sk

= Witv(�s).
Now the claim follows using Claim B.2, because Witv(�s) �= 0 implies that sk > 0 for some k ∈ {1, . . . , |V |} and, hence, no 
alternative other than a1 and b1 can have maximum score. �
Claim B.4. Let e = (v, w) ∈ E be an edge of G. Given a score vector �s, define

Wite(�s) = (71T − 2)sv + (71T − 2)sw −
∑

k∈V \{v,w}
sk.

Then

• Alternative a1 is the sole winner under �s in profile �σ e if and only if Wite(�s) < 0.
• Alternative b1 is the sole winner under �s in profile �σ e if and only if Wite(�s) > 0.
• Alternatives a1 and b1 are tied as highest-scoring alternatives under �s in profile �σ e if and only if Wite(�s) = 0.
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Proof. Consider an edge e = (v, w) ∈ E and its corresponding preference profile �σ e . By the definition of �σ e , the difference 
appk(a1, �σ e) − appk(b1, �σ e) of the k-approval scores of alternatives a1 and b1 is 1 for k = 1, . . . , v − 1, v + 1, . . . , w − 1, w +
1, . . . , |V |, −71T + 2 for k = v or k = w , and 0 for k = |V | + 1, . . . , 3|V | − 1. We have

sc�s(a1, �σ e) − sc�s(b1, �σ e) =
3|V |−1∑

k=1

(appk(a1, �σ e) − appk(b1, �σ e))sk

= −(71T − 2)sv − (71T − 2)sw +
∑

k∈V \{v,w}
sk

= −Wite(�s).
As before, the claim now follows directly from Claim B.2. �

The correctness of our reduction will follow by the next two lemmas.

Lemma B.5. For every independent set I of size K ∈ [71T , 140T ) in G, there is a scoring protocol �s such that SW(�s) ≥ 30,104T 2 +
69TK.

Proof. For every node v of G , we set sv = 1/K if v ∈ I , and sv = 0 otherwise. We also set sv = 0 for every v in {|V | +
1, . . . , 3|V | − 1}. First, consider the preference profile �σ v for some node v of G . We have

Witv(�s) = (140T − 1)sv −
∑

k∈V \{v}
sk = 140T sv −

∑
k∈V

sk = 140T sv − 1.

Now, observe that the right-hand side in the above equality is strictly positive if v ∈ I (since sk = 1/K and K < 140T ) and 
strictly negative if v /∈ I (since sv = 0). Hence, by Claims B.2 and B.3, we conclude that alternative a1 (respectively, b1) is 
the sole winner in profile �σ v if v ∈ I (respectively, if v /∈ I).

Now, consider the preference profile �σ e for some edge e = (v, w) of G . We have

Wite(�s) = (71T − 2)sv + (71T − 2)sw −
∑

k∈V \{v,w}
sk

= (71T − 1)(sv + sw) −
∑
k∈V

sk

= (71T − 1)(sv + sw) − 1

≤ 71T − 1

K
− 1

< 0.

The first inequality holds since at most one of the adjacent nodes v and w belongs in the independent set I and the second 
one since K ≥ 71T . By Claims B.2 and B.4, we conclude that alternative a1 is the sole winner under �s in profile �σ e , for 
every edge e of E .

Summing the expected social welfare of the winner under �s over all profiles, we have

SW(�s) =
∑
v∈I

sw(a1, �uv) +
∑

v∈V \I

sw(b1, �uv) +
∑
e∈E

sw(a1, �ue)

= 70TK + T (|V | − K ) + 70T |E|
= 30,104T 2 + 69TK

as desired. �
Lemma B.6. Let �s be a score vector such that SW(�s) ≥ 30,104T 2 + 69TK. Then G has an independent set of size K .

Proof. First, we will prove that sk > 0 for some k ∈ {1, . . . , |V |}. Indeed, if this not the case, by Claims B.3 and B.4, a1
and b1 are both highest-scoring alternatives (possibly, together with some other alternative). Then, the expected social 
welfare of the winner under �s in any profile �σ ∈ R is at most 1

2 (sw(a1, �u(�σ)) + sw(b1, �u(�σ))) = 71T /2. In total, we have 
that SW(�s) ≤ (|E| + |V |)71T /2 = 25,205T 2, contradicting the assumption of the lemma.

Furthermore, we can assume that Witv(�s) �= 0 for every node v ∈ V and Wite(�s) �= 0 for every edge e ∈ E . If this is not the 
case, we can transform the score vector in order to get another one that satisfies these conditions as well as the assumption 
of the lemma. This can be done as follows. Let η be the minimum non-zero value of the quantities |Witv(�s)| and |Wite(�s)|
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over all nodes v ∈ V and edges e ∈ E . Now, let v ∈ V be a node with sv > 0 (by the argument above, such a node certainly 
exists). Define two score vectors �s′ and �s′′ as follows: set s′

v = sv − η
200T and s′

v = sv + η
200T ; all other scores in �s′ and �s′′

are the same as those of �s. Observe that for every non-zero Witv(�s), Witv(�s′) and Witv(�s′′) are non-zero and have the same 
sign as Witv(�s). Similarly, for every non-zero Wite(�s), Wite(�s′) and Wite(�s′′) are non-zero and have the same sign as Wite(�s). 
This means that each such profile �σ v or �σ e has the same sole winner under scores �s, �s′ , and �s′′ . For every node v such 
that Witv(�s) = 0, Witv(�s′)Witv(�s′′) < 0, i.e., they are non-zero and have different signs. Similarly, for every edge e such that 
Wite(�s) = 0, Wite(�s′)Wite(�s′′) < 0. Hence, alternatives a1 and b1 are the only winners in profiles �σ v and �σ e under �s′ and �s′′
while they both have the same highest score under �s. Clearly, SW(�s′) + SW(�s′′) ≥ 2SW(�s) which implies that one of the 
score vectors �s′ or �s′′ has the desired properties.

So, in the following, we assume that Witv(�s) �= 0 and Wite(�s) �= 0 for every node v ∈ V and every edge e ∈ E . Define 
H = {e ∈ E : Wite(�s) < 0} and I = {v ∈ V : Witv(�s) > 0}. Hence, the sole winner under �s in profile �σ e is alternative a1 if e ∈ H
and alternative b1 otherwise. Similarly, the sole winner in profile �σ v is alternative a1 if v ∈ I and alternative b1 otherwise. 
It follows that

SW(�s) =
∑
v∈I

sw(a1, �uv) +
∑

v∈V \I

sw(b1, �uv) +
∑
e∈H

sw(a1, �ue) +
∑

e∈E\H

sw(b1, �ue)

= 70T |I| + T (|V | − |I|) + 70T |H| + T (|E| − |H|)
= T |V | + 69T |I| + T |E| + 69T |H|

Also, observe that the assumption of the lemma implies that

SW(�s) ≥ 30,104T 2 + 69TK

= 70T |E| + T |V | + 69T K .

By the above two equations, we obtain that |I| ≥ K + |E| − |H |. Now, consider the subgraph G ′ of G induced by the nodes 
of I and let E(G ′) be its set of edges. Since for each edge e = (v, w) of E(G ′), nodes v and w belong to I , it holds that

Wite(�s) = (71T − 2)sv + (71T − 2)sw −
∑

k∈V \{v,w}
sk

= 1

2

(
Witv(�s) + Witw(�s)) + (T − 1)(sv + sw)

> 0,

i.e., E(G ′) ⊆ |E \ H |. Since |I| − |E(G ′)| is a lower bound on the number of connected components in G ′ , the graph G ′ (and, 
consequently, graph G) has an independent set of size |I| − |E(G ′)| ≥ |I| − |E \ H | ≥ K . �

The properties of our reduction follow from the last two lemmas. If G has an independent set of size (140 − ε)T , 
using Lemma B.5, we obtain that there is a score vector �s such that SW(�s) ≥ (39764 − 69ε)T 2. On the other hand, if 
any independent set in G has size at most (139 + ε)T , then SW(�s) ≤ (39,695 + 69ε)T 2. Assuming otherwise, we obtain a 
contradiction using Lemma B.6. �
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