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Abstract

The celebrated theory of random graphs investigates the asymptotic
behavior of graph properties in different random graph models. An im-
portant class of graph properties are the first order properties, which are
those expressible by means of first order logic. Studying the asymptotic
behavior of first order graph properties is doubly beneficial — it sheds
light upon both the underlying behavior of the random graph model and
the expressive power of first order logic.

A classic result, discovered independently by Glebskii et al. [4] and
Ron Fagin [2], states that in the binomial random graph G(n, p) with a
constant p, the limiting probability of every first order property is either
0 or 1. This phenomenon is known as a Zero-One law. A similar situation
is that of a Limit law, in which it is only guaranteed that every first
order property has some limiting probability. The existence of Zero-One
laws and Limit laws has been well studied for the binomial graph model.
In this paper we focus on the random geometric graph (RGG) model,
which generates a graph by randomly placing n points in a metric space
and joining them if they are close. Specifically, we disprove a conjecture
which has remained unsolved since 2006 about the existence of a Limit
law in this model [18].

1 Introduction

In this paper we study first order properties of random geometric graphs. To
handle this interesting blend of probability, graph theory, geometry and logic,
we begin by introducing the central definitions and results which stand at the
basis of the theory.

1.1 Random Graphs

A random graph over n vertices is defined as a certain random variable, whose
values are graphs with a fixed vertex set of size n [10].
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Definition 1.1. Let n ∈ N and fix a vertex set Vn of size n. Let Gn be the set
of all graphs G = (Vn, E). A random graph is a random variable Gn : Ω→ Gn
(over some probability space (Ω,F ,P)).

A random graph model is simply a method for generating a random graph. It is
typically associated with a certain family of random graph distributions. One of
the simplest and most well-known models is the binomial random graph model
G(n, p). It is also commonly known as the Erdős-Rényi model, after Paul Erdős
and Alfréd Rényi whose joint work marked the birth of the theory of random
graphs.

Definition 1.2. A random graph Gn is a binomial Erdős-Rényi graph with
parameter p if its distribution satisfies

P (Gn = G) = p|E|(1− p)(
n
2)−|E|

for every graph G = (Vn, E) ∈ Gn. In this case we denote Gn ∼ G(n, p).

It is useful to think of the distribution G(n, p) as a product of
(
n
2

)
Bernoulli

distributions B(p). That is, G(n, p) is obtained by letting each edge appear in
the graph with probability p and independently of other edges.

Another important family of random graph models, known today as random
geometric graphs (RGGs), was proposed by Edgar Gilbert in 1961 [3]. This
model is obtained by placing n points randomly and independently in some
metric space, according to a given probability distribution. A graph is then
constructed by regarding those points as the vertices, and connecting two points
if their distance is smaller than r (where r is a positive real number). We refer
to Penrose [16] as a general reference about RGGs.

Definition 1.3. Fix a metric space (X, d), a probability measure µ on X and a
positive real number r > 0. Let v1, . . . , vn be n independent and µ-distributed
random points in X, and denote Vn = {v1, v2, . . . , vn}. Define a random graph
Gn such that for every i 6= j,

vi ∼ vj ⇐⇒ d(vi, vj) < r.

Here vi ∼ vj denotes adjacency between the vertices vi, vj . Gn is called a
random geometric graph, and we write Gn ∼ GX(n, r).

The theory of random graphs is mostly interested in the asymptotic behavior of
a model. Hence we consider a sequence of random graphs {Gn}∞n=1. For the
binomial model we have Gn ∼ G(n, p(n)) and for the geometric model we have
Gn ∼ GX(n, r(n)) (note that X,µ are considered fixed and only r depends on
n). One typically investigates the asymptotic probabilities of different graph
properties.

Definition 1.4. Let G be the class of all (finite) graphs. A property A is a
subclass of G closed under isomorphism.
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Definition 1.5. Let {Gn}∞n=1 be a sequence of random graphs and let A be a
property of (finite) graphs. We say that A holds asymptotically almost surely
(a.a.s.) if

lim
n→∞

P (Gn ∈ A) = 1.

We say that A holds asymptotically almost never (a.a.n.) if

lim
n→∞

P (Gn ∈ A) = 0.

Remark 1.6. If, for example, we have Gn ∼ G(n, p), it is common to directly
write P (G(n, p) ∈ A) instead of P (Gn ∈ A).

1.2 First Order Logic

We now consider an interesting class of graph properties — properties that can
be expressed by a sentence in the first order language of graph theory.

Definition 1.7. The first order language of graphs, denoted here by Lgraph, is
composed of the following symbols:

1. Logical connectives: ¬,∨,∧,→,↔.

2. Quantifiers: ∀,∃.

3. Variable symbols, which represent vertices.1

4. The equality relation = and the adjacency relation ∼ (between vertices).

First order sentences are always strings of the symbols listed above (parentheses
are also often included for readability). The grammar of first order logic dictates
which strings indeed form valid logical formulas; those are known as well formed
formulas (WFFs).

Definition 1.8. The well formed formulas are defined inductively as follows:

1. x ∼ y and x = y are WFFs (for any variable symbols x, y).

2. If ϕ,ψ are WFFs then ¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ,ϕ↔ ψ are WFFs.

3. If ϕ is a WFF then ∀x(ϕ) and ∃x(ϕ) are WFFs (for any variable symbol
x).

Definition 1.9. A well formed formula is called a sentence if every variable it
contains always appears quantified.

For example, x ∼ y is not a sentence but ∀x∃y(x ∼ y) is.

1Variable symbols are typically denoted by Latin lowercase letters such as x, y, z.
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Definition 1.10. A graph property A is called a first order property if there
exists a first order sentence ϕ which expresses A. That is, the class of graphs
that satisfy ϕ is the exactly the class of graphs defined by A.

For example, the property “the graph contains a triangle” is first order, because
the sentence

∃x∃y∃z (x ∼ y ∧ y ∼ z ∧ z ∼ x)

expresses it.2 Also, the property “the graph contains exactly two vertices” is
first order, because the sentence

∃x∃y (¬(x = y) ∧ ∀z (z = x ∨ z = y))

expresses it.

In general, many natural graph properties are first order, but certainly not all
of them. To name a few examples, it can be proved that connectivity and
2-colorability are not first order properties (see [17], Theorems 2.4.1 and 2.4.2).

We can now define two fundamental phenomena in the theory of random graph
logic: Zero-One laws and Limit laws.

Definition 1.11. Let {Gn}∞n=1 be a sequence of random graphs. We say that
it satisfies a Zero-One law if for every first order property A,

lim
n→∞

P (Gn ∈ A) ∈ {0, 1}.

We say that it satisfies a Limit law if for every first order property A,

lim
n→∞

P (Gn ∈ A) exists.

1.3 Previous Results

The first Zero-One law was discovered and proved by Glebskii, Kogan, Liagonkii
and Talanov in 1969, and independently by Fagin in 1976. Their classic result
concerns binomial random graphs with p = 1

2 , and can be easily extended to
any constant p.

Theorem 1.12. Let p ∈ (0, 1) be constant. Then the sequence {G (n, p)}∞n=1

satisfies a Zero-One law. That is, for every first order property A, either
P (G (n, p) ∈ A)→ 0 or P (G (n, p) ∈ A)→ 1.

In their paper from 1988, Joel Spencer and Saharon Shelah prove a wide variety
of Zero-One laws for sparse binomial graphs [19].

2Note that we shall always assume that x ∼ y implies x 6= y, as we only consider simple,
loopless graphs.
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Theorem 1.13. The sequence {G (n, p(n))}∞n=1 satisfies a Zero-One law in each
of the following cases:

1. n−1− 1
k � p(n)� n−1− 1

k+1 for a certain k ∈ N.

2. n−1−ε � p(n)� n−1 for every ε > 0.

3. n−1 � p(n)� n−1 lnn.

4. n−1 lnn� p(n)� n−1+ε for every ε > 0.

Here f(n)� g(n) means f(n) = o(g(n)), that is, f(n)
g(n) → 0.

In addition, the following two completing results are proved in [19].

Theorem 1.14. Consider the sequence {G (n, p(n))}∞n=1 for p(n) = n−α, α ∈
(0, 1).

1. If α is irrational, then {G (n, p(n))}∞n=1 satisfies a Zero-One law.

2. If α is rational, then {G (n, p(n))}∞n=1 does not satisfy a Zero-One law.
Furthermore, not even a Limit law holds: there exists a first order property
A such that limn→∞ P (G (n, p(n)) ∈ A) does not exist.

As an additional reference for the last two theorems, we recommend Spencer’s
book [17].

The work of Spencer and Shelah, also followed by the paper of  Luczak and
Spencer [20], has given us comprehensive knowledge about the logic of binomial
random graphs. There has also been research about the logic of other random
graph models. Haber and Krivelevich [6] discussed first order Zero-One and
Limit laws in the model of random regular graphs, and obtained analogous
results to Theorem 1.13 (formulated above). Heinig, Müller, Noy and Taraz [7]
proved that a Zero-One law holds for monadic second order logic for the random
graph drawn uniformly from all connected graphs in an addable, minor-closed
class of graphs. Kleinberg and Kleinberg [12] discussed the limiting behavior
of the preferential attachment model, which results in “scale free” graphs that
closely approximate complex real-world networks such as large social networks
and the Internet. Their results show that a first order Zero-One law holds when
the out-degree d of the model is either d = 1 or d = 2, but not when d ≥ 3.

As for random geometric graphs, the first key result regarding Zero-One laws
was proved by Gregory McColm [13], who studied the case of the 1-dimensional
torus T1 = S1. In his paper, he proves results similar to Theorem 1.13.

Theorem 1.15. The sequence {GS1 (n, r(n))}∞n=1 satisfies a Zero-One law in
each of the following cases:
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1. n−1− 1
k � r(n)� n−1− 1

k+1 for a certain k ∈ N.

2. n−1−ε � r(n)� n−1 for every ε > 0.

3. n−1 � r(n)� 1.

4. r(n) = r for any constant r > 0.

At the end of his paper, McColm discusses possible generalizations of his results
to higher dimensions. He conjectures that a Zero-One law will still hold for
every high-dimensional manifold which is “sufficiently nice” (e.g. it is required
to be compact and connected).

However, in their 2006 paper, Joel Spencer and Amit Agarwal [18] show that
McColm’s conjecture fails, even for the simple case of the 2-dimensional flat
torus T2 with a constant r (and a uniform distribution).3 They prove the
following result.

Theorem 1.16. Set a constant 0 < r < 0.1. Then the sequence {GT2 (n, r)}∞n=1

does not satisfy a first order Zero-One law: there exists a first order property A
such that the limit limn→∞ P (GT2 (n, r) ∈ A) is non-trivial.

The condition r < 0.1 prevents “spurious cases” by ensuring locally Euclidean
behavior inside T2, and could certainly be weakened.

Despite their “negative” result, Spencer and Agarwal end their paper with
three positive conjectures. The first and main conjecture is that the sequence
{GT2 (n, r)}∞n=1 does actually satisfy a Limit law. Intuitively, this conjecture im-
plies that the first order language of graphs is not expressive enough to unravel
complex, non-converging behaviors within the graph. Assuming the first conjec-
ture, the second conjecture is that for any ε > 0, there exists an algorithm that
approximates the limiting probability of a given input sentence within ε. Fi-
nally, their third conjecture aims to extend the scope of “niceness”, by claiming
that a Zero-One law holds whenever r = o(1) but r = no(1).

Since the conjectures above had been posed, several new results were obtained
regarding random geometric graphs. Müller [15] showed that forGn = G[0,1]d (n, r(n))

with nr(n)d = o(lnn), the probability distribution of the clique number ω(Gn),
the chromatic number χ(Gn) and several other graph parameters all become
concentrated on two consecutive integers. Mcdiarmid and Müller [14] further
managed to sharpen the known results about the behavior of χ(Gn) and its rela-

tion to ω(Gn), considering the “phase change” range r(n) = (1 +o(1))
(
t lnn
n

)1/d
with t > 0 constant. Balogh, Bollobás, Krivelevich, Müller and Walters [1]
answered a question by Penrose by showing that in the random geometric
model, almost every graph becomes Hamiltonian exactly when it first becomes
2-connected.

3Recall that the d-dimensional flat torus Td is the quotient Rd/Zd with the metric naturally
inherited from the Euclidean metric of Rd.
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However, no significant results regarding the first order behavior of random ge-
ometric graphs were obtained. In particular, Spencer and Agarwal’s conjectures
have remained open problems.

1.4 Our Results

In this paper we disprove Spencer and Agarwal’s main conjecture about the
existence of a Limit Law for the random geometric graph.

Theorem 1.17. There exists a first order property A such that, for any constant
0 < r < 0.1, the limit

lim
n→∞

P (GT2 (n, r) ∈ A)

does not exist.

Note that Theorem 1.17 also makes Spencer and Agarwal’s second conjecture
irrelevant. Regarding their third conjecture, we point out that our results can be
directly generalized to r = o(1) as long as it approaches 0 “sufficiently slowly”,
which disproves the Limit law within the r = o(1) region as well. See explanation
in Section 8. However, this straightforward generalization cannot cover the
entire region r = o(1), r = no(1); a full description of the logical behavior of the
RGG in the entire region is still an open question.

In the formulation of Theorem 1.17 we choose to concentrate on the two di-
mensional case, as was also done by Spencer and Agarwal. This choice is made
mainly for the sake of concreteness; we believe that our proof should be gen-
eralizable to GTd (n, r) with d > 2. Other interesting generalizations would be
different choices of r (specifically r = n−α for constant α) and other metrics
(specifically `p for 1 ≤ p ≤ ∞). While we do not have full answers, we believe
that our approach should be useful in these cases as well. Again, see Section 8
for a more elaborated discussion.

To prove Theorem 1.17 we develop the ability to encode arbitrary graph struc-
tures within GT2 (n, r) by means of first order logic. Then, using graph struc-
tures that express an infinitely-alternating property of the size of a graph, we
are able to express a first order property whose probability does not converge.
Unraveling the graph structures hidden within the random geometric graph is
this paper’s primary result.

The structure of the paper is as follows. We begin with introducing several
preliminary tools in Sections 2 and 3. Section 2 is more geometric in nature. In
its first part, we construct first-order formulas which are able to approximate
arbitrary (constant) distances between vertices of the RGG. In its second part,
we construct an additional first-order formula WS(x, y) which approximates a
distance of at least n−1/6 between vertices. Vertices x, y which are at least n−1/6

apart are called well-spaced. The notion of well-spacedness will be required later
to prevent certain overlaps between graph structures.
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Section 3, on the other hand, is entirely probabilistic. It introduces a multivari-
ate generalization of a well-known simple result known as Waring’s Theorem.
This generalization is quite straightforward, yet very effective. It allows us to
extract detailed information about a discrete multivariate distribution from its
joint moments. We prefer it over other moments methods thanks to its gener-
ality and flexibility. For example, it supports the incorporation of errors in the
evaluation of the moments. It also only uses the first K moments, where K is
some slowly-increasing function of n, instead of all the moments. Due to these
virtues, we refer to it as a “flexible” moments method.

In Section 4 we revert back to the random geometric model and define a first
order extension formula S = S(x1, x2, x3; s1, s2, s3, z). S is a crucial part of the
proof as it shall later be used as the basic “building block” of graph structures
within GT2 (n, r).

In Section 5 we consider random variables which count S-extensions over dif-
ferent vertices, and estimate their joint moments. Then we utilize the flexible
moments method from Section 3 to estimate their joint distribution. It turns
out that under a certain geometric conditioning, they are approximately inde-
pendent Poisson variables. This fact is what makes S a suitable basis for the
construction of arbitrary graph structures.

Section 6 finishes the proof of our primary result: that first-order logic can be
used to express arbitrary graph in the RGG. As promised, the building block of
these structures is the first-order extension formula S. At the core of the proof
lies a technical result about concentration of certain random variables (closely
related to those which were considered in Section 5).

In Section 7 the proof of Theorem 1.17 is completed. The ability to encode
arbitrary graph structures is used to construct a first order sentence A that
refers to the size of the graph n, in such a way that its probability does not
converge as n → ∞. This part is mostly “logical”, and hardly depends on the
random graph model. Therefore it mostly repeats the arguments of Spencer
and Shelah, who disproved the Limit law in G(n, p) (see Theorem 1.14).

Section 8 discusses possible generalizations of our results and poses some of
them as conjectures.

The Appendix is composed of two independent subsections. Subsection A.1 is
a short, self-contained introduction to the Poissonization technique, a standard
technique in the study of RGGs. Subsection A.2 is dedicated to the proof of
the Negligibility Theorem (Theorem 5.7), an important technical result about
the negligibility of certain “undesirable” events. It is strongly used in Sections
5 and 6.

8



2 Expressing Distances with First-Order For-
mulas

From now on we focus on the random geometric graph GT2(n, r) with a constant
0 < r < 0.1. The vertices are v1, v2, . . . , vn, and they are independent and
uniformly distributed random points in T2. Distance between points a1, a2 ∈ T2

will be denoted ‖a1 − a2‖. For a ∈ T2 let Br(a) denote the (open) ball of radius
r around a. Recall that T2 is the flat torus, therefore it behaves locally like
the Euclidean space R2. We also use the asymptotic notation f(x) ≈ g(x) (as

x→ x0) to indicate that limx→x0

f(x)
g(x) = 1.

As explained in Section 1, first-order formulas (in the language of graph the-
ory) only have access to the adjacency and equality relations, as well as some
basic logical ingredients. Our first observation is that in the RGG, first-order
formulas are actually able to uncover a lot of information about the underlying
geometry of the graph. More explicitly, in this section we will construct first-
order formulas which approximate specific distances between vertices. This can
be considered as the first “hint” towards the expressive power of first-order logic
in the RGG.

2.1 Arbitrary Constant Distances

This subsection is dedicated to the approximation of constant distances. It
proves the following theorem.

Theorem 2.1. For every (constant) α > 0 and ε > 0, there exists a first order
formula D(x, y) such that a.a.s., for every pair of different vertices x, y,

1. If ‖x− y‖ < (α− ε)r then D(x, y) holds.

2. If ‖x− y‖ > (α+ ε)r then D(x, y) does not hold.

We call a first order formula D(x, y) which satisfies the conditions of Theorem
2.1 an (α, ε)-approximator, or simply an α-approximator when the value of ε is
implied. The idea is that it approximates the distance condition ‖x− y‖ < αr.
Note that an (α, ε)-approximator is also a (α, ε′)-approximator for any ε′ > ε
so we may consider only arbitrarily small values of ε.

The strategy of the proof is as follows. First, we show how, given an α1-
approximator and an α2-approximator (with sufficiently small ε-s), one can con-
struct an (α1 +α2)-approximator and an (α1−α2)-approximator (with slightly
larger ε-s). Second, we explicitly construct a 1-approximator (this is trivially
the adjacency relation) and a

√
3-approximator. Finally, we utilize the fact that

the set {k + `
√

3 : k, ` ∈ Z} is dense in R to approximate arbitrary distances.
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Lemma 2.2. Assume that D1(x, y) is an (α1, ε1)-approximator and that D2(x, y)
is an (α2, ε2)-approximator, for some α1, α2 > 0 and sufficiently small ε1, ε2 >
0. Denote α = α1 + α2 and fix ε > ε1 + ε2. Then the formula

D(x, y) : ∃z (D1(x, z) ∧D2(z, y))

is an (α, ε)-approximator.

x y

α1r
α2r

ε1r ε2r

(a) The case ‖x− y‖ > (α+ ε)r.

x y

α1r
α2r

ε1rε2r

(b) The case ‖x− y‖ < (α − ε)r. The intersection L is
shaded.

Figure 1: Illustration of the two parts of Lemma 2.2.

Proof. Let E1 be the event that D1 “fails” as an approximator; that is, the event
that the conditions from Theorem 2.1 (with α1, ε1) fail for some x, y. Define
E2 similarly for D2. The assumption that D1,D2 are approximators precisely
means that P (E1) ,P (E2) = o(1).

First, we show that outside the event E1∪E2, for every x, y, ‖x− y‖ > (α+ε)r
implies ¬D(x, y). We do that through contraposition. Fix x, y ∈ V and assume
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that D(x, y) holds. By definition, there exists a vertex z such that D1(x, z) and
D2(z, y). Outside E1 ∪ E2, this implies

‖x− z‖ ≤ (α1 + ε1)r,

‖z − y‖ ≤ (α2 + ε2)r.

The triangle inequality then yields ‖x− y‖ ≤ (α+ ε)r.

Second, we show that a.a.s., for every x, y, ‖x− y‖ < (α − ε)r implies D(x, y).
Fix x, y ∈ V and assume ‖x− y‖ < (α − ε)r. Denote δ = ε− ε1 − ε2; this is a
positive constant, and by our assumptions

‖x− y‖ ≤ (α1 − ε1)r + (α2 − ε2)r − δr. (1)

Now consider the geometric locus

L = B(α1−ε1)r(x) ∩B(α2−ε2)r(y).

The area of L is minimal when inequality (1) is an equality, in which case it
is still a positive constant since δ is a positive constant. Write area(L) ≥ c
for a constant c > 0. Then, given that ‖x− y‖ < (α − ε)r, the probability
that L does not contain any vertex z is O ((1− c)n) (by independence between
vertices). This bound decays exponentially, thus by taking the union bound
over all

(
n
2

)
pairs x, y ∈ V we get that a.a.s. for every x, y, ‖x− y‖ < (α − ε)r

implies that there exists a vertex z with

‖x− z‖ < (α1 − ε1)r,

‖z − y‖ < (α2 − ε2)r.

Outside the event E1∪E2, this implies that there exists z with D1(x, z)∧D2(z, y),
which exactly means that D(x, y) holds. That finishes the proof. Also see Figure
1, which illustrates the two cases of the proof. �

Lemma 2.3. Let D1(x, y) be an (α1, ε1)-approximator and D2(x, y) be an (α2, ε2)-
approximator, for some α1 > α2 > 0 and sufficiently small ε1, ε2 > 0. Denote
α = α1 − α2 and fix ε > ε1 + ε2. Then the formula

D(x, y) : ∀z (D2(y, z)→ D1(x, z))

is an (α, ε)-approximator.

Proof. The proof is very similar to that of the previous lemma. Let E1, E2 be
as before.

First, we show that outside the event E1∪E2, for every x, y, ‖x− y‖ < (α−ε)r
implies D(x, y). Fix x, y ∈ V and assume ‖x− y‖ < (α− ε)r. Note that

(α− ε)r ≤ (α1 − ε1)r − (α2 + ε2)r.
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Therefore, by the triangle inequality we have B(α2+ε2)r(y) ⊆ B(α1−ε1)r(x). Now,
for every vertex z, outside the event E1 ∪ E2,

D2(y, z) =⇒ ‖y − z‖ ≤ (α2 + ε2)r

=⇒ ‖x− z‖ ≤ (α1 − ε1)r

=⇒ D1(x, z).

This exactly means that D(x, y) holds.

Second, we show that a.a.s., for every x, y, ‖x− y‖ ≥ (α+ ε)r implies ¬D(x, y).
Fix x, y ∈ V and assume ‖x− y‖ ≥ (α + ε)r. Denote δ = ε − ε1 − ε2; by our
assumptions

‖x− y‖ ≥ (α1 + ε1)r − (α2 − ε2)r + δr. (2)

Now consider
L =

[
B(α1+ε1)r(x)

]c ∩B(α2−ε2)r(y).

The area of L is minimal when inequality (2) is an equality, in which case it
is again a positive constant. Therefore, given that ‖x− y‖ < (α − ε)r, the
probability that L does not contain any vertex z is once again O ((1− c)n). By
the union bound, a.a.s., for every x, y, ‖x− y‖ ≥ (α + ε)r implies that there
exists a vertex z with

‖x− z‖ > (α1 + ε1)r,

‖z − y‖ < (α2 − ε2)r.

Outside the event E1 ∪ E2, this implies that there exists z with D2(y, z) ∧
¬D1(x, z), which exactly means that ¬D(x, y) holds. That finishes the proof. �

Lemma 2.4.

1. The formula D1(x, y) : x ∼ y is a (1, ε)-approximator for every ε > 0.

2. The formula

D√3(x, y) : ∃z1, z2 (z1 ∼ x ∧ z1 ∼ y ∧ z2 ∼ x ∧ z2 ∼ y ∧ ¬ (z1 ∼ z2))

(x, y have two non-adjacent common neighbors) is a (
√

3, ε)-approximator
for every ε > 0.

Proof. Part 1 is trivial; we prove part 2. Fix ε > 0.

First, fix x, y ∈ V and assume ‖x− y‖ >
(√

3 + ε
)
r. This inequality geometri-

cally implies that diam(Br(x)∩Br(y)) is smaller than r. Therefore ¬D√3(x, y)
holds (even deterministically).

Second, fix x, y ∈ V and assume ‖x− y‖ <
(√

3− ε
)
r. Now

diam(Br(x) ∩Br(y)) ≥ r + ε′
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for some constant ε′ > 0. Consequently, it is easy to see that there is a constant
c > 0 for which there are two geometric loci L1, L2 ⊆ Br(x) ∩Br(y) with

area(L1), area(L2) ≥ c

and
min

a1∈L1,a2∈L2

‖a1 − a2‖ ≥ r.

Just as in the previous proofs, the probability that L1 does not contain a vertex
z1 decays exponentially, and the same is true for L2. By the union bound, a.a.s.
for every x, y, ‖x− y‖ <

(√
3− ε

)
r implies that there exist vertices z1, z2 which

are non-adjacent common neighbors of x, y. This exactly means that D√3(x, y)
holds. �

Remark 2.5. The proof of Lemma 2.4 actually works for ε which is much smaller
than a constant. For the proof to work, we only need

area(L1), area(L2)� 1

n

since it still assures that a.a.s. each of them contains a vertex. Indeed, recall

that a locus L with area A contains no vertices with probability (1−A)
Θ(n) ≤

exp (−Θ(nA)). Now it can be easily seen that one can always take

area(L1), area(L2) = Θ
(
(ε′)2

)
= Θ(ε2).

Therefore the proof actually works for any n−1/2 � ε� 1. Although right now
we do not actually care about non-constant ε, this observation will be useful
later, when we handle negligible events in the Appendix (see Proposition A.10).

The following corollary is a direct consequence of the previous lemmas.

Corollary 2.6. Assume β = k + `
√

3 is a positive constant for some k, ` ∈ Z.
Then for every ε > 0 there exists a first order formula D(x, y) which is a (β, ε)-
approximator.

We are now ready for the proof of the main theorem.

Proof of Theorem 2.1. Fix α and ε. The set {k + `
√

3 : k, ` ∈ Z} is dense in
R, so there exists β > 0 in that set such that β − ε

2 < α < β + ε
2 . From the

previous corollary, there exists a
(
β, ε2

)
-approximator D(x, y). We show that it

is also an (α, ε)-approximator. Indeed,

1. If ‖x− y‖ < (α− ε)r then ‖x− y‖ <
(
β − ε

2

)
r, therefore D(x, y) holds.

2. If ‖x− y‖ > (α+ε)r then ‖x− y‖ >
(
β + ε

2

)
r, therefore D(x, y) does not

hold.

That finishes the proof. �

13



Finally, sometimes it is more convenient to approximate the equality ‖x− y‖ =
αr instead of the inequality ‖x− y‖ < αr. For that we can use the following
corollary.

Lemma 2.7. For every α > 0 and ε > 0, there exists a first order formula
E(x, y) such that a.a.s., for every pair x, y,

1. E(x, y) implies (α− ε)r ≤ ‖x− y‖ ≤ (α+ ε)r.

2.
(
α− ε

2

)
r ≤ ‖x− y‖ ≤

(
α+ ε

2

)
r implies E(x, y).

Proof. Let D∗(x, y) be an
(
α− 3ε

4 ,
ε
4

)
-approximator and let D∗(x, y) be an(

α+ 3ε
4 ,

ε
4

)
-approximator. Define

E(x, y) : D∗(x, y) ∧ ¬D∗(x, y).

Then, from the definitions, it is easy to see that E(x, y) satisfies the conditions
of the corollary. �

2.2 A Well-Spaced Formula

For technical reasons, we would also want to be able to express with first order
logic the fact that two vertices are “not too close” to each other. In this case
we say that the vertices are well-spaced. A distance of at least n−1/6 turns out
to be a good fit. The formal statement is as follows.

Theorem 2.8. For every δ > 0, there exists a first order formula WS(x, y)
such that a.a.s., for every pair of different vertices x, y,

1. If ‖x− y‖ ≤ n−1/6−δ then WS(x, y) does not hold.

2. If ‖x− y‖ ≥ n−1/6+δ then WS(x, y) holds.

The proof requires some additional geometric manipulations, with the main
geometric tool being the lens between two points.

Definition 2.9. Let a1, a2 ∈ T2 be two points. The lens between a1, a2, de-
noted La1a2 , is defined as the intersection of the two balls of radius r around
them:

La1a2 = Br(a1) ∩Br(a2).

For a given lens, we define its diameter and width as described in Figure 2.

Remark 2.10. Given two vertices x, y, the property of being inside Lxy is first-
order expressible: z ∈ Lxy ⇐⇒ z ∼ x ∧ z ∼ y.

To characterize the size of a lens Lxy we choose to use half its width as a
parameter. We call this parameter h. Elementary geometry then leads to the
following lemma.
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Figure 2: A lens between two points is shaded. The diameter is the length of
the segment connecting the two intersection points of the circles. The width is
the length of its perpendicular bisector (which is inside the lens).

Lemma 2.11. Let L = Lxy be a lens with width(L) = 2h. Assume h > 0 (the
lens is non-empty). Then:

� ‖x− y‖ = 2r − 2h.

� diam(L) = 2
√

2rh− h2.

� area(L) = 2r2 arccos
(
1− h

r

)
− 2(r − h)

√
2rh− h2.

As a useful corollary we write the resulting asymptotic estimations.

Corollary 2.12. As h→ 0,

� diam(L) ≈ 2
√

2r1/2h1/2.

� area(L) ≈ 8
√

2
3 r1/2h3/2.

The area estimation follows from the Taylor expansions
√

1− x =
x→0

1− x

2
+O(x2),

arccos(1− x) =
x→0+

(2x)
1/2 +

1

6
√

2
x

3/2 +O(x
5/2).

Importantly, notice that the diameter asymptotically behaves like the square
root of the width.

Lemma 2.13. For a positive integer `, let A`(x, y) be the first-order formula
which claims that Lxy contains exactly ` vertices. Then, given δ > 0, there
exists ` ≥ 1 such that a.a.s., for every pair of vertices x, y,

A`(x, y)→ diam(Lxy) ∈
[
n−

1/3−δ, n−
1/3+δ

]
.
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Intuitively, demanding a fixed amount of vertices in Lxy means that its area has
to be about n−1,which explains why its diameter must be about n−1/3. Let us
write a formal proof.

Proof. We start with the lower bound. Fix x, y; the complement of

A`(x, y)→ diam(Lxy) ≥ n−1/3−δ

is the event that A`(x, y) holds and diam(Lxy) < n−1/3−δ. Let us bound its
probability. Given that diam(Lxy) < n−1/3−δ, for some constant C we can write

area(Lxy) ≤ Cdiam(Lxy)3 ≤ Cn−1−3δ.

Therefore

P
(

A`(x, y)
∣∣ diam(Lxy) < n−

1/3−δ
)

≤ P
(
∃ at least ` vertices in Lxy

∣∣ diam(Lxy) ≤ n−1/3−δ
)

≤
(
n

`

)(
Cn−1−3δ

)` ≤ n`C`n−`−3δ` = C`n−3δ`.

For a fixed δ > 0 we can choose any ` > 2
3δ and then the bound above is o

(
n−2

)
.

Taking a union bound we deduce that a.a.s. for every x, y

A`(x, y)→ diam(Lxy) > n−
1/3−δ.

For the upper bound we follow a similar strategy. Again, we fix x, y and
now bound the probability of A`(x, y) and diam(Lxy) > n−1/3+δ. Given that
diam(Lxy) > n−1/3+δ, for some constant c we can now write

area(Lxy) ≥ cdiam(Lxy)3 ≥ cn−1+3δ.

Thus,

P
(

A`(x, y)
∣∣ diam(Lxy) > n−

1/3+δ
)

≤ P
(
∃ at least n− ` vertices not in Lxy

∣∣ diam(Lxy) ≥ n−1/3+δ
)

≤
(
n

`

)(
1− cn−1+3δ

)n−` ≤ n` exp
(
−c(n− `)n−1+3δ

)

= exp
(
` lnn− Ω(n3δ)

)
.

This is definitely o(n−2), therefore we can take a union bound again and get
the desired result. �

Lemma 2.13 presents a first order formula which defines a lens whose diameter
is about n−1/3. That is good, but for well-spacedness we want to define a lens
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with larger diameter, of about n−1/6. To do that we use an additional geometric
trick. We mentioned that the diameter of a lens asymptotically behaves like the
square root of its width. Therefore, the diameter of a lens is at least n−1/6 if we
can fit inside it a lens of diameter n−1/3 “perpendicularly”.

Formally, we define the angle between two lenses L,L′ as the angle between
their diameters, and say that L,L′ are perpendicular if the angle between their
diameters is π

2 . Given four vertices x, y, x′, y′, we can ensure that Lxy and Lx′y′

are “almost” perpendicular with a first-order formula by using the results of the
previous subsection.

Definition 2.14. Let ε > 0, and let E2(x, y) and E√2(x, y) be two first order

formulas which approximate the distances 2r and
√

2r within a margin of ε, as
in Corollary 2.7. Define the first order formula EPER(x, y, x′, y′) (with margin
ε) as follows:

E2(x, y) ∧ E2(x′, y′) ∧ E√2(x, x′) ∧ E√2(x′, y) ∧ E√2(y, y′) ∧ E√2(y′, x).

If EPER(x, y, x′, y′) holds, we say that the lenses Lxy and Lx′y′ are E-perpendicular
(with margin ε).

See an illustration of EPER in Figure 3.

x

x′

y

y′

≈
√
2r≈

√
2r

≈
√
2r ≈

√
2r

≈ 2r

≈ 2r

Figure 3: A geometric illustration of the formula EPER(x, y, x′, y′).

Remark 2.15. E-perpendicularity indeed a.a.s. implies “almost perpendicular-
ity”. More formally, a.a.s., for every x, y, x′, y′, EPER(x, y, x′, y′) (with margin
ε) implies that the angle between the diameters of Lxy, Lx′y′ is π

2 +O(ε). The
idea is that starting with a perfect square and “nudging” each side by O(ε)
also “nudges” the angles by O(ε). This can be shown formally via the Sine and
Cosine Theorems.

With all the logical and geometric ingredients at our disposal, we can formulate
a key lemma. It sets the ground for characterizing lenses Lxy with diameter
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at least n−1/6 by trying to fit E-perpendicular lenses Lx′y′ such that A`(x
′, y′)

holds.

Lemma 2.16. Let δ > 0; then there are ` ≥ 1 and ε > 0 such that a.a.s., for
every pair of vertices x, y,

1. If diam(Lxy) ≤ n−1/6−δ then, for every x′, y′ such that Lxy, Lx′y′ are E-
perpendicular (with margin ε) and A`(x

′, y′) holds, Lx′y′ ∩ Lxy contains
less than ` vertices.

2. If diam(Lxy) ≥ n−1/6+δ and ‖x− y‖ ≥
(
2− ε

2

)
r then there exists a pair

x′, y′ such that A`(x
′, y′) holds, Lxy, Lx′y′ are E-perpendicular (with mar-

gin ε) and Lx′y′ ⊆ Lxy.

Proof. Let δ > 0. Choose ` such that ` ≥ 4
δ . Notice that ` then satisfies the

statement of Lemma 2.13 with respect to δ
2 (another use of this requirement will

appear soon). In addition, choose ε > 0 sufficiently small, such that a.a.s. E-
perpendicularity with margin ε implies that the angle γ between the diameters
satisfies 0.49π < γ < 0.51π.

We start with the first part. We must show that a.a.s. there exist no x, y, x′, y′

such that diam(Lxy) ≤ n−1/6−δ, Lxy, Lx′y′ are E-perpendicular, A`(x
′, y′) holds

and Lx′y′ ∩ Lxy contains ` vertices. As explained, a.a.s. E-perpendicularity
implies 0.49π < γ < 0.51π and A`(x

′, y′) implies

diam(Lx′y′) ∈
[
n−

1
3− δ2 , n−

1
3 + δ

2

]
.

Therefore, it is sufficient to show that a.a.s. there exist no x, y, x′, y′ such that

diam(Lxy) ≤ n−1/6−δ,

diam(Lx′y′) ∈
[
n−

1
3− δ2 , n−

1
3 + δ

2

]
,

Lxy, Lx′y′ form an angle of 0.49π < γ < 0.51π and Lx′y′ ∩ Lxy contains `
vertices.

The idea is that the geometric requirements about the diameters and angle
force area (Lx′y′ ∩ Lxy) to be “too small”, so with very high probability it does
not contain ` vertices. More formally, let w,w′ denote the widths of Lxy, Lx′y′

respectively. Each lens is contained in an infinite strip of the same width,
parallel to the diameter. As a result, area (Lx′y′ ∩ Lxy) can be bounded by the
area of the intersection of the two strips, with widths w,w′ and angle γ between
them (which is a parallelogram). This area is trivially 1

sin γww
′. The bounds

0.49π < γ < 0.51π force sin γ > 0.99, and the fact that width = Θ
(
diameter2

)

in small lenses forces

w = O
(
n−

1/3−2δ
)
, w′ = O

(
n−

2/3+δ
)
.
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Overall we have
area (Lx′y′ ∩ Lxy) = O

(
n−1−δ) .

Now, just as in the proof of Lemma 2.13, the probability of having ` vertices in

Lx′y′ ∩ Lxy is O
(
n`
(
n−1−δ)`) = O

(
n−`δ

)
. Since ` > 4

δ , this is o(n−4), and all

that is left is to take the union bound over x, y, x′, y′.

The second part is more involved (generally, proving the existence of structures
is harder than proving their absence). In its proof we apply a standard tech-
nique in the study of RGGs: Poissonization. Briefly, Poissonization replaces
the random geometric graph GT2(n, r), which generates a fixed number of ver-
tices n, with a Poisson random graph, in which the set of vertices is a Poisson
point process. The Poisson random graph introduces a crucial property called
spatial independence: the counts of vertices in disjoint areas of T2 are indepen-
dent. See Subsection A.1 in the Appendix for a more detailed introduction of
Poissonization.

Let us fix two vertices x, y and show that they satisfy the second part of the
lemma with high probability. We need at least 1− o(n−2) for the union bound;
actually, we will obtain an exponentially high probability of 1 − exp

(
−nΩ(1)

)
.

Let us fix the geometric positions of x, y; that is, we fix two points a1, a2 ∈
T2 and condition on the event x = a1, y = a2. We prove the desired bound
1 − exp

(
−nΩ(1)

)
given this conditioning. Eventually, by integration over all

possible positions, we obtain a non-conditioned bound of 1− exp
(
−nΩ(1)

)
(we

use the implicit fact that this bound will be uniform in a1, a2).

We apply Poissonization: hold x, y and their positions fixed, and then instead
of generating n − 2 additional vertices, consider a new random graph which
generates the additional vertices as a Poisson point process with intensity n−2.
Following the notation from the Appendix, this means we replace GT2(n, r) with
Ga(N, r) where N−2 ∼ Pois(n−2). Corollary A.5 implies that it is sufficient to
show that x, y satisfy the second part of the lemma in Ga(N, r) with probability
1− exp

(
−nΩ(1)

)
.

Assume that the geometric positions of x, y are fixed such that diam(Lxy) ≥
n−1/6+δ and ‖x− y‖ ≥

(
2− ε

2

)
r (otherwise there is nothing to prove). We must

prove (with exponentially high probability, in Ga(N, r)) the existence of vertices
x′, y′ such that Lxy, Lx′y′ are E-perpendicular (with margin ε), Lx′y′ ⊆ Lxy and
A`(x

′, y′) holds. To ensure E-perpendicularity, it is enough to require

‖x′ − x‖ , ‖x′ − y‖ ∈
[(√

2− ε

2

)
r,
(√

2 +
ε

2

)
r
]
,

‖y′ − x‖ , ‖y′ − y‖ ∈
[(√

2− ε

2

)
r,
(√

2 +
ε

2

)
r
]
.

Note that we omitted the requirements about ‖x− y‖ and ‖x′ − y′‖, since(
2− ε

2

)
r ≤ ‖x− y‖ ≤ 2r is already guaranteed from the way we fixed the posi-

tions of x, y and
(
2− ε

2

)
r ≤ ‖x′ − y′‖ ≤ 2r is a.a.s. guaranteed from A`(x

′, y′)
(and even with exponentially high probability; see proof of Lemma 2.13). The
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four requirements above have a clear geometric meaning: they mean that both
x′ and y′ must lie in the intersection of annuli around x, y with radii

(√
2± ε

2

)
r.

This intersection is comprised of two connected components C(1), C(2), and x′, y′

must lie each in a different component. See illustration in Figure 4a. Lx′y′ ⊆ Lxy
is an additional requirement about the allowed positions of x′, y′.

Let us now describe a way to find suitable x′, y′ with exponentially high proba-
bility. The first step is to find many potential vertices x′ in C(1), and the second
step is to show that at least one of them can be completed to a pair x′, y′. We
shall see that spatial independence plays an important part in both steps.

Step 1. Consider the lens Lxy; it satisfies diam(Lxy) ≥ n−1/6+δ and therefore

width(Lxy) = Ω
(
n−

1/3+2δ
)
.

In contrast, C(1) and C(2) are both constant (since we regard ε as a constant
and we fixed the positions of x, y). For convenience, in our description we shall
refer to the axis parallel to xy as the “horizontal” axis, and to the perpendicular
axis as the “vertical” axis (with C(1) being “up” and C(2) being “down”). We
begin by creating a copy of Lxy shifted upwards by 2r, denoted L(1) (again, see
Figure 4a). Notice that L(1) is completely contained in C(1). We now prove that
with probability 1−exp

(
−nΩ(1)

)
, there is a set of n1/2 vertices in L(1) which are

“spaced”: each pair of vertices from the set keeps a horizontal distance of at least
βn−1/3 and a vertical distance of at least βn−2/3 (where β is some sufficiently
large constant). We demand this spacedness in order to avoid overlaps later,
when we consider lenses Lx′y′ .

For the proof, divide L(1) into rectangles of dimensions βn−1/3 × βn−2/3 (hor-
izontal dimension first). Consider only quarter of those rectangles, evenly
spaced like a grid, as depicted in Figure 4b. Rectangles at the boundary
of L(1) can be neglected. The dimensions of L(1) (width and diameter) are
Ω
(
n−1/3+2δ

)
×Ω

(
n−1/6+δ

)
, thus there are Ω

(
n1/2+3δ

)
such rectangles. It is suf-

ficient to show that at least n1/2 of them contain a vertex. For each rectangle,
the distribution of vertices inside is

Pois
(
(n− 2) · β2n−1

)
= Pois

(
n− 2

n
β2

)

therefore it contains a vertex with probability at least p for some constant p > 0.
Crucially, these distributions are independent for different rectangles (spatial
independence). The probability that at least n1/2 of the specified rectangles
contain a vertex is then

P
(

Bin
(

Ω
(
n

1/2+3δ
)
, p
)
≥ n1/2

)
.

This is indeed 1− exp
(
−nΩ(1)

)
, as can be easily shown from Chernoff’s bound.

Step 2. Following step 1, we may assume that there exists a set x′1, x
′
2, . . . , x

′
t of

spaced vertices in L(1), where t = n1/2. For every 1 ≤ i ≤ t, let �i be a square
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with dimensions n−2/3 × n−2/3, whose center is located exactly at a distance
of 4r − 2n−2/3 below x′i, inside C(2). This is where we shall look for y′i. The
distribution of vertices inside �i is Pois

(
(n− 2) · n−4/3

)
, therefore it contains a

vertex with probability Θ
(
n−1/3

)
.

Suppose it is given that �i contains a vertex y′i. From the choice of positions,
the lens Lx′iy′i has a width of Θ

(
n−2/3

)
, a diameter of Θ

(
n−1/3

)
and an area

of Θ
(
n−1

)
. Moreover, it is “almost perpendicular” to Lxy, and contained in

Lxy. Due to its area, the distribution of vertices inside Lx′iy′i is Poisson with
parameter Θ(1), and the probability that is contains exactly ` vertices is also
Θ(1) (as ` is a constant).

Overall, for every 1 ≤ i ≤ t, the probability of finding y′i such that the pair
x′i, y

′
i satisfies all the desired properties is Θ

(
n−1/3

)
. Crucially, there is com-

plete independence between the different i-s, because the spacedness of the x′i-s
guarantees that the squares �i and also the lenses Lx′iy′i cannot intersect. In-

deed, the x′i-vertices keep a horizontal distance of βn−1/3 and a vertical distance
of βn−2/3 and for a sufficiently large β it surpasses the dimensions of the Lx′iy′i
lenses. So the probability that at least one such pair x′i, y

′
i exists is

1−
(

1−Θ
(
n−

1/3
))t

= 1−
(

1−Θ
(
n−

1/3
))n1/2

= 1− exp
(
−Θ

(
n−

1/3
)
n

1/2
)

= 1− exp(−nΩ(1)).

In conclusion, we have shown that there exists a pair x′, y′ with the desired
properties with probability 1 − exp(−nΩ(1)) in the Poisson random geometric
graph, which then implies the same conclusion in GT2(n, r), and that finishes
the proof. �

The key lemma leads us to the definition of the following first order formula,
which characterizes lenses with diameter of at least n−1/6.

Definition 2.17. For a given δ > 0, choose corresponding ` ≥ 1 and ε > 0
such that Lemma 2.16 holds and define B(x, y) as follows. First, let D2(x, y) be
an
(
2, ε2
)
-approximator (as in the previous subsection). Then B(x, y) requires

¬D2(x, y) and also the existence of x′, y′ such that A`(x, y) holds, Lxy, Lx′y′ are
E-perpendicular (with margin ε) and Lxy ∩ Lx′y′ contains at least ` vertices.

Corollary 2.18. Let δ > 0 and let B(x, y) be the corresponding formula, as in
the previous definition. Then, a.a.s. for every x, y,

1. If diam(Lxy) ≤ n−1/6−δ then B(x, y) does not hold.

2. If diam(Lxy) ≥ n−1/6+δ then B(x, y) holds.
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x y

C(2)

C(1)

Lxy

L(1)

(a) The vertices x, y in fixed positions, the lens
Lxy and C(1), C(2) shaded in light blue. The
copy L(1) of Lxy in C(1) is also drawn. Note
that the illustration greatly exaggerates the size
of Lxy : in reality, it is asymptotically smaller
than the sizes of C(1), C(2) and should be barely
seen.

L(1)

Ω
(
n−

1
3+2δ

)

Ω
(
n−

1
6+δ
)

βn− 1
3

βn− 2
3

(b) A close-up on L(1), the
copy of Lxy inside C(1). As
explained in the proof, we di-
vide it into “small” rectangles
and consider a quarter of them
(shaded in darker blue) to as-
sure spacedness.

Figure 4: Geometric illustrations for the proof of the second part of Lemma
2.16.

Proof. First note that a.a.s. for every x, y, ¬D2(x, y) implies ‖x− y‖ ≥
(
2− ε

2

)
r.

The rest follows directly from Lemma 2.16. �

We are now ready to construct the formula WS(x, y) and complete the proof of
Theorem 2.8. Intuitively, WS(x, y) claims that ‖x− y‖ > n−1/6 by stating that
if x, y are contained in a lens Lx′y′ , then its diameter must be > n−1/6.

Proof of Theorem 2.8. Let δ > 0. Take B(x, y) to be the formula from Definition
2.17 which corresponds to δ

2 . That is, a.a.s. for every x, y,

1. diam(Lxy) ≤ n− 1
6− δ2 implies ¬B(x, y).

2. diam(Lxy) ≥ n− 1
6 + δ

2 implies B(x, y).
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Now define WS(x, y) as the formula claiming that for every x′, y′, if x, y ∈ Lx′y′
then B(x′, y′) holds. This is indeed a first order formula. We now prove the two
parts of the theorem.

We begin with the second part. Assume ‖x− y‖ ≥ n−1/6+δ. Then for every
x′, y′, if x, y ∈ Lx′y′ then

diam(Lx′y′) ≥ n−
1
6 +δ ≥ n− 1

6 + δ
2

which a.a.s implies B(x′, y′). Therefore WS(x, y) holds.

For the first part, assume ‖x− y‖ ≤ n−1/6−δ. We show that a.a.s. there exist

x′, y′ with x, y ∈ Lx′y′ and diam(Lx′y′) ≤ n−
1
6− δ2 . That would end the proof,

since a.a.s. diam(Lx′y′) ≤ n−
1
6− δ2 implies ¬B(x′, y′).

Fix the positions of x, y such that ‖x− y‖ ≤ n−1/6−δ. Let o denote their mid-
point. Construct a perpendicular bisector of xy with midpoint o and length
2r − cn−1/3−δ (for some constant c > 0). Consider two squares with the two
endpoints as centers, of size βn−1/3−δ × βn−1/3−δ (for some constant β > 0).
The probability that such a square does not contain any vertex is

(
1− β2n−

2/3−2δ
)n−2

= exp
(
−Θ

(
n

1/3−2δ
))

.

WLOG we may assume δ < 1
6 , so this is exp

(
−nΩ(1)

)
. Therefore, a.a.s. both

squares contain vertices. Let x′, y′ such vertices (one from each square). The

right choice of c and a sufficiently small β then guarantee diam(Lx′y′) ≤ n−
1
6− δ2 ,

as we once again use the relations diam = Θ
(√

width
)

and dist = 2r − width.

It is left to explain why x, y ∈ Lx′y′ ; that is, why the distances from x′, y′ to
both x, y are all smaller than r. Take ‖x′ − x‖ for example; the other three
cases are symmetric. Let b be the center of the corresponding square. Then
‖x′ − b‖ ≤

√
2βn−1/3−δ. Now, ‖x− b‖ is the length of an hypotenuse in a right

triangle with sides r − c
2n
−1/3−δ and ≤ 1

2n
−1/6−δ. Therefore

‖x− b‖2 =
[
r2 −Θ

(
n−

1/3−δ
)]

+ Θ
(
n−

1/3−2δ
)

= r2 −Θ
(
n−

1/3−δ
)

and taking a square root gives ‖x− b‖ = r−Θ
(
n−1/3−δ). Again, for a sufficiently

small constant β we get

‖x− x′‖ ≤ ‖x− b‖+ ‖b− x′‖ .

≤ r −Θ
(
n−

1/3−δ
)

+
√

2βn−
1/3−δ

< r.

�
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3 A Flexible Moments Method

In many probabilistic scenarios, directly evaluating the distribution of a certain
random variable X might be highly challenging, while evaluating its moments is
significantly simpler. This is usually the case when X counts certain substruc-
tures of a random graph, for example. Hence the great importance of methods
for extracting information about a distribution via its moments. Two very
popular examples in the theory of random graphs are first and second moment
methods and the method of moments (see any introductory text about random
graphs, e.g. [10]). The first and second moment methods use E(X) and Var(X)
to bound P(X = 0) for a non-negative integer-valued X. The moments method
uses all the moments to show convergence in distribution.

For our purposes, we will need a moments method that is more informative than
the first and second moments methods, yet more general than the method of
moments. The current section is therefore dedicated to the development of such
a method. We call it a “flexible” moments method because of its generality.
The flexible moments method allows us to extract detailed information about
a discrete multivariate distribution from its joint moments. It has several im-
portant virtues. First, it supports the incorporation of errors in the evaluation
of the moments. Second, it only uses the first K moments, where K is some
slowly-increasing function of n, instead of all the moments. Finally, it gives
concretes bounds on the distribution of specific variables (not just at the limit
n→∞).

Developing this flexible method is surprisingly simple: it is a relatively straight-
forward generalization of a well-known simple result known as Waring’s The-
orem. Despite its straightforwardness and its multiple advantages, we are un-
aware of any prior use of this particular method. Due to its generality, we
believe in its usefulness to other problems as well, at least in the context of
random graphs.

Let us begin by recalling the notion of factorial moments.

Definition 3.1. Let X be a non-negative integer-valued random variable. De-
fine its k-th factorial moment as

E ((X)k) = E (X(X − 1)(X − 2) . . . (X − k + 1)) .

That is, the k-th factorial moment of a random variable is the expected value
of its k-th falling factorial.

The factorial moments are a useful tool in the study of non-negative integer-
valued random variables. Note that they admit a convenient combinatorial
meaning: if X counts objects, then (X)k counts k-tuples of distinct objects.
They are also particularly suitable for dealing with Poisson distribution, because
of their simple form: if X ∼ Pois(λ) then E ((X)k) = λk.
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Waring’s Theorem

We recall Waring’s classical theorem. The formulation brought here is actually
a bit different from the one most commonly seen in texts; for the more common
formulation, we refer to Exercise 1.8.13 from [5].

Theorem 3.2 (Waring’s Theorem). Let X be a non-negative integer-valued
random variable. Fix a value z ≥ 0, and for every s ≥ 0, let

Σz,s =

s∑

i=0

(−1)i
E ((X)z+i)

z!i!
.

Then P (X = z) ≤ Σz,s for even values of s and P (X = z) ≥ Σz,s for odd values
of s.

In other words, the theorem presents the bounds

Σz,s−1 ≤ P (X = z) ≤ Σz,s

on P (X = z), which apply for every even s. To get a feel for this result, one can
try taking X ∼ Pois(λ) and observe the resulting bounds (keep in mind that in
that case E ((X)k) = λk).

Remark 3.3. Notice that the difference between the upper bound and the lower
bound is 1

z!s!E ((X)z+s). Therefore better upper bounds on the factorial mo-
ments lead to tighter bounds on P (X = z). In addition, notice how we can easily
control how many moments to use: if all the moments up to K (with K ≥ z) are
known, simply take s to be the maximal even number with z + s ≤ K. Finally,
notice how this bound can naturally incorporate errors in the estimation of the
moments. For example, if we know that

|E ((X)k)− µk| < εk

for every 0 ≤ k ≤ K, we obtain
∣∣∣∣∣P (X = z)−

s∑

i=0

(−1)i
µz+i
z!i!

∣∣∣∣∣ ≤
µz+s
z!s!

+

s∑

i=0

εz+i
z!i!

.

Let us give a short explanation for Waring’s Theorem, which will naturally
lead us to its multivariate generalization. The key observation is that Σz,s =
E (πz,s(X)) where πz,s(x) is the polynomial

πz,s(x) =

s∑

i=0

(−1)j
(x)z+i
z!i!

.

Therefore we can also write

Σz,s =
∑

x≥0

P (X = x)πz,s(x).
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Now it is sufficient to verify the following formula for the values of πz,s(x) at
non-negative integer values x:

πz,s(x) =





1 x = z

0 x 6= z, x ≤ z + s

(−1)s
(
x−z−1

s

)(
x
z

)
x > z + s

.

In particular, the values for x 6= z are non-negative when s is even and non-
positive when s is odd.

x

y

1 2 3 4 5 6

1

2

3

Figure 5: An illustrative example of the graph of πz,s(x) for z = 4, s = 2.

Generalizing to multiple variables

Now let X1, X2, . . . , Xt be a t-tuple of non-negative integer-valued random vari-
ables (over the same probability space). Also fix a t-tuple of integers z1, z2, . . . , zt
and K ≥ maxi zi.

Definition 3.4. The (k1, k2, . . . , kt)-th joint factorial moment ofX1, X2, . . . , Xt

is
E ((X1)k1(X2)k2 . . . (Xt)kt) .

Again, the joint factorial moments carry an important combinatorial meaning.
If Xi counts objects of type i, then

(X1)k1(X2)k2 . . . (Xt)kt

counts (k1, k2, . . . , kt)-tuples of objects: k1 distinct objects of type 1, k2 distinct
objects of type 2 and so on.
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For the sake of notational convenience, from now on we denote X = (X1, . . . , Xt),
k = (k1, . . . , kt), z = (z1, . . . , zt) and so on. We also write

E ((X)k) = E ((X1)k1 . . . (Xt)kt) ,

P (X = z) = P (X1 = z1, . . . , Xt = zt) .

0 ≤ k ≤ K simply means 0 ≤ ki ≤ K for every 1 ≤ i ≤ t.

Similar to before, our goal is to estimate P (X = z) by using the joint factorial
moments E ((X)k) with 0 ≤ k ≤ K. To do that we want to find suitable
multivariate polynomials π(x) = π(x1, . . . , xt) which will give us upper and
lower bounds. This leads to the following definition.

Definition 3.5. Following the notation above, for every 1 ≤ i ≤ t let si be the
maximal even integer with zi + si ≤ K. Define the following two polynomials:

π+(x) =

t∏

i=1

πzi,si(xi),

π−(x) = π+(x)−
t∏

i=1

(
1 +

(xi)zi+si
zi!si!

)
+ 1.

The motivation behind this definition is quite simple. For the upper bound,
we can simply take the product of πzi,si(xi) since a product of non-negatives is
non-negative. For the lower bound, we subtract the necessary terms to turn all
the positive regions of π+(x) to negative.

Note that both polynomials are expressed solely through falling factorials of
x1, x2, . . . , xt, and so E (π−(X)) and E (π+(X)) are indeed linear combinations
of E ((X)k) with 0 ≤ k ≤ K. Thus, in the following theorem, P (X = z) is
indeed bounded through the joint factorial moments alone.

Theorem 3.6.
E
(
π−(X)

)
≤ P (X = z) ≤ E

(
π+(X)

)
.

Proof. It is sufficient to prove that π−(z) = π+(z) = 1 and that π+(x) is non-
negative for x 6= z while π−(x) is non-positive for x 6= z.

Start with π+(x). First,

π+(z) =

t∏

i=1

πzi,si(zi) =

t∏

i=1

1 = 1.

Second, since π+(x) is a product of non-negative polynomials πzi,si(xi), it is
always non-negative.
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Now consider π−. First,

π−(z) = π+(z)−
t∏

i=1

(
1 +

(zi)zi+si
zi!si!

)
+ 1

= 1−
t∏

i=1

(1 + 0) + 1

= 1− 1 + 1 = 1.

Second, consider any x 6= z. Showing that π−(x) ≤ 0 is equivalent to showing
that

t∏

i=1

(
1 +

(xi)zi+si
zi!si!

)
≥ 1 +

t∏

i=1

πzi,si(xi).

If any xi is neither zi nor > zi + si, we get πzi,si(xi) = 0 and the inequality is
trivially true. So assume that every xi is either zi or > zi + si. x 6= z and so
the set I ⊆ [t] = {1, 2, , . . . , t} of indices for which xi > zi + si is non-empty.
Note that:

(a) For every i ∈ I, since πzi,si−1(xi) is non-positive,

(xi)zi+si
zi!si!

≥ πzi,si(xi).

(b) For every i 6∈ I, xi = zi and so πzi,si(xi) = 1.

Overall, we get

t∏

i=1

(
1 +

(xi)zi+si
zi!si!

)
=

∏

i∈I

(
1 +

(xi)zi+si
zi!si!

)

I 6=∅
≥ 1 +

∏

i∈I

(xi)zi+si
zi!si!

(a)

≥ 1 +
∏

i∈I
πzi,si(xi)

(b)
= 1 +

t∏

i=1

πzi,si(xi)

and that concludes the proof. �

Theorem 3.6 is a direct generalization of Waring’s Theorem, and therefore the
contents of Remark 3.3 naturally generalize to it as well.

To finish the section, let us intuitively describe how a typical use of Theorem
3.6 might look like. Let X be a tuple of random variables with a known joint
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distribution. Let Y be another tuple of random variables and assume the first
joint factorial moments are similar: E ((Y)k) is “close” to E ((X)k) for every
0 ≤ k ≤ K.

Since π+, π− are linear combinations of the joint factorial moments, conclude
that E (π+(X)) and E (π+(Y)) are also “close”, as well as E (π−(X)) and
E (π−(Y)). Now, use Theorem 3.6 to bound

E
(
π−(X)

)
≤ P (X = z) ≤ E

(
π+(X)

)
,

E
(
π−(Y)

)
≤ P (Y = z) ≤ E

(
π+(Y)

)
.

Overall deduce that the difference |P (Y = z)− P (X = z)| must be “close” to
the difference ∣∣E

(
π+(X)

)
− E

(
π−(X)

)∣∣ .
Finally, show that the difference |E (π+(X))− E (π−(X))| itself is small. That
would be true whenever the denominators of π+ − π−, which typically contain
factorials of K, are much larger than the numerators, which typically contain
moments of the K-th order.

The proof of Theorem 5.12 provides a detailed example of such a use, in which
X is distributed like independent Poisson variables.

4 The Extension Formula S

In this section we shall give our most important definition — the definition of the
first-order extension formula S for the random geometric graph. This formula
will be the building block of the graph structures we intend to express within
GT2(n, r). S will be defined over a triplet of root vertices denoted x1, x2, x3 and
introduce four new vertices denoted s1, s2, s3, z, so in full it should be written
as S = S(x1, x2, x3; s1, s2, s3, z). A quadruplet (s1, s2, s3, z) which satisfies this
extension will be called a witness for the extension (over x1, x2, x3).

The motivation behind the definition of S is keeping the expected number of
witnesses asymptotically constant. When counting witnesses for an extension
formula in a random graph, this is often enough to assure that the asymptotic
distribution is Poisson. In Section 5 we will show that in some sense this is also
the case for S.

Heuristically, a good way to promise an asymptotically constant expectation is
to use a relation between vertices whose probability p is a (negative) rational
power of n. Then, the overall expected number of witnesses should behave like
Θ(nvpr) where v is the number of new vertices and r is the number of required
relations, so we just need to correctly balance v, r. In Subsection 4.1 we describe
a first-order relation UN(x, y) whose probability (given x, y) is ≈ Const · n−2/3.
In Subsection 4.2 we define S by introducing v = 4 new vertices and requiring
r = 6 UN-relations.
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4.1 The UN-Relation

Recall the first-order relation A`(x, y) from Lemma 2.13. For a given constant
`, A`(x, y) claims that x, y have exactly ` common neighbors. For concreteness
let us fix ` = 1, so it claims that x, y have a unique neighbor. Let us rename it
accordingly and denote it UN(x, y). In Section 2 we intuitively explained how
this requirement forces area(Lxy) to be about n−1, and therefore diam(Lxy)
should be around n−1/3 and width(Lxy) should be around n−2/3. Recall that

‖x− y‖ = 2r − width(Lxy)

so we intuitively expect P (UN(x, y)) to also be around n−2/3. As it turns out,
this estimation can be made very precise.

Theorem 4.1. Let x, y be two vertices in GT2(n, r). Then

P (UN(x, y)) ≈ Cn−2/3

as n→∞, for some positive constant C (which can be computed explicitly).

Before the proof, let us introduce some useful notation.

For two vertices x, y define the random variable Hxy = r − ‖x−y‖2 . Note that
it equals half the width of Lxy, so it corresponds to the parameter h we use
to describe the geometry of lenses (see Lemma 2.11). Also note that h ≤ r by
definition, and that h ≥ 0 if and only if Lxy is non-empty. Let fxy(h) denote
the probability density function of Hxy.

Moreover, define the function

A(h) =

{
2r2 arccos

(
1− h

r

)
− 2(r − h)

√
2rh− h2 h ≥ 0

0 h < 0
. (3)

Recall that it describes the area of a lens with parameter h. In Corollary 2.12
we have seen than

A(h) ≈ CAr
1/2h

3/2

as h → 0, where CA = 8
√

2
3 . Let us denote B(h) = CAr

1/2h3/2. Using more
careful asymptotics it can actually be shown that

A(h)−B(h) = O
(
h

5/2
)
.

Proof of Theorem 4.1. Given that Hxy = h, the probability that exactly one of
the remaining n− 2 vertices lands inside Lxy is Q(A(h)), where

Q(t) = (n− 2)t(1− t)n−3.

Integrating over the possible h gives us

P (UN(x, y)) =

� r

0

Q(A(h))fxy(h)dh.
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Now, let us define

hn =

(
ln lnn

CA
√
r
· lnn

n

)2/3

(4)

where CA = 8
√

2
3 (this constant comes from Corollary 2.12). We separately

estimate
� r

0
=
� hn

0
+
� r
hn

.

Let us first show that the second term is negligible:4

� r

hn

Q(A(h))fxy(h)dh = n−Θ(ln lnn). (5)

We list the following facts:

1. We have

A(hn) ≈ B(hn) = CA
√
r · ln lnn

CA
√
r
· lnn

n
=

ln lnn · lnn
n

.

2. Q(t) is monotonically decreasing for t ≥ 1
n−2 . This follows from simple

differentiation.

3. A(hn) > 1
n−2 for sufficiently large n (this follows directly from 1).

4. A(h) is monotonically increasing in h.

Altogether, we deduce that for h ≥ hn we have Q(A(h)) ≤ Q(A(hn)), so
� r

hn

Q(A(h))fxy(h)dh ≤ Q(A(hn))

� r

hn

fxy(h)dh ≤ Q(A(hn)).

Now, standard asymptotic estimations give us

Q(A(hn)) ≈ ln lnn · lnn ·
(

1− ln lnn · lnn
n

)n

≈ ln lnn · lnn · e− ln lnn·lnn

= ln lnn · lnn · n− ln lnn = n−Θ(ln lnn).

Now for the main term: � hn

0

Q(A(h))fxy(h)dh.

By computing the density function we get fxy(h) →
h→0

8πr. Since hn → 0 we

can replace fxy(h) with the constant 8πr and maintain asymptotic equivalence.
Also, since limn→∞ n−2

n = 1 and limh→0+ (1−A(h)) = 1, we can replace

Q(t) = (n− 2)t(1− t)n−3

4The bound n−Θ(ln lnn) is much tighter than what we currently need, but we shall use it
in Subsection A.2.
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with the simpler nt(1− t)n. We get a “cleaner” expression:
� hn

0

Q(A(h))fxy(h)dh ≈ 8πr

� hn

0

nA(h)(1−A(h))ndh.

To further simplify the integral, we use standard asymptotic estimations to
replace (1−A(h))n with e−nA(h) and then A(h) with B(h). We obtain

� hn

0

nA(h)(1−A(h))ndh ≈
� hn

0

nB(h)e−nB(h)dh.

Finally, let us directly evaluate the obtained integral. Explicitly written, it is� hn

0

nB(h)e−nB(h)dh =

� hn

0

nCAr
1/2h

3/2 exp
(
−nCAr

1/2h
3/2
)

dh.

Consider the change of variables t = nCAr
1/2h3/2.

dt =
3

2
nCAr

1/2h
1/2dh

nCAr
1/2h

3/2dh =
C ′

n2/3
t
2/3dt

for some constant C ′. Hence
� hn

0

nB(h)e−nB(h)dh =
C ′

n2/3

� nCAr
1/2h

3/2
n

0

t
2/3e−tdt

=
C ′

n2/3

� ln lnn·lnn

0

t
2/3e−tdt.

But � ln lnn·lnn

0

t
2/3e−tdt →

n→∞

� ∞
0

t
2/3e−tdt = Γ

(
5

3

)

and so � hn

0

nB(h)e−nB(h)dh ≈ C ′Γ
(

5

3

)
n−

2/3.

In conclusion, we have shown that there exists a constant C such that

P (UN(x, y)) ≈
� hn

0

Q(A(h))fxy(h)dh ≈ Cn−2/3.

That finishes the proof. �

4.2 Defining S

Definition 4.2. Define the following first-order formula:

S(x1, x2, x3; s1, s2, s3, z) =

DIS ∧UN(x1, s1) ∧UN(x2, s2) ∧UN(x3, s3) ∧UN(s1, z) ∧UN(s2, z) ∧UN(s3, z)

∧CD(x1, z) ∧ CD(x2, z) ∧ CD(x3, z),

where:
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� DIS demands that all seven vertices x1, x2, x3, s1, s2, s3, z are distinct.

� UN(x, y) is the “Unique Neighbor” relation defined in subsection 4.1.

� CD(x, z) is the formula D√3(x, z) ∧ ¬D1(x, z), where D1,D√3 are the
formulas from Lemma 2.4. CD stands for “Comfortable Distances” (see
the following remark).

Figure 6 illustrates the S-extension.

Remark 4.3. While the idea behind having four vertices and six UN relations has
been explained, the choice to add CD to the definition is not immediately clear.
CD(x, z) forces the distance ‖x− z‖ to be approximately between r and

√
3r.

The idea is that allowing ‖x− z‖ to be extremely close to either 0 or 4r causes
a “blow up” that dominates the probability of the extension; the CD conditions
prevent that and keep the behavior of S “tamed”. This kind of argument is
demonstrated in the proof of the Negligibility Theorem (see Subsection A.2
in the Appendix), where we show that certain undesirable overlaps between
S-extensions have negligible effect.

z

s1

s2

s3

x1

x2

x3

Figure 6: A geometric illustration of the S-structure. The black lines represent
UN-relations. For every two UN-related vertices, their lens contains exactly one
vertex, as shown.

5 Joint Distribution of Witnesses

In this section we investigate the joint distribution of witnesses for the exten-
sion formula S over different triplets of vertices. As it turns out, under a certain
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geometric conditioning, the counts of witnesses asymptotically behave like in-
dependent Poisson variables.

From now until the end of the section, let us fix t distinct triplets of vertices,

which we denote x
(i)
1 , x

(i)
2 , x

(i)
3 for 1 ≤ i ≤ t. Note that by “distinct triplets”

we mean distinct as sets. That is, triplets may share vertices, but two triplets
may not share all three vertices. Let U denote the set of all vertices from those
triplets and let v = |U |. Of course, v and t may depend on the underlying n.

The approach taken in this paper for encoding arbitrary graph structures works
for very slowly-growing numbers of vertices.5 We therefore assume v ≤ ln ln ln lnn,
which also means that t ≤

(
v
3

)
≤ (ln ln ln lnn)

3
.

For brevity, we denote x(i) = (x
(i)
1 , x

(i)
2 , x

(i)
3 ). We also denote quadruplets of

vertices as q = (s1, s2, s3, z). So S(x(i); q) means that the quadruplet q is a
witness for the S-extension over x(i). Let Z(i) be the random variable which
counts those witnesses:

Z(i) =
∑

q

1{S(x(i);q)}.

We are interested in estimating the joint distribution of Z(1), Z(2), . . . , Z(t). To
do that, we estimate their joint factorial moments and then use the flexible
moments method from Section 3.

To obtain the promised Poisson-like behavior, it turns out that we must fix
the geometric positions of the vertices of U . Intuitively, this act eliminates
“malicious” dependency which hides within the geometric configurations of the
triplets. This leads us to the following definition.

Definition 5.1. Write U = {u1, u2, . . . , uv}. A geometric configuration (or
simply a configuration) of U is an event of the form

{u1 = a1, u2 = a2, . . . , uv = av}

where a1, a2, . . . , av ∈ T2 are fixed points in the torus. For short, we write
u = (u1, u2, . . . , uv) and a = (a1, a2, . . . , av) so the configuration is written as
u = a. Given such a configuration, for every 1 ≤ i ≤ t the fixed positions of the

triplet x
(i)
1 , x

(i)
2 , x

(i)
3 are denoted a

(i)
1 , a

(i)
2 , a

(i)
3 .

Throughout this section we will always perform our evaluations given a certain
geometric configuration. It turns out to be the most comfortable and natural
way to understand the variables Z(1), Z(2), . . . , Z(t). When necessary, we will
always be able to integrate over all the configurations and obtain general, non-
conditioned evaluations (this will happen in Section 6). It is important to keep
in mind that in order to do that, our evaluations must remain uniform with
respect to the configuration u = a.

5This is also the case in the binomial model; see [19].
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Definition 5.2. A configuration u = a is called feasible if for every 1 ≤
i ≤ t, the set R(i) ⊆ T2 of points which are at “comfortable distances” from

a
(i)
1 , a

(i)
2 , a

(i)
3 is non-empty. Formally,

R(i) =

{
a ∈ T2

∣∣∣∣
∥∥∥a− a(i)

1

∥∥∥ ,
∥∥∥a− a(i)

2

∥∥∥ ,
∥∥∥a− a(i)

3

∥∥∥ ∈
[
r,
√

3r
]}

.

Furthermore, we say that u = a is q-feasible (for a constant q > 0) if area(R(i)) ≥
q for every 1 ≤ i ≤ t.

Intuitively, feasibility of u = a assures that all the extensions are geometrically
possible. q-feasibility prevents “edge cases” and is essential to allow uniform
bounds over different configurations.

Definition 5.3. A configuration u = a is called well-spaced if ‖aj − aj′‖ ≥
n−1/6 for every two different 1 ≤ j, j′ ≤ v. Furthermore, we say that u = a is
strongly well-spaced if, in addition, for every 1 ≤ i ≤ t the set

{
a ∈ T2

∣∣∣∣
∥∥∥a− a(i)

1

∥∥∥ ,
∥∥∥a− a(i)

2

∥∥∥ ,
∥∥∥a− a(i)

3

∥∥∥ ∈
[
2r − 2n−

1/6, 2r + 2n−
1/6
]}

is empty.

Intuitively, these conditions help to prevent dangerous overlap between different
extensions, in a similar fashion to the CD-relations. The exact details can be
found in Subsection A.2 (specifically, see the proof of Proposition A.9 and the
preceding remark).

5.1 The Joint Factorial Moments

From now and until the end of the section we fix a geometric configuration
u = a, which is strongly well-spaced and q0-feasible for a small constant q0 (e.g.
q0 = r

100 ). Our probabilities and expectations will be conditioned by u = a. To
emphasize that, we will denote

Pa(A) = P(A | u = a),

Ea(X) = E(X | u = a)

for events A and variables X. In addition, we reuse abbreviated notation from
Section 3: we write Z = (Z(1), Z(2), . . . , Z(t)) and consider the factorial moments
Ea ((Z)k) for tuples k = (k1, k2, . . . , kt).

Let us set K = ln ln lnn. This value is chosen to grow faster than v, t but
still sufficiently slowly. The purpose of this subsection is to estimate the joint
factorial moments Ea ((Z)k) for every 0 ≤ k ≤ K.
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Negligible Bad Situations

Our first step is to list some “bad” situations and to claim that their contribution
to the joint moments is negligible. The ability to ignore these situations will
make the evaluation of the joint moments much cleaner. We call this result the
Negligibility Theorem (see Theorem 5.7).

Recall the combinatorial meaning of the joint factorial moments. The variable

(Z)k =
(
Z(1)

)
k1
. . .
(
Z(t)

)
kt

counts tuples of k1 + · · ·+ kt quadruplets

Q =
(
q

(1)
1 , . . . ,q

(1)
k1
, . . . ,q

(t)
1 , . . . ,q

(t)
kt

)

such that q
(i)
1 , . . . ,q

(i)
ki

are all distinct for every 1 ≤ i ≤ t and such that each

q
(i)
j satisfies S

(
x(i); q

(i)
j

)
. We refer to such tuples Q as k-tuples of witnesses

for the S-extension (over the triplets x(i)).

The idea of the Negligiblity Theorem is that instead of counting all those k-
tuples Q, we may only count “well-behaved” k-tuples. Let us explain what do
we mean by well-behaved.

The first thing we would like to do is actually to replace S with a different, non-
first-order extension, which we denote S∗. This new extension will be simpler
to analyze, yet it turns out that replacing S with S∗ causes only a negligible
change.

Definition 5.4. Define the following first-order formula:

S∗(x1, x2, x3; s1, s2, s3, z) =

DIS ∧UN∗(x1, s1) ∧UN∗(x2, s2) ∧UN∗(x3, s3) ∧UN∗(s1, z) ∧UN∗(s2, z) ∧UN∗(s3, z)

∧CD∗(x1, z) ∧ CD∗(x2, z) ∧ CD∗(x3, z)

Where:

� DIS demands that all seven vertices x1, x2, x3, s1, s2, s3, z are distinct.

� UN∗(x, y) demands that UN(x, y) holds and also that 2r−2hn ≤ ‖x− y‖ ≤
2r (see Equation 4 for the definition of hn).

� CD∗(x, z) demands that r ≤ ‖x− z‖ ≤
√

3r.

Remark 5.5. Note that UN∗,CD∗are not first order formulas, since they directly
refer to the distances. The idea is that they are approximated by the first-order
UN,CD. The distance conditions imposed by UN∗ and CD∗ turn out to be very
comfortable in certain situations. Also note that UN∗(x, y) is equivalent to

UN(x, y) ∧Hxy ∈ [0, hn]

(Hxy was defined in Subsection 4.1).
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The second important aspect of good behavior is avoiding overlaps between
triplets and their extensions. We summarize it in the following definition.

Definition 5.6. Set 0 ≤ k ≤ K and consider a k-tuple

Q =
(
q

(1)
1 , . . . ,q

(1)
k1
, . . . ,q

(t)
1 , . . . ,q

(t)
kt

)

of witnesses for S∗ over the triplets x(i). We say that Q is well-behaved if none
of the “bad” situations listed below occur. In the following list, i, j are always
indices between 1 and t (not necessarily distinct!) and q(i) always denotes one

of q
(i)
1 , . . . ,q

(i)
ki

.

1a. There exist a witness q(i) and a triplet x(j) that share a vertex.

1b. There exist different quadruplets q(i),q(j) that share a vertex.

2. Not all the vertices of Q are well-spaced.

3a. There exist q(i) and x(j) such that a vertex from x(j) is also the witness for
a UN-relation of S(x(i); q(i)).

3b. There exist q(i),q(j) such that a vertex from q(j) is also the witness for a
UN-relation of S(x(i); q(i)).

4. There exist q(i),q(j) such that a UN-relation of q(i) and a UN-relation of
q(j) both have the same witness.

We can sum up the meaning of situations 1a-b, 3a-b and 4 in one sentence.
Those are all the situations in which a vertex “plays two roles” at the same time,
where the roles are being an x-vertex, being a q-vertex and being the witness
for a UN relation. Situation 2 mainly helps to prove the negligibility of the
other situations.

Theorem 5.7 (The Negligibility Theorem). Set 0 ≤ k ≤ K. Let Z̃k count
well-behaved k-tuples of witnesses for S∗. Then

Ea ((Z)k) = Ea

(
Z̃k

)
+ n−Ω(1).

Moreover, the bound n−Ω(1) on the error term is uniform (with respect to k and
the configuration u = a).

The proof of the Negligibility Theorem is quite technical and elaborate. How-
ever, it employs geometric and asymptotic considerations which will also be
relevant in Section 6. To facilitate the flow of reading, we choose to put it in
the Appendix; see Subsection A.2.
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Estimating the Joint Factorial Moments

Before we get to the joint moments we need one more lemma. Note that we are
still under the conditioning u = a.

Lemma 5.8. Let x = (x1, x2, x3) be one of the t fixed triplets and let q =
(s1, s2, s3, z) be a quadruplet of distinct vertices (not from U). Define the six-
dimensional random variable

H = (Hx1s1 , Hx2s2 , Hx3s3 , Hs1z, Hs2z, Hs3z) .

Then, the variable H has a joint density function fH(h) on [0, hn]6 given the
event

CD∗(x; q) = CD∗(x1, z1) ∧ CD∗(x2, z2) ∧ CD∗(x3, z3).

Moreover, fH(h) is Lipschitz (and in particular, continuous) and its value at
h = 0 is positive.

Proof. To prove that f exists, it is sufficient to prove that there exists a constant
C such that for every box Q ⊆ [0, hn]6,

Pa (H ∈ Q | CD∗(x; q)) ≤ Cvol(Q).

For every 1 ≤ i ≤ 3, the probability of Hxisi , Hsiz ∈ [a, b] × [c, d] is the area
of the intersection of the two annuli around xi, z and radii 2r − 2b < 2r − 2a
and 2r − 2d < 2r − 2c respectively. We invoke the proof of Lemma A.13 from
the Appendix, which handles intersections of annuli. If we denote ∆ = ‖xi − z‖
then the area in question is

2

�

J

r1r2

∆ · y
dr1dr2

where J = [2r − 2b, 2r − 2a] × [2r − 2d, 2r − 2c] and y is a specific function of
r1, r2 (which also depends on ∆). It is not hard to show that for a, b, c, d ≤ hn
and r ≤ ∆ ≤

√
3r there is a constant C ′ such that r1r2

ηy ≤ C ′. Therefore, given

CD∗(xi, z), the probability that si lies in the intersection is

≤ Const · vol([a, b]× [c, d]).

Due to the independence between the s-vertices, we can multiply and get

P (H ∈ Q | CD∗(x; q)) ≤ Const · vol(Q)

which proves that fH(h) exists.

The values of fH can be calculated with boxes as follows:

fH (h1, . . . , h6) = lim
ε→0

[
1

ε6
P
(
Hx1s1 ∈ [h1, h1 + ε], . . . ,Hs3z ∈ [h6, h6 + ε]

∣∣∣∣ CD∗(x; q)

)]
.
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Substituting h = 0, the conditioned probability again turns into three integrals
over r1r2

∆i·y with varying ∆1,∆2,∆3 which are always in [r,
√

3r]. The same

considerations (but now with a lower bound) yield fH (0) > 0. Moreover, the
dependence of r1r2∆y on r1, r2 in the relevant region is Lipschitz, which then shows

that fH(h) is itself Lipschitz. �

The following theorem the main result of the current section.

Theorem 5.9. There exist positive constants λ1, λ2, . . . , λt such that for every
0 ≤ k ≤ K,

Ea ((Z)k) = λk11 λ
k2
2 . . . λktt + n−Ω(1).

Moreover, the term n−Ω(1) is uniform (with respect to k and the configuration
u = a).

Remark 5.10. As we shall see, the constants λ1, λ2, . . . , λt depend on the geo-
metric configuration u = a, however they can be bound uniformly by constants
0 < λmin < λmax.

In the proof we employ the following notation. First, recall the function A(h)
from Equation (3), which computes the area of the lens Lxy given than Hxy = h.
Now, for a vector h = (h1, h2, . . . , h`), we write

ΣA(h) =
∑̀

i=1

A(hi), ΠA(h) =
∏̀

i=1

A(hi).

For a tuple k = (k1, k2, . . . , kt) we also denote k = k1 + k2 + · · ·+ kt.

Proof of Theorem 5.9. First, from the Negligibility Theorem 5.7, it is sufficient
to prove

Ea

(
Z̃k

)
= λk11 λ

k2
2 . . . λktt + n−Ω(1)

where Z̃k counts well-behaved k-tuples

Q =
(
q

(1)
1 , . . . ,q

(1)
k1
, . . . ,q

(t)
1 , . . . ,q

(t)
kt

)

of witnesses for S∗. We prove the asymptotic equivalence

Ea

(
Z̃k

)
≈ λk11 λ

k2
2 . . . λktt .

Keeping track of the error is postponed to the end of the proof. Uniformity with
respect to k and u = a follows from the fact that we rely only on the general
assumptions about them.

For a k-tuple of quadruplets Q, let WB(Q) denote the event that it is a well-
behaved k-tuple of witnesses for S∗. Then

Z̃k =
∑

Q

1{WB(Q)}
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where the sum is over all k-tuples Q of 4k distinct vertices (not from U). So

Ea

(
Z̃k

)
=
∑

Q

Pa (WB(Q)) .

By symmetry, the probability Pa (WB(Q)) is the same for every Q, let us denote
is P . Therefore

Ea

(
Z̃k

)
= (n− v)4kP ≈ n4kP.

From now on, we fix a k-tuple Q of 4k vertices and estimate the probability P
that it is a well-behaved k-tuple of witnesses for S∗.

Let CD(Q) denote the event that every quadruplet q
(i)
j of Q satisfies CD∗

(
x(i); q

(i)
j

)
.

We evaluate P through the probabilistic chain rule:

P = Pa

(
WB(Q)

∣∣ CD(Q)
)
Pa (CD(Q)) .

Start with Pa (CD(Q)). The probability that a given z vertex satisfies the CD∗

conditions over x(i) is the area qi of the set R(i) (see Definition 5.2). The z
vertices are all distinct, therefore independent, and so

Pa (CD(Q)) = qk11 qk22 . . . qktt .

Also recall that u = a is q0-feasible, thus qi ≥ q0 for every 1 ≤ i ≤ t.

Now for the main term, Pa

(
WB(Q)

∣∣ CD(Q)
)
. The idea is to represent this

probability as an integral over the 6k relevant H-variables. Then we “decom-
pose” the resulting integral into a product of 6k one-dimensional integrals.

Given the event CD(Q), the meaning of the event WB(Q) is that the 6k relevant
UN∗-relations are all satisfied, and also that there is no overlap between their
6k witnesses: they are all distinct, and none of them is from U or from Q.6

Recall that UN∗(x, y) can be understood as the requirement that Lxy contains
exactly one vertex (the “witness”) and that Hxy ∈ [0, hn].

For every 1 ≤ i ≤ t and 1 ≤ j ≤ ki let H
(i)
j be the 6-dimensional variable of the

relevant H-variables for the extension S∗
(
x(i); q

(i)
j

)
. Write the 6k-dimensional

variable
H =

(
H

(1)
1 , . . . ,H

(1)
k1
, . . . ,H

(t)
1 , . . . ,H

(t)
kt

)
.

Given that H = h for some 6k-dimensional vector h, the probability of WB(Q)
is

(n− v − 4k)6k ·ΠA(h) · (1−M)
n−v−10k

where M is the area of the union of the 6k lenses.

Two asymptotic estimations make this expression simpler:

6It actually also requires that the vertices of Q are well-spaced, but we know it has negligible
effect on the probability so we may ignore it right now.
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1. (n− v − 4k)6k ≈ n6k (easily justified by the logarithmic bounds on v, k).

2. (1 −M)n−v−10k ≈ exp (−nΣA(h)). Indeed, we may again assume that
the vertices of Q are well-spaced (from the Negligibility Theorem). Then,
Lemma A.15 shows that the areas of the intersections between lenses are
n−1 1

6 +o(1). So
M = ΣA(h) + n−1 1

6 +o(1).

We also know that each A(h) is at most A(hn) = (lnn)O(1)

n so the same
bound applies for M . These two facts justify the above estimation.

We get the simpler, asymptotically equivalent expression

T (h) = n6k ·ΠA(h) · exp (−nΣA(h)) .

Integrating over the different values for H = h, we get

Pa

(
WB(Q)

∣∣ CD(Q)
)

=




[0,hn]6k

T (h)fH(h)dh

where fH(h) is the joint density function of H given CD(Q). It now mainly
remains to estimate this integral.

Consider fH(h) first. The H
(i)
j variables are independent, because H

(i)
j depends

only on the vertices q
(i)
j . Here we strongly use the underlying conditioning by

u = a; without it, H
(i)
j would also depend on x(i). Write

fH(h) =

t∏

i=1

ki∏

j=1

f
H

(i)
j

(h
(i)
j )

where f
H

(i)
j

(h
(i)
j ) is the joint density of H

(i)
j given CD(Q). By Lemma 5.8,

this joint density function indeed exists and is also continuous over the region

[0, hn]6. Therefore f
H

(i)
j

(h
(i)
j ) ≈ f

H
(i)
j

(0) uniformly over [0, hn]6 as n → ∞.

The constant f
H

(i)
j

(0) is positive and depends only on the geometric locations

a
(i)
1 , a

(i)
2 , a

(i)
3 (and, in particular, does not depend on j). Denote it by fi. So we

can say that
fH(h) ≈ fk11 fk22 . . . fktt

uniformly over [0, hn]6k as n → ∞. This allows us to “take the density out of
the integral”:




[0,hn]6k

T (h)fH(h)dh ≈ fk11 fk22 . . . fktt




[0,hn]6k

T (h)dh.
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The remaining integral naturally decomposes into a product:




[0,hn]6k

n6kΠA(h) exp (−nΣA(h)) dh =

(� hn

0

nA(h)e−nA(h)dh

)6k

.

This integral already came up in the proof of Theorem 4.1, where it was shown
that � hn

0

nA(h)e−nA(h)dh ≈ Cn−2/3

for a positive constant C. So overall,

Pa

(
WB(Q)

∣∣ CD(Q)
)
≈ fk11 fk22 . . . fktt ·

(
Cn−

2/3
)6k

≈ fk11 fk22 . . . fktt · C6kn−4k.

In conclusion,

Ea

(
Z̃k

)
≈ n4kP = n4k · Pa (CD(Q)) · Pa

(
WB(Q)

∣∣ CD(Q)
)

≈ n4k · qk11 qk22 . . . qktt · f
k1
1 fk22 . . . fktt · C6kn−4k

= (C6q1f1)k1(C6q2f2)k2 . . . (C6qtft)
kt .

Denoting λi = C6qifi, we obtain the desired estimation

Ea

(
Z̃k

)
≈ λk11 λ

k2
2 . . . λktt .

The only thing remaining is to explain why the error is n−Ω(1). Since

λk11 λ
k2
2 . . . λktt = eO(k) = no(1),

writing

Ea

(
Z̃k

)
= λk11 λ

k2
2 . . . λktt + n−Ω(1)

is equivalent to writing

Ea

(
Z̃k

)
=
(

1 + n−Ω(1)
)
λk11 λ

k2
2 . . . λktt .

So we need to explain why all the transitions involving asymptotic equivalence
≈ indeed admit a multiplicative term of 1 + n−Ω(1) (and also notice that their
amount is poly-logarithmic). We shall do that briefly for some key transitions.

(n− v)4k ≈ n4k: Note that

(n− v − 4k)4k

n4k
≤ (n− v)4k

n4k
≤ 1.
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But

(n− v − 4k)4k

n4k
=

(
1− v + 4k

n

)4k

= 1 +O

(
k(v + 4k)

n

)
= 1 + n−Ω(1).

fH(h) ≈ fk11 fk22 . . . fktt : The 6-dimensional joint density function f
H

(i)
j

(h
(i)
j ) is

Lipschitz (from Lemma 5.8), so

∣∣∣fH(i)
j

(h
(i)
j )− fi

∣∣∣ ≤ Const ·
√

6hn

for every h
(i)
j ∈ [0, hn]6. fi is a positive constant, therefore

f
H

(i)
j

(h
(i)
j ) = (1 +O(hn))fi =

(
1 + n−Ω(1)

)
fi.

(1−M)n−v−10k ≈ exp (−nΣA(h)): again, we rely on the two estimations

M = ΣA(h) + n−1 1
6 +o(1)

and M = (lnn)O(1)

n . There are a three steps here:

(1−M)n−v−10k ≈ (1−M)n
(∗)
≈ e−Mn ≈ e−nΣA(h).

In step (∗), for example, the multiplicative error is

1 +O(nM2) = 1 + n−Ω(1).

� hn
0

nα(h)e−nα(h)dh ≈ Cn−2/3: Carefully follow the proof of Theorem 4.1. �

As mentioned in Remark 5.10, the exact values of λ1, λ2, . . . , λt from Theorem
5.9 depends on the geometric configuration u = a. However, as the following
proposition states, there are universal bounds on those values.

Proposition 5.11. There exist positive constants λmin, λmax, independent of
u = a, such that

λmin ≤ λ1, λ2, . . . , λt ≤ λmax

for every q0-feasible configuration u = a.

Proof. Recall that λi = C6qifi.

C comes from the integral
� hn

0
nα(h)e−nα(h)dh and does not depend on u = a

in any way.

qi is the area of R(i) which is trivially bounded by 1 from above, and also
bounded by q0 from below by our assumption.
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fi comes from the joint density function of H
(i)
j . Its evaluation comes down to

integrals of the form �
J

r1r2

∆y
dr1dr2

as mentioned in Lemma 5.8. The integrand r1r2
∆y can be bounded by positive

constants from above and below, which do not depend on r ≤ ∆ ≤
√

3r. There-
fore there are positive constants fmin, fmax that universally bound fi from both
sides.

Overall
C6q0fmin ≤ C6qifi ≤ C6fmax

so defining λmin = C6q0fmin and λmax = C6fmax ends the proof. �

5.2 The Joint Distribution

With a good estimation of the joint factorial moments, it is now the time to
exploit the flexible moments method from Section 3.

Theorem 5.12. Let λ1, λ2, . . . , λt be the constants from Theorem 5.9. Let
K = ln ln lnn as always. Then for every t-tuple of integers z = (z1, . . . , zt) ≤
ln ln ln lnn,

Pa(Z = z) =

t∏

i=1

[
e−λi

λzii
zi!

]
+
eO(K)

K!
.

Moreover, the term eO(K)

K! is uniform (with respect to z and the configuration
u = a).

Proof. Let X(1), X(2), . . . , X(t) be t independent random variables with X(i) ∼
Pois(λi). Write X =

(
X(1), X(2), . . . , X(t)

)
. Note that for every z,

P (X = z) =

t∏

i=1

[
e−λi

λzii
zi!

]

so we need to prove

Pa(Z = z) = P (X = z) +
eO(K)

K!

for 0 ≤ z ≤ ln ln ln lnn.

We do it with the flexible moments method. For every 0 ≤ k ≤ K, by Theorem
5.9 we know that

Ea ((Z)k) = λk11 λ
k2
2 . . . λktt + n−Ω(1).
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In addition, for every k,

E ((X)k) = λk11 λ
k2
2 . . . λktt .

The flexible moments method bounds probabilities through the joint factorial
moments:

E
(
π−(X)

)
≤ P (X = z) ≤ E

(
π+(X)

)
,

Ea

(
π−(Z)

)
≤ Pa (Z = z) ≤ Ea

(
π+(Z)

)
,

where π+(x), π−(x) are the suitable multivariate polynomials from Definition
3.5. Recall that they are indeed linear combinations of the joint falling factorials:
we can write

π+(x) =
∑

0≤k≤K
αk(x)k,

π−(x) =
∑

0≤k≤K
βk(x)k

with coefficients αk, βk. The coefficients can be easily computed, but for the
proof we are satisfied with the simple bound |αk| , |βk| ≤ 1, which directly
follows from the definition. We therefore get

∣∣Ea

(
π+(Z)

)
− E

(
π+(X)

)∣∣ ≤
∑

0≤k≤K
|αk| |Ea ((Z)k)− E ((X)k)|

= n−Ω(1) ·
∑

0≤k≤K
|αk| = n−Ω(1)

and similarly for π−. It remains to bound |E (π+(X))− E (π−(X))|.

∣∣E
(
π+(X)

)
− E

(
π−(X)

)∣∣ = E

[
t∏

i=1

(
1 +

(Xi)zi+si
zi!si!

)
− 1

]

= E


 ∑

∅6=I⊆[t]

(∏

i∈I

(Xi)zi+si
zi!si!

)


=
∑

∅6=I⊆[t]

[∏

i∈I

(λi)
zi+si

zi!si!

]

=

t∏

i=1

(
1 +

(λi)
zi+si

zi!si!

)
− 1.

Here si is either K − zi or K − zi − 1 (depending on parity). Since we have

K = ln ln lnn, zi ≤ ln ln ln lnn, t ≤ (ln ln ln lnn)
3
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we can write

t∏

i=1

(
1 +

(λi)
zi+si

zi!si!

)
− 1 = O

(
t∑

i=1

(λi)
zi+si

zi!si!

)

= O

(
t∑

i=1

eO(K)

K!

)

=
eO(K)

K!
.

Overall

|Pa (Z = z)− P (X = z)| ≤ n−Ω(1) +
eO(K)

K!
=
eO(K)

K!

and that finishes the proof. �

6 Expressing Arbitrary Graph Structures

In this section we prove the most important result in the paper: that first-order
logic can unravel arbitrary graph structures (with a slowly-growing number of
vertices) within the random geometric graph. This result is the key to the
construction of a first order sentence with non-converging probability.

To state this result formally, we begin by explaining how we encode graph
structures in GT2(n, r). We use the extension formula S as our building block.

Definition 6.1. 1. Let x = (x1, x2, x3) be a fixed triplet of distinct vertices
in GT2(n, r). Define the (random) set of vertices Ux ⊆ V as follows:

Ux = {z | ∃s1, s2, s3. S(x; s1, s2, s3, z)} .

2. Let U ⊆ V be a set of vertices and let w ∈ V \U be another fixed vertex.
Define Hw(U) as the (random) graph whose vertex set is U and whose
edge set is

{{u1, u2} | ∃q. S(u1, u2, w; q)} .

We see that S can be used to define both a vertex set and an edge set. This is
somewhat analogous to the way Spencer and Shelah encode graph structures in
G(n, p) (for p = n−α with rational 0 < α < 1) with a suitable extension formula
(see Sub-subsection 8.3.1 in Spencer [17]).

Recall that to successfully count witnesses for S-extensions over a set of vertices,
two geometric conditions are required: well-spacedness and feasibility. Here it
will be more comfortable to replace feasibility with a simpler, stronger condition.

Definition 6.2. We say that a set of vertices U in GT2(n, r) is nicely positioned
if its vertices are well-spaced and its diameter is at most r

4 .
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r
4 is simply a comfortable arbitrary choice. Note that diam(U) ≤ r

4 assures
q0-feasibility for q0 = 0.63πr2. Indeed, if the distances between three vertices
x1, x2, x3 are all less than r

4 , then the corresponding locus R from Definition 5.2

contains the annulus around x1 with radii 5
4r,
(√

3− 1
4

)
r, and the area of this

annulus is [(√
3− 1

4

)2

−
(

5

4

)2
]
πr2 > 0.63πr2.

We can now formulate the main theorem.

Theorem 6.3 (Main Theorem). Fix 1 ≤ v ≤ ln ln ln lnn.

1. A.a.s., there exists a triplet x = (x1, x2, x3) such that |Ux| = v and Ux is
nicely positioned.

2. A.a.s., for every nicely positioned set of vertices U with |U | = v, and for
every possible graph H with v vertices, there exists a vertex w ∈ V \ U
such that Hw (U) is isomorphic to H.

In particular, the following is true. A.a.s., for every possible graph H on v
vertices, there exist four vertices x1, x2, x3, w such that Hw (Ux) ∼= H.

The theorem shows that the first order extension S can be used to express any
graph structure H with at most ln ln ln lnn vertices in GT2(n, r). In Section 7
we will see how it is used to finish the proof of Theorem 1.17.

Subsection 6.1 is dedicated to the proof of Theorem 6.3. As we shall see, the
proof crucially relies on the concentration of certain random variables. Proving
this concentration theorem is a bit more involved, and we handle it separately
in Subsection 6.2.

6.1 Proving the Main Theorem

Although the two parts of Theorem 6.3 may appear different, they actually rely
on the same core ideas: in both cases we need to find vertices such that counting
the witnesses over them gives us certain specific values. We prove the second
part, which is harder, and then explain the minor adjustments needed for a
proof of the first part.

Our first step is to reformulate (the second part of) the theorem more conve-
niently. We get rid of quantifiers and fix a geometric configuration of U .

Theorem 6.4. Fix 1 ≤ v ≤ ln ln ln lnn. Also fix a set of vertices U with |U | =
v, a graph structure H on U , and a geometric configuration u = a of U which
is nicely positioned. Then, given u = a, with probability 1 − exp

(
−Ω(ln2 n)

)

there exists a vertex w such that Hw(U) = H. Moreover, the asymptotic bound
on the probability is uniform: it can be made independent of the choices of U,H
and the configuration u = a.
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Let us explain how to obtain Theorem 6.3 part 2 from Theorem 6.4. First
consider the set U and the graph H fixed and integrate over the nicely positioned
configurations u = a. Uniformity of the bounds is applied to maintain a bound
of exp

(
−Ω(ln2 n)

)
on the probability that the appropriate w does not exist,

given a specific set U which is known to be nicely positioned and a specific

graph structure H. Then, take a union bound over all 2(v2) graph structures H
and over all

(
n
v

)
sets of vertices U . This is where the exponential bound on the

probability becomes crucial. We get

2(v2)
(
n

v

)
· exp

(
−Ω(ln2 n)

)
= exp (lnn ·O(ln ln ln lnn)) · exp

(
−Ω(ln2 n)

)
= o(1).

So indeed, a.a.s. we can find a suitable w for every U,H.

Let us now briefly review the course of the proof of Theorem 6.4. To obtain the
strong probabilistic bound we use the following trick. We consider geometric
configurations of all the vertices in the random graph, which we call complete
configurations. Given a complete configuration, the existence of a suitable vertex
w is deterministic; we call a complete configuration that determines the existence
of such a w a good configuration. We would like to show that with very high
probability, the vertices of the RGG are configured in a good way. To do that, we
give a sufficient condition for being a good configuration, based on the values of
certain random variables, closely related to Z(1), Z(2), . . . , Z(t) from the previous
section. A concentration result is applied to these variables to show that with
very high probability, we can replace them with their expected values, which
turns out to guarantee that the configuration is good.

From now on we fix 1 ≤ v ≤ ln ln ln lnn. We also fix a set of vertices U with
|U | = v, a graph structure H on U , and a geometric configuration u = a which
is nicely positioned. From now on, everything is conditioned by u = a unless
stated otherwise. Again, we use the notations Pa(·) and Ea(·) for probabilities
and expectations in the RGG, conditioned by u = a.

Definition 6.5. Write V = {v1, v2, . . . , vn}. A complete configuration is an
event of the form

{v1 = b1, v2 = b2, . . . , vn = bn}
where b1, b2, . . . , bn ∈ T2 are fixed points. Again, we use the abbreviated nota-
tion v = b.

Remark 6.6. Since we fixed the configuration u = a, the only relevant complete
configurations are those who “agree” with it: every u ∈ U must be assigned the
same position by v = b and by u = a. Consequently, when we discuss complete
configurations from now on we always assume that they agree with u = a.

Definition 6.7. A complete configuration v = b is called good if, given the
configuration, there exists a vertex w such that Hw(U) = H.

Note that this is well-defined: a complete configuration determines all the in-
formation about the RGG, including the S-extensions and thus the existence of
a suitable w.
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To show that a complete configuration is good we use a probabilistic method
argument. Suppose that we fix v = b. The idea is to choose w randomly
and uniformly among V \ U , and then consider the probability that it satisfies
Hw(U) = H (which is a probability over an entirely new probability space!). If
we manage to show that this probability is positive, then surely a suitable w
exists, which means that the configuration is good.

For notational convenience, let us enumerate all pairs of vertices from U :
(
U

2

)
= {u(1),u(2), . . . ,u(t)}

where now t =
(
v
2

)
.

Definition 6.8. Given a complete configuration v = b, let W be a random
vertex which is uniformly distributed over all n− v vertices of V \U . For every
1 ≤ i ≤ t, define X(i) as the number of witnesses for the S-extension over the
triplet (u(i),W ). Notice that (given the configuration v = b) each X(i) is a
function of W .

We use the notation Pb(·) for probabilities in this new probability space. To
prove that a configuration is good, we would like to show that

Pb (HW (U) = H) > 0.

Importantly, notice that the event HW (U) = H can be expressed through the
values of the variables X(i): it occurs if and only if X(i) ≥ 1 whenever u(i) is
an edge of H and X(i) = 0 whenever u(i) is not an edge of H. It becomes a
question about the joint distribution of X(1), X(2), . . . , X(t).

This is a good time to invoke the flexible moments method. First, for compati-
bility with the method, we replace X(i) ≥ 1 with X(i) = 1:

Pb (HW (U) = H) = Pb

(
X(i)≥1 when u(i)∈E(H)

X(i)=0 when u(i) 6∈E(H)

)

≥ Pb

(
X(i)=1 when u(i)∈E(H)

X(i)=0 when u(i) 6∈E(H)

)
.

Of course, it is sufficient to show that this smaller probability is positive. In this
case, the variables are X =

(
X(1), . . . , X(t)

)
, the values z are all 0 or 1 and we

set K = ln ln lnn as usual. Let π−(x) be the suitable multivariate polynomial,
as defined in Definition 3.5. We get the lower bound

Pb (HW (U) = H) ≥ Eb

(
π−(X)

)
. (6)

Eb (π−(X)) is a specific linear combination of the joint factorial moments: we
can write

Eb

(
π−(X)

)
=

∑

0≤k≤K
βkEb ((X)k)

for coefficients βk which can be explicitly computed.

Naturally, our next step is to investigate the joint factorial moments Eb ((X)k)
for 0 ≤ k ≤ K. To do that we introduce the following definition.
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Definition 6.9. For every 0 ≤ k ≤ K, define the variable Yk in GT2(n, r) as
the number of tuples

(
w,q

(1)
1 , . . . ,q

(1)
k1
, . . . ,q

(t)
1 , . . . ,q

(t)
kt

)

such that w is a vertex and q
(i)
1 , . . . ,q

(i)
ki

are distinct witnesses for the S-

extension over (u(i), w), for every 1 ≤ i ≤ t.

Note that Yk is a random variable in the RGG. Given a complete configuration
v = b, the value of Yk is determined, and we denote it Yk

∣∣
b
.

Lemma 6.10. Given a complete configuration v = b, for every 0 ≤ k ≤ K,

Eb ((X)k) =
1

n− v
Yk
∣∣
b
.

Proof. By definition,

Eb ((X)k) =
1

n− v
∑

w∈V \U

(
X(1)(w)

)
k1
. . .
(
X(t)(w)

)
kt
.

Here X(i)(w) is the number of witnesses for S over (u(i), w) given v = b. Note
that, for a given w, the term

(
X(1)(w)

)
k1
. . .
(
X(t)(w)

)
kt

counts the number of k-tuples of witnesses

(
q

(1)
1 , . . . ,q

(1)
k1
, . . . ,q

(t)
1 , . . . ,q

(t)
kt

)
.

Therefore
Yk
∣∣
b

=
∑

w∈V \U

(
X(1)(w)

)
k1
. . .
(
X(t)(w)

)
kt

and that finishes the proof. �

From the lemma, we can rewrite our lower bound from Equation (6) in terms
of Yk:

Pb (HW (U) = H) ≥
∑

0≤k≤K
βkEb ((X)k) =

1

n− v
∑

0≤k≤K
βkYk

∣∣
b
.

This is where concentration steps in. We shall now estimate the general expected
values Ea (Yk), and claim that the variables Yk are highly concentrated around
their expectations. The following simple definition and lemma reduce Ea (Yk)
into a more familiar form.
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Definition 6.11. Set an arbitrary vertex w0 ∈ V \ U . For every 1 ≤ i ≤ t,
define a random variable Z(i) to be the number of witnesses for the S-extension
over (u(i), w0) in GT2(n, r).

The variables Z(i) are essentially the same as the variables that we studied in
Section 5: they count witnesses for the S-extension over fixed triplets.

Lemma 6.12. For every 0 ≤ k ≤ K,

Ea(Yk) = (n− v)Ea ((Z)k) .

Proof. (Z)k counts k-tuples of quadruplets

(
q

(1)
1 , . . . ,q

(1)
k1
, . . . ,q

(t)
1 , . . . ,q

(t)
kt

)

such that q
(i)
i , . . . ,q

(i)
ki

are distinct witnesses for S over (u(i), w0). Now it is
simply left to notice that Yk is the sum of n−v random variables with the same
distribution as (Z)k (by symmetry between the vertices of V \ U). �

Finally, we formulate the concentration result. Its proof is presented in Subsec-
tion 6.2.

Theorem 6.13 (The Concentration Theorem). For every 0 ≤ k ≤ K,

Pa

(
|Yk − Ea (Yk)| = Ω

(
Ea (Yk)

(lnn)1000

))
= exp

(
−Ω(ln2 n)

)
.

More explicitly, there exists a constant C > 0 such that

Pa

(
|Yk − Ea (Yk)| ≥ C

(lnn)1000
Ea (Yk)

)
= exp

(
−Ω(ln2 n)

)
.

Again, both C and the bound are uniform with respect to k and the nicely posi-
tioned u = a.

We are now ready to prove Theorem 6.4.

Proof of Theorem 6.4. From Theorem 6.13, with probability 1−exp
(
−Ω(ln2 n)

)
,

the RGG is configured in such a way that the concentration inequality

|Yk − Ea (Yk)| ≤ C

(lnn)1000
Ea (Yk) (7)

holds for every 0 ≤ k ≤ K (where C is some positive constant).

Fix a complete configuration v = b such that (7) holds for every 0 ≤ k ≤ K.
Let us show that it is a good configuration; that is, a configuration which admits
a vertex w with Hw(U) = H. That will finish the proof.
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As already explained, it is sufficient to prove that Pb (HW (U) = H) > 0. We
have already seen the following lower bound:

Pb (HW (U) = H) ≥ 1

n− v
∑

0≤k≤K
βkYk

∣∣
b
.

From concentration, we can write

∑

k

βkYk
∣∣
b

=
∑

k

βkEa (Yk) +O

(
1

(lnn)1000

∑

k

|βk|Ea (Yk)

)
.

From Lemma 6.12 we can further write

1

n− v
∑

k

βkYk
∣∣
b

=
∑

k

βkEa ((Z)k) +O

(
1

(lnn)1000

∑

k

|βk|Ea ((Z)k)

)
. (8)

Let us separately handle the main term and the error term.

Start with the main term. Recall the definition of the coefficients βk, from which

∑

k

βkEa ((Z)k) = Ea

(
π− (Z)

)
.

Here the polynomial π−(x) is adjusted to the values of a binary vector z ∈
{0, 1}t, which is determined by the graph structure H. From the flexible mo-
ments method,

Ea

(
π−(Z)

)
≤ Pa (Z = z) ≤ Ea

(
π+(Z)

)
.

The variables Z(i) count extensions over the triplets (u(i), w0), therefore the
configuration u = a fixes the position of all the vertices from these triplets,
except w0. This is easy to handle:

� The probability that w0 lands in a position which keeps U ∪{w0} strongly
well-spaced and q0-feasible is bounded from below by a constant p0 > 0.

� Given a nicely positioned configuration of U ∪ {w0}, which we denote
u′ = a′, we can apply the results of Section 5 for Z. In particular, from
Theorem 5.12 we claim that there is an independent constant c > 0 such
that Pa′ (Z = z) > ct, and from the flexible moments method we claim
that

∣∣Ea′
(
π+(Z)

)
− Ea′

(
π−(Z)

)∣∣ =
eO(K)

K!
.

So overall Ea′ (π
−(Z)) ≥ ct − eO(K)

K! = (1− o(1))ct.

� Now, integrate over all possible positions of w0 which keep U ∪ {w0}
strongly well-spaced and q0-feasible, and obtain the lower bound

Ea

(
π−(Z)

)
≥ (p0 − o(1))ct. (9)
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Now for the error term. We can similarly use Theorem 5.9 and Proposition 5.11
to claim that

Ea ((Z)k) ≤ λkmax + n−Ω(1)

(where k = k1 + · · ·+ kt). Combining with the bounds |βk| ≤ 1, we get

O

(
1

(lnn)1000

∑

k

|βk|Ea ((Z)k)

)
= O

(
KtλKtmax

(lnn)1000

)
.

This is definitely o(ct) for any constant c (recall that K = ln ln lnn and that
t =

(
v
2

)
, v ≤ ln ln ln lnn). Finally, substituting back in Equation (8), we get

Pb (HW (U) = H) ≥ 1

n− v
∑

0≤k≤K
βkYk

∣∣
b

≥ (p0 − o(1))ct > 0

which is what we wanted. �

Adjustments for the First Part

Let us explain how to adjust the above proof to the first part of Theorem 6.3.
To find a triplet x with |Ux| = v, we arbitrarily fix a pair of vertices {x1, x2}
and look for x3 such that the number of witnesses for S over x1, x2, x3 is exactly
v. Here {x1, x2} functions like U from before (but now there is only one couple
instead of t) and x3 functions like w. We follow the exact same strategy with
the straightforward adjustments. For example:

� A “good” complete configuration is now one which determines the exis-
tence of a suitable x3.

� Instead of t variables X(1), . . . , X(t) we have one variable X. We are now
interested in showing Pb(X = v) > 0.

� The flexible moments method is now applied on a single variable, so it
simply reduces to Waring’s Theorem. To approximate the moments of X,
we now introduce the variables Yk for 0 ≤ k ≤ K.

� Similarly, instead of t variables Z(1), . . . , Z(t) we have one variable Z, for
which the results of Section 5 apply.

� In the analogue of Equation (9), the lower bound now takes the form

Ea

(
π−(Z)

)
≥ (p0 − o(1))

λvmin

v!
.
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It remains to explain how to promise the existence of Ux which not only has
exactly v vertices, but is also nicely positioned. This is actually quite easy given
what we know so far.

Recall that “nicely positioned” requires well-spacedness and diameter ≤ r
4 . For

the second requirement, we can just restrict ourselves to x1, x2, x3 such that
the corresponding locus R from Definition 5.2 satisfies diam(R) ≤ r

4 . Indeed,
the vertices of Ux are the z-vertices of a witness q for S(x1, x2, x3; q), so by
definition they must land in R. This requirement only adds a constant factor
(the requirement about x1, x2, x3 forces them to an area of Θ(1)) and other than
that the proof remains the same.

Regarding well-spacedness, the idea is that situations in which Ux is not well-
spaced are negligible. This is a consequence of the Negligibility Theorem 5.7.
Here is a more detailed explanation. Suppose that x1, x2 are fixed, and say
that x3 is “forbidden” if Ux is not well-spaced. Replace the variable X with
a variable X ′ which is the same, except it ignores any situation in which x3 is
forbidden. Just as we have

Eb((X)k) =
1

n− 2
Yk
∣∣
b
, Ea (Yk) = (n− 2)Ea ((Z)k) ,

we can also write

Eb((X ′)k) =
1

n− 2
Y ′k
∣∣
b
, Ea (Y ′k) = (n− 2)Ea ((Z ′)k)

where Y ′k, Z
′ are the same as Yk, Z, except they ignore any forbidden x3. Now,

∣∣∣∣
1

n− 2
Ea (Yk)− 1

n− 2
Ea (Y ′k)

∣∣∣∣ = |Ea ((Z)k)− Ea ((Z ′)k)| = n−Ω(1)

where the last bound follows from the Negligibility Theorem. By Markov’s
inequality we deduce7 that a.a.s.

∣∣∣∣
1

n− 2
Yk −

1

n− 2
Y ′k

∣∣∣∣ = n−Ω(1).

This means that a.a.s., the lower bound on Pb(X = v) is also valid for Pb(X ′ =
v), except for an error term of n−Ω(1). So Pb(X ′ = v) is also positive and there
exists a suitable, non-forbidden x3.

Remark 6.14. By “playing” with the allowed positions of x1, x2, x3, the same
considerations can promise the existence of well-spaced sets Ux with exactly v
vertices in any specific region of T2. In particular, for every constant ε > 0
we can make the following claim. A.a.s., for every ball B ⊆ T2 with radius ε,
there exist x1, x2, x3 such that Ux is well-spaced, has exactly v vertices and is
contained in B. We will use this fact in Section 7.

7It is worth noting that here we lose the strong bound of exp
(
−Ω(ln2 n)

)
to the weaker

n−Ω(1). This is not a problem, as we do not need the strong bound in the first part — there
is no union bound to overcome.
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6.2 Proving the Concentration Result

We turn to a proof of the Concentration Theorem 6.13. It is divided into three
steps. The preparation step applies Poissonization and replaces Yk with a similar
variable which can be written as the sum of “nearly independent” indicators.
The remaining two steps separately prove the lower bound and the upper bound,
which together compose the Concentration Theorem.

Following the previous subsection, we fix 1 ≤ v ≤ ln ln ln lnn, and also fix a
set U of v vertices and a configuration u = a which is nicely positioned (see
Definition 6.2). u(1),u(2), . . . ,u(t) is an enumeration of all the pairs of vertices
from U , with t =

(
v
2

)
.

6.2.1 Preparation

Our first step is to apply the Poissonization technique (see Subsection A.1 in
the Appendix). We consider U and its configuration u = a fixed, and then,
instead of randomly generating n − v additional vertices, we introduce a new
random graph which generates the additional vertices as a Poisson point process
with intensity n− v. Following the notation from the Appendix, this means we
replace GT2(n, r) with Ga(N, r).

We intend to apply Corollary A.5, in order to reduce the Concentration Theorem
in GT2(n, r) to the analogous result in Ga(N, r).

Definition 6.15. For every 0 ≤ k ≤ K, define the variable Ỹk as the number
of tuples (

w,q
(1)
1 , . . . ,q

(1)
k1
, . . . ,q

(t)
1 , . . . ,q

(t)
kt

)

in Ga(N, r) such that w is a vertex and q
(i)
i , . . . ,q

(i)
ki

are distinct witnesses for

the S-extension over (u(i), w), for every 1 ≤ i ≤ t.

That is, Ỹk is defined just like Yk, but in the Poisson random graph.

Proposition 6.16. Suppose that in Ga(N, r), Ỹk is concentrated for every 0 ≤
k ≤ K:

P

(∣∣∣Ỹk − EỸk
∣∣∣ = Ω

(
EỸk

(lnn)1000

))
= exp

(
−Ω(ln2 n)

)
.

Then in GT2(n, r) (given u = a), Yk is similarly concentrated for every 0 ≤ k ≤
K:

Pa

(
|Yk − Ea (Yk)| = Ω

(
Ea (Yk)

(lnn)1000

))
= exp

(
−Ω(ln2 n)

)
.

Proof. Corollary A.5 from the Appendix immediately implies

Pa

(∣∣∣Yk − EỸk
∣∣∣ = Ω

(
EỸk

(lnn)1000

))
= exp

(
−Ω(ln2 n)

)
. (10)
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That is, Yk is concentrated around EỸk. To replace EỸk with Ea (Yk) we show
that the two expected values are “very close”. Let E be the event (in GT2(n, r))
whose probability is bounded in equation (10). Write

Ea (Yk) = Ea (Yk1Ec) + Ea (Yk1E) .

For the first term, by definition of E, we can write (for some positive constant
C)

Pa(Ec)

(
1− C

(lnn)1000

)
EỸk ≤ Ea (Yk1Ec) ≤ Pa(Ec)

(
1 +

C

(lnn)1000

)
EỸk.

For the second term, recall that Yk counts (4k+1)-tuples of vertices in GT2(n, r),
therefore we always have Yk ≤ n4k+1, so

Ea (Yk1E) ≤ n4k+1Pa(E).

Using the estimation Pa(E) = exp
(
−Ω(ln2 n)

)
, the fact that k ≤ tK and the

standard bounds on t,K, we can overall write

Ea (Yk) =

(
1 +O

(
1

(lnn)1000

))
EỸk. (11)

The desired result easily follows. �

Following last the proposition, we now focus on proving concentration of Ỹk in
the Poisson random graph Ga(N, r). Since from now on we are interested only
in the variables Ỹk, for notational simplicity we rename them as Yk. So, from
now on, Yk actually denotes the variable in Ga(N, r) from Definition 6.15.

The next step is another standard technique: discretization of the random ge-
ometric graph. This means we divide the torus T2 into “very small” squares.
For our purposes, “very small” will be exp

(
− ln2 n

)
.

Definition 6.17. Let M =
⌈
exp

(
ln2 n

)⌉
and denote ε = 1

M . Divide the torus
T2 into M2 squares of size ε×ε and denote them �ij (with indices 1 ≤ i, j ≤M).
Note that they are all mutually disjoint (perhaps except the sides, but their
measure is 0).

Proposition 6.18. With probability 1−exp
(
−Ω(ln2 n)

)
, each of the M2 squares

contains at most one vertex of Ga(N, r).

Proof. First, consider a square � which contains a vertex from U . It does not
contain any other vertex from U (because U is well-spaced). The number of
non-U vertices it contains is distributed like Pois(λ) for λ = (n−v)ε2. A simple
asymptotic estimation shows that � contains non-U vertices with probability
O(λ) = O(nε2). A union bound over the v relevant squares yields

O(vnε2) = exp
(
−Ω(ln2 n)

)
.
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Now consider all the remaining squares. For a square �, the probability that it
contains two non-U vertices is O(λ2). A union bound over all M2−v remaining
squares yields

O(M2) ·O
(
n2ε4

)
= O

(
n2ε2

)
= exp

(
−Ω(ln2 n)

)
.

That finishes the proof. �

The intuitive meaning of Proposition 6.18 is that, given our discretization, we
can “identify” vertices with the squares that contain them without ambiguity.
Now, the idea is to discretize Yk accordingly, by counting squares instead of

vertices. This yields an approximating random variable Y
[ε]
k . Its important ad-

vantage over Yk is that, while Yk counts witnesses by going over the vertices, Y
[ε]
k

counts witnesses by going over regions of T2. The spatial independence prop-

erty then allows the decomposition of Y
[ε]
k into a sum of “almost independent”

indicators, which is the ideal form for concentration results.

Definition 6.19. The discretized S-extension is a relation between seven squares,
which we denote

S[ε] (�x1
,�x2

,�x3
;�s1 ,�s2 ,�s3 ,�z) .

and define as follows. First, S[ε] requires the that each of the seven squares
contains a vertex. Second, it requires

UN[ε] (�x1 ,�s1) ∧UN[ε] (�x2 ,�s2) ∧UN[ε] (�x3 ,�s3)

∧UN[ε] (�s1 ,�z) ∧UN[ε] (�s2 ,�z) ∧UN[ε] (�s3 ,�z) .

Here UN[ε] (�x,�y) is the discretized UN-relation. It requires that the distance
between the centers bx, by of the squares is between 2r − 2hn and 2r, and also
that the lens Lbxby contains exactly one vertex. Third, it requires

CD[ε] (�x1 ,�z) ∧ CD[ε] (�x2 ,�z) ∧ CD[ε] (�x3 ,�z) .

Here CD[ε] (�x,�z) is the discretized CD-relation. It requires that the distance
between the centers bx, bz is between r and

√
3r.

Again, we use abbreviated notation:

�x = (�x1
,�x2

,�x3
) ,�q = (�s1 ,�s2 ,�s3 ,�z)

and write S[ε] (�x;�q). When this extension holds we say that �q is a witness
for S[ε] over �x.

Definition 6.20. For every 0 ≤ k ≤ K, define Y
[ε]
k to be the random variable

which counts the number of tuples
(
�w,�q

(1)
1
, . . . ,�

q
(1)
k1

, . . . ,�
q
(t)
1
, . . . ,�

q
(t)
kt

)
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such that �w is a square and �
q
(i)
1
, . . . ,�

q
(i)
ki

are distinct witnesses for the S[ε]-

extension over (�u(i) ,�w) for every 1 ≤ i ≤ t. Here �u(i) is the pair of squares
which contain the pair of vertices u(i).

We employ the standard notation k = k1 + · · ·+ kt. While Yk counts (4k + 1)-

tuples of vertices, Y
[ε]
k counts (4k + 1)-tuples of squares.

Lemma 6.21. For every 0 ≤ k ≤ K,

E
∣∣∣Y [ε]

k − Yk
∣∣∣ = exp

(
−Ω(ln2 n)

)
.

Proof Sketch. The difference between Y
[ε]
k and Yk comes from S-extensions

S(x; q) which do not correspond to S[ε]-extensions S[ε] (�x;�q), or vice versa.
Let us understand how such a situation occurs.

Consider vertices x,q which satisfy S(x; q). Let �x,�q denote the correspond-
ing squares which contain them. What would prevent them from satisfying
S[ε] (�x;�q)?

One possibility is that CD(x1, z) holds but CD[ε](�x1
,�z) does not hold. Let

bx1 , bz be the centers of the respective squares. The distances ‖bx1 − x1‖ , ‖bz − z‖
are at most

√
2ε. Therefore if

‖x1 − z‖ ∈
[
r,
√

3r
]

but ‖bx1
− bz‖ 6∈

[
r,
√

3r
]
,

this forces x1 to be in an O(ε)-wide annulus around z. Another possibility is
when Lx1s1 contains a vertex but Lbx1bs1 does not contain a vertex. Again,

‖bx1
− x1‖ , ‖bs1 − s1‖ ≤

√
2ε, thus the difference Lx1s1 \ Lbx1bs1 , which is sup-

posed to contain a vertex, has an area of O(ε).

We see that every possibility forces a requirement which adds a factor of O(ε)
to the probability of the extension. Our situation highly resembles the Neg-
ligibility Theorem, only here the added factor is O(ε) instead of n−Ω(1). The
same considerations allow us to bound the contribution to the expected value
by O(ε) = exp

(
−Ω(ln2 n)

)
. See Proposition A.11 as illustration of those the

considerations. �

The immediate conclusion from the lemma is that it suffices to prove concentra-

tion for Y
[ε]
k instead of Yk. Indeed, Markov’s inequality yields P(Y

[ε]
k 6= Yk) =

exp
(
−Ω(ln2 n)

)
, so the replacement of Y

[ε]
k with Yk keeps the same asymptotic

bounds.

In conclusion, the preparation step reduces the original Concentration Theorem
to the following result: for every 0 ≤ k ≤ K,

P

(∣∣∣Y [ε]
k − EY [ε]

k

∣∣∣ = Ω

(
EY [ε]

k

(lnn)1000

))
= exp

(
−Ω(ln2 n)

)
. (12)

The remaining two steps prove Equation (12) by separately dealing with the
lower bound and the upper bound.
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6.2.2 The Lower Bound

In this step we prove

P
(
Y

[ε]
k ≤

(
1− C

(lnn)1000

)
EY [ε]

k

)
= exp

(
−Ω(ln2 n)

)

for every 0 ≤ k ≤ K. Actually, our proof will give us a much stronger bound
on the probability: exp

(
−nΩ(1)

)
.

Our strategy is to use Theorem 10 from Janson [8]. Its formulation is repeated
here.

Theorem 6.22. Let {Ii}i∈I be a finite family of indicator random variables
(over the same probability space) and let S =

∑
i∈I Ii. Let Γ be a dependency

graph8 for {Ii}i∈I . Denote i ∼ j for i, j ∈ I if they are adjacent in Γ. Define:

� pi = E(Ii) = P(Ii = 1).

� µ = E(S) =
∑
i∈I pi.

� δi =
∑
j:j∼i pj and δ = maxi∈I δi.

� ∆ =
∑
{i,j}:i∼j E(IiIj). Note that this is a sum over unordered pairs.

Then, for every 0 ≤ a ≤ 1,

P (S ≤ aµ) ≤ exp

(
−min

{
(1− a)2 µ2

8∆ + 2µ
, (1− a)

µ

6δ

})
. (13)

To apply the theorem on Y
[ε]
k , we decompose it into a sum of indicators as

follows. Let the index set I be the set of all (4k + 1)-tuples of squares

T =

(
�w,�q

(1)
1
, . . . ,�

q
(1)
k1

, . . . ,�
q
(t)
1
, . . . ,�

q
(t)
kt

)
.

For every tuple T ∈ I, define the indicator 1T to be 1 when �
q
(i)
1
, . . . ,�

q
(i)
ki

are

distinct witnesses for the S[ε]-extension over (�u(i) ,�w) for every 1 ≤ i ≤ t.

Then Y
[ε]
k =

∑
T∈I 1T .

Recall that the S[ε]-extension is composed of several requirements. We can
divide them into two kinds: distance requirements about the distances between
squares, and vertex requirements about the existence of vertices in certain loci
(either one of the squares or one of the lenses). Given a tuple of squares T ,
the distance requirements of all the S[ε]-extensions are already determined by T
itself, so 1T only depends on the vertex requirements. Let us say that a tuple T

8This means a graph with vertex set I such that if A and B are two disjoint subsets of I
and Γ contains no edge between A and B then {Ii}i∈A and {Ii}i∈B are independent.
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is valid if it satisfies all the relevant distance requirements. For non-valid tuples
T the indicator 1T is trivially 0, so we may ignore them and sum over the valid
tuples.

Let us fix a valid T and examine 1T more closely. Denote by L1, L2, . . . , L6k the
6k lenses which are relevant for the S[ε]-extensions. Each Li is a fixed locus in
T2. Then 1T equals 1 if and only if every square of T contains a vertex, and every
lens Li contains exactly one vertex. We can therefore define the dependency
graph as follows. T ∼ T ′ for two valid tuples T, T ′ if one of the squares of T
or its relevant lenses intersects one of the squares of T ′ or its relevant lenses.
The spatial independence property (Proposition A.6) shows that this is indeed
a dependency graph on I.

Let us apply Theorem 6.22 on Y
[ε]
k with this dependency graph. We set

a = 1− C

(lnn)1000

so the LHS of (13) becomes

P
(
Y

[ε]
k ≤

(
1− C

(lnn)1000

)
EY [ε]

k

)
.

For the RHS, we shall prove the following asymptotic estimations on µ, δ,∆:

1. µ = n1+o(1).

2. δ = n1−Ω(1).

3. ∆ = n2−Ω(2).

Substituting these estimations in equation (13), we get

µ2

8∆ + 2µ
=

n2−o(1)

n2−Ω(1) + n1−Ω(1)
= nΩ(1),

µ

6δ
=
n1−o(1)

n1−Ω(1)
= nΩ(1).

In addition, 1− a = 1
(lnn)1000 = n−o(1). Overall

min

{
(1− a)2 µ2

8∆ + 2µ
, (1− a)

µ

6δ

}
= nΩ(1)

and the RHS is indeed exp
(
−nΩ(1)

)
.

It therefore remains to prove the asymptotic estimations on µ, δ,∆.

Estimating µ. This is straightforward:

µ = E
(
Y

[ε]
k

)
= (1 + o(1))E (Yk) = (1 + o(1))(n− v)Ea ((Z)k) .
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Here Ea ((Z)k) a joint moment just like in Section 5, and we know that it is
eΘ(k) = no(1), so overall µ = n1+o(1).

Estimating δ. Recall that δ = maxT∈I δT , where

δT =
∑

T ′:T ′∼T
E (1T ′) .

That is, δT is the expected number of tuples T ′ which satisfy the k relevant S[ε]-
relations and also T ′ ∼ T . Without the requirement T ′ ∼ T , this sum simply

becomes µ = E
(
Y

[ε]
k

)
which is n1+o(1). So we need to show that the additional

requirement T ′ ∼ T contributes a factor of n−Ω(1) to the expectation. This
leads us once more to the considerations of the Negligibility Theorem. They
apply in the exact same way, except now we handle tuples of squares instead of
tuples of vertices.

For the sake of concreteness, let us demonstrate the concept with a single
quadruplet. Fix a triplet of squares �x and let us bound the expected number
of quadruplets �q which satisfy S[ε] (�x;�q). The main step is to count the
number of quadruplets �q which satisfy the relevant distance requirements.

� �z has O(M2) options to be chosen with “comfortable distances” from
�x1 ,�x2 ,�x3 .

� �s1 has O(M2h2
n) options to be chosen with the correct distances from

�x1
,�z. Indeed, its center must lie in the intersection of two annuli with

radii 2r − 2hn, 2r, whose centers are “comfortable distances” apart, and
the area of such an intersection is O(h2

n) (see Lemma A.13).

� Each of �s2 ,�s3 also has O(M2h2
n) valid options for the same reasons.

So overall we count O
(
(M2)4h6

n

)
quadruplets. For each one of these quadru-

plets, the probability that it also satisfies the vertex requirements can be simply
bounded by the probability that each of the four squares contain a vertex, which
is O

(
(nε2)4

)
(we allow ourselves to ignore the lenses here). In conclusion, the

expected number of quadruplets �q with S[ε] (�x;�q) bounded by

O
(
(M2)4h6

n

)
·O
(
(nε2)4

)
= O

(
n4h6

n

)
= (lnn)

O(1)
.

Now suppose that we fix a lens L with width Θ(n−2/3) “in the background”,
and ask for the expected number of quadruplets �q which satisfy the extension
S[ε] (�x;�q), and also that one of its six relevant lenses intersects L. Here
L plays the role of a lens from the fixed tuple T . Geometric considerations
show that this additional requirement forces �z to be in a locus with area
n−Ω(1) (as explained in detail in Subsection A.2). So now we count quadru-
plets O

(
(M2)4h6

n · n−Ω(1)
)

quadruplets, with the same bound O
(
(nε2)4

)
on

the probability for each one, which yields

(lnn)
O(1) · n−Ω(1) = n−Ω(1).
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To handle the general case, with multiple quadruplets, we consider the factor
added by each quadruplet separately; again this idea is explained in detail in
Subsection A.2. Now, the count of tuples T ′ which satisfy the distance require-
ments and T ′ ∼ T is

O
(

(M2)4k+1h6k
n · n−Ω(1)

)

and for every such T ′, we have E (1T ′) = O
(
(nε2)4k+1

)
. So overall

δT = O
(

(M2)4k+1h6k
n · n−Ω(1)

)
·O
(
(nε2)4k+1

)

= O
(

(lnn)
O(4k)

n−4k · n4k+1 · n−Ω(1)
)

= n1−Ω(1).

Estimating ∆. Recall that

∆ =
∑

{T,T ′}:T∼T ′
E(1T1T ′)

(summing over unordered pair of tuples). Rewrite it as

∆ =
1

2

∑

T

[ ∑

T ′:T ′∼T
E(1T1T ′)

]
.

Let us again fix a valid T and estimate ∆T =
∑
T ′:T ′∼T E(1T1T ′). This sum is

exactly like δT , but with E(1T ′) replaced by E(1T1T ′).

We begin by separately handling tuples T ′ which share squares with T . Their

number is PL ·
(
M2
)4k

(here PL stands for a poly-logarithmic factor; it is poly-
nomial in K, t), and each summand is

E(1T1T ′) ≤ E(1T ) = O
(
(nε2)4k+1

)
.

Therefore their contribution to ∆T is

O
(

PL · n4k+1
(
M2
)4k (

ε2
)4k+1

)
= O

(
PL · n4k+1ε2

)
= exp

(
−Ω(ln2 n)

)
.

Now consider tuples T ′ with T ′ ∼ T which do not share squares with T . As we
already explained, counting the number of tuples T ′ which satisfy the distance
requirements and T ′ ∼ T gives

O
(

(M2)4k+1h6k
n · n−Ω(1)

)
.

Now, E(1T1T ′) can be bounded by the probability that the 2(4k + 1) squares
of T and T ′ all contain vertices, thus it is O

(
(nε2)2(4k+1)

)
. Overall

∆T = O
(

(M2)4k+1h6k
n · n−Ω(1)

)
·O
(

(nε2)2(4k+1)
)

= O
((
ε2
)4k+1

(lnn)
O(4k)

n−4k · n2(4k+1) · n−Ω(1)
)

= O
((
ε2
)4k+1 · n4k+1 · n1−Ω(1)

)
.
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Finally, summing over valid tuples T ,

∆ = O
(
(M2)4k+1h6k

n

)
·O
((
ε2
)4k+1 · n4k+1 · n1−Ω(1)

)

= O
(

(lnn)
O(4k)

n−4k · n4k+1 · n1−Ω(1)
)

= n2−Ω(1).

6.2.3 The Upper Bound

In this step we prove

P
(
Y

[ε]
k ≥

(
1 +

C

(lnn)1000

)
EY [ε]

k

)
= exp

(
−Ω(ln2 n)

)

for every 0 ≤ k ≤ K. Our strategy is to use Theorem 2.1 from Janson and
Ruciński [9]. Its formulation is repeated here.

Theorem 6.23. Let {Ii}i∈I a finite family of random variables and let S =∑
i∈I . Let Γ be a dependency graph for {Ii}i∈I and denote i ∼ j if they are

adjacent in I. Define:

� µ = E(S) =
∑
i∈I E(Ii).

� Xi =
∑
j:j∼i Ij.

Then, for every δ > 0 and ρ > 0,

P (S ≥ (1 + δ)µ) ≤
(

1 +
δ

2

)−ρ
+
∑

i∈I
P
(
Xi >

δµ

2ρ

)
. (14)

Again, we intend to use the theorem for Y
[ε]
k , with its decomposition into in-

dicators Y
[ε]
k =

∑
T 1T and their dependency graph. We set δ = C

(lnn)1000
and

ρ = nγ , for a certain 0 < γ < 1 which will be specified later. The LHS of (14)
becomes

P
(
Y

[ε]
k ≥

(
1 +

C

(lnn)1000

)
EY [ε]

k

)
.

The first summand in the RHS is

(
1 +

C

2 (lnn)
1000

)−nγ
= exp

(
−Ω

(
nγ

(lnn)
1000

))
= exp

(
−nΩ(1)

)
.

It remains to bound the second summand, which is

∑

T

P
(
XT >

δµ

2ρ

)
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where T runs over valid (4k + 1)-tuples of squares and XT =
∑
T ′:T ′∼T 1T ′ .

Notice that E (XT ) is precisely δT from the lower bound. As it turns out, for
an upper bound, the expected value of XT is not sufficient; we need more direct
information about the distribution of XT . This makes our task a bit more
involved.

We shall now prove that

P
(
XT >

δµ

2ρ

)
= exp

(
−Ω

(
ln3 n

))
(15)

for every fixed (valid) tuple of squares T (uniformly over T ). That will finish
the proof. Indeed, we know the number of valid tuples T : it is

O
(
M4k+1h6k

n

)
= exp

(
O
(
ln2 n · ln ln ln lnn

))
.

Therefore

∑

T

P
(
XT >

δµ

2ρ

)
= O

(
M4k+1h6k

n

)
· exp

(
−Ω

(
ln3 n

))

= exp
(
O
(
ln2 n · ln ln ln lnn

)
− Ω

(
ln3 n

))

= exp
(
−Ω

(
ln3 n

))
.

In particular, this bound is also exp
(
−Ω

(
ln2 n

))
, which is exactly what we

need.

So, let us fix a valid (4k + 1)-tuple of squares T ; our goal is to prove (15).
We continue the tradition of ignoring the lenses in our bounds: let us replace
the indicator 1T ′ with 1̃T ′ , which only requires that each of the squares of T ′

contains a vertex. Define X̃T =
∑
T ′:T ′∼T 1̃T ′ . Obviously X̃T ≥ XT so it is

sufficient to prove

P
(
X̃T >

δµ

2ρ

)
= exp

(
−Ω

(
ln3 n

))
.

The term δµ
2ρ can be written as follows:

δµ

2ρ
=

Cn1+o(1)

2 (lnn)
1000

nγ
= n1−γ+o(1).

Let us compare it to the expectation δ̃T = EX̃T . Our bound on δT from the
lower bound step was actually a bound on δ̃T , so we have δ̃T = n1−Ω(1). Setting
γ to be a sufficiently small constant, we get

δ̃T = n−Ω(1) · δµ
2ρ

so we can write

P
(
X̃T >

δµ

2ρ

)
≤ P

(∣∣∣X̃T − δ̃T
∣∣∣ ≥ n1−γ+o(1)

)
. (16)
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In words, X̃T > δµ
2ρ implies that X̃T deviates from its expectation δ̃T by a

multiplicative factor of nΩ(1).

Equation (16) reduces our task into the proof of another concentration result,
this time for X̃T . Our strategy is to use Kim and Vu’s result about concentration
of multivariate polynomials [11]. To understand how “multivariate polynomials”
come into play we rewrite X̃T as follows. For a square � , let I� be the indicator
of the event that � contains a vertex. Then

X̃T =
∑

T ′:T ′∼T

[ ∏

�∈T ′
I�

]
.

This expression is a multivariate polynomial in the variables
{
I�ij

}
1≤i,j≤M .

Kim and Vu’s result

We present Kim and Vu’s result in a somewhat simplified version which is more
suited for our situation.

Assume that {Ii}i∈I is a finite set of independent Bernoulli random variables.
Let P be a set of subsets of I, all with the same cardinality k. Kim and Vu give
a concentration inequality for the random variable

X =
∑

P∈P

[∏

i∈P
Ii

]
.

To formulate it we need to introduce some definitions.

For a given set A ⊆ I with cardinality |A| ≤ k we define

PA = {P ∈ P | A ⊆ P} .

In addition, we associate it with a random variable:

XPA =
∑

P∈PA


 ∏

i∈P\A
Ii


 .

For every 0 ≤ j ≤ k let

Ej = max
A⊆I,|A|=j

E (XPA) .

Also define
E = max

j≥0
Ej , E′ = max

j≥1
Ej .

Notice that E0 = EX, thus E = max {E′,EX}.
Kim and Vu’s main result is the following theorem.

Theorem 6.24. In the above setting, for every λ > 1,

P
(
|X − EX| > 8k√

k!

√
E · E′ · λk

)
= O

(
e−λ+(k−1) ln|I|

)
.
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Back to concentration of X̃T

Let us see how Theorem 6.24 applies for X̃T . In our case:

� I is the set of all M2 squares.

� P is the set of all valid tuples T ′ with T ′ ∼ T . It is a set of subsets of I,
all with cardinality 4k + 1.

� As explained, with the above I,P we have X = X̃T .

For a set of squares A ⊆ I with |A| = j, PA becomes the set of valid tuples T ′

with T ′ ∼ T which contain all the squares of A. XPA then sums over PA and
counts the tuples for which each of the remaining 4k+ 1− j squares contains a
vertex.

Let E′ = maxj≥1Ej as in Kim-Vu. The key technical result is the following
lemma.

Lemma 6.25. E′ = n1−Ω(1).

Before proving the lemma, let us explain how it is used to finish the proof.
Theorem 6.24 tells us that for every λ > 1,

P

(∣∣∣X̃T − δ̃T
∣∣∣ > 84k+1

√
(4k + 1)!

√
E · E′ · λ4k+1

)
= O

(
e−λ+4k ln(M2)

)
.

From Lemma 6.25, the fact that E = max{E′, δ̃T } and the bound δ̃T = n1−Ω(1),

√
E · E′ = O

(
n1−c)

for some (absolute) positive constant c. Setting λ = ln3 n and recalling that

k ≤ K · t ≤ (ln ln lnn)
2
, we also have

84k+1

√
(4k + 1)!

λ4k+1 = no(1).

In addition,

e−λ+4k ln(M2) = e− ln3 n+4k·2 ln2 n = exp
(
−Ω(ln3 n)

)
.

Overall
P
(∣∣∣X̃T − δ̃T

∣∣∣ ≥ n1−c+o(1)
)

= exp
(
−Ω(ln3 n)

)
.

By setting the constant γ to be smaller than c and recalling Equation (16) we
obtain

P
(
X̃T >

δµ

2ρ

)
= exp

(
−Ω

(
ln3 n

))
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which is what we wanted to prove.

Finally, we are left with the proof of Lemma 6.25. Recall that

E′ = max
j≥1

Ej = max
A⊆I,|A|≥1

E (XPA) .

So let us fix a set of squares A with |A| = j, 1 ≤ j ≤ 4k + 1 and prove
E (XPA) = n1−Ω(1) (uniformly over A). With A fixed, we need to estimate

E (XPA) =
∑

T ′:T ′∼T,T ′⊇A
E


 ∏

�∈T ′\A
I�


 .

The indicators I� are independent, and each summand is the expectation of
the product of 4k+ 1− j of them, therefore each summand is O

(
(nε2)4k+1−j).

The main task is therefore to count the number of summands, i.e. the number
of valid (4k + 1)-tuples T ′ with T ′ ∼ T such that T ′ ⊇ A. A bit surprisingly, it
turns out we can achieve the desired bound even when we ignore the condition
T ′ ∼ T and count all valid tuples T ′ with T ′ ⊇ A. The idea is that having a
square from a quadruplet �q fixed forces the other squares to be in a specific
locus with small area. Counting all possibilities for the new 4k + 1− j squares
while taking into account these geometric requirements lead us to a bound of

O
(

(M2)4k+1−jn4k−j · n−Ω(1)
)
.

The precise details repeat (once more) considerations from the Negligibility
Theorem and introduce no novelty; we leave it as an exercise to the interested
reader. Overall we get

E (XPA) = O
(

(M2)4k+1−jn4k−j · n−Ω(1)
)
·O
(
(nε2)4k+1−j) = n1−Ω(1)

which, as explained, proves Lemma 6.25.

7 Disproving the Limit Law

The results of Section 6 indicate that the language of first order logic is far more
expressive in the random geometric model than previously conjectured. In this
section we demonstrate the power of our results by showing how they allow the
construction of a first order sentence A with no limiting probability.

Given what we have so far, the remaining work is mostly logical, and hardly
depends on the random graph model. Therefore, most of this section borrows
directly from the work of Spencer and Shelah [19, 17], who disproved the Limit
law for G(n, p) (with p = n−α, 0 < α < 1 irrational).
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7.1 Existential Second Order Logic and Arithmetization

The general idea is to construct a first order sentenceA which makes an infinitely-
alternating statement about the size of the graph. Generally, first order logic
cannot directly refer to the size of the model in such a way. Existential second
order logic, however, definitely can.

Recall that second order logic is built upon first order logic and adds the abil-
ity to quantify variables that represent relations (and not just elements, as in
first order logic). Existential second order (ESO) logic allows only existential
quantification ∃ over relational variables. An ESO sentence takes the form

∃Rk11 . . . ∃Rktt (ϕ)

where each Ri is an ki-ary relation and ϕ is a first order sentence that may
use the relational symbols R1, . . . , Rt. We define its maximal arity to be K =
max{k1, . . . , kt}.

Example 7.1. The following ESO sentence expresses the property “the graph
is not connected”:

∃R1 [∃x(R(x)) ∧ ∃y(¬R(y)) ∧ ∀x∀y (R(x) ∧ ¬R(y)→ ¬x ∼ y)] .

In words, it asserts the existence of an unary relation R which divides the graph
into two non-empty and non-connected parts. Note that this property cannot
be expressed with a first-order sentence (e.g. see [17], Theorem 2.4.1).

The following theorem shows how to “convert” an ESO sentence into a first-
order sentence, at the price of altering the size of the model in a controlled
way.

Theorem 7.2. Let A be an existential second sentence with maximal arity K.
Then there exists a first order sentence A∗ and there exists a function f : N→ N
which is f(n) = O(nK) as n→∞, such that:

1. If A holds for a finite graph H with n vertices, then A∗ holds for a certain
extension G of H with m vertices, such that m ≤ f(n).

2. If A∗ holds for a finite graph G with m vertices, then A holds for a certain
induced subgraph H of G with n vertices, such that m ≤ f(n).

The conversion from A to A∗ is done by “encoding” the relations R1, R2, . . . , Rt
which A uses as certain structures in the graph, which requires an extension
with O(nK) new vertices. For a detailed proof we refer to [17], Claim 8.2.2.

The next step is to use ESO logic to express arithmetic properties of the size
of the graph n. This step is known as arithmetization. In particular, we are
interested in an infinitely-alternating property which is also “insensitive” to a
replacement of n with ln ln ln lnn (as such a replacement will be forced by the
results of Section 6). This naturally leads us to the tower function and its
inverse, the iterated logarithm function.
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Definition 7.3. The tower function T : N→ N is defined recursively as follows:

T (0) = 1,

T (n+ 1) = 2T (n).

The iterated logarithm function log∗ : N→ N is defined as follows:

log∗(n) = min{k ≥ 1 | T (k) ≥ n}.

That is, log∗(n) is the first number k such that T (k) surpasses n.

Example 7.4. The first values of the iterated logarithm function are:

log∗(n) =





1 1 ≤ n ≤ 2

2 2 < n ≤ 4

3 4 < n ≤ 16

4 16 < n ≤ 65536

5 65536 < n ≤ 265536

.

Generally, log∗(n) = k if and only if

22
. .
.
2

︸ ︷︷ ︸
k−1

= T (k − 1) < n ≤ T (k) = 222
. .
.
2

︸ ︷︷ ︸
k

.

Lemma 7.5. Let n, n′ be natural numbers such that

1

2
ln ln ln lnn ≤ n′ ≤ n.

Then
log∗(n)− 5 ≤ log∗(n′) ≤ log∗(n).

Proof. Directly from the definition of log∗(n). �

We are now ready to describe an ESO sentence BigGap, which expresses an
infinitely-alternating, “insensitive” property of the size of the graph n. The
property is precisely that log∗(n) is equivalent to one of 1, 2, . . . , 50 modulo
100. The construction of BigGap as an ESO sentence is elaborated in [17],
Sub-subsection 8.3.3. Let us briefly repeat the idea here.

First, we construct an ESO sentence Arith as follows. Arith begins by asserting
the existence of four binary relations x < y,D(x, y), E(x, y), T (x, y) and one
unary relation Mod(x). Then it elaborates a list of requirements about these
relations. One set of requirements makes x < y a total order, which induces a
numbering 1, 2, . . . , n on the vertices. Another set of requirements guarantees
that D(x, y) if and only if y = 2x (with respect to the numbering), and similarly
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that E(x, y) if and only if y = 2x, T (x, y) if and only if y = T (x) and Mod(x)
if and only if x ≡ 1, 2, . . . , 50 (mod 100).

BigGap asserts the existence of the same relations and makes the same set of
requirements as in Arith, and additionally uses these relations to require

log∗(n) ≡ 1, 2, . . . , 50 (mod 100)

where n is the size of the model.

Apply Theorem 7.2 to convert Arith, BigGap into first order sentences Arith∗

and BigGap∗.

Proposition 7.6. Let G be a graph with m vertices, as assume that it satisfies
Arith∗.

� If log∗m is one of 2, 3, . . . , 50 modulo 100, BigGap∗ holds for G.

� If log∗m is one of 52, 53, . . . , 99 modulo 100, BigGap∗ does not hold for
G.

Proof. From Theorem 7.2, there exists an induced subgraph H of G such that
Arith holds for H. Moreover, BigGap∗ holds for G if and only if BigGap holds
for H. Since the maximal arity of the sentences is 2,

n = |V (H)| = Ω(
√
m).

In particular,
log∗(m)− 1 ≤ log∗(n) ≤ log∗(m).

� If log∗m is one of 2, 3, . . . , 50 modulo 100 then log∗(n) is one of 1, 2, . . . , 50
and so BigGap holds for H and BigGap∗ holds for G.

� If log∗m is one of 52, 53, . . . , 99 modulo 100 then log∗(n) is one of 51, 52, . . . , 99
and so BigGap does not hold for H and BigGap∗ does not hold for G.

�

7.2 A First Order Sentence With No Limiting Probability

At this point it mainly remains to piece together all that we have already seen.

As Proposition 7.6 shows, the first order BigGap∗ is able to make an infinitely-
alternating statement about the size of the graph, given that the graph satisfies
Arith∗. Therefore we only need to express a graph structure H inside GT2(n, r)
which satisfies Arith∗ and has a size comparable to n (in our case ln ln ln lnn).
The sentence “H satisfies BigGap∗” will then be a first order sentence with no
limiting probability.
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Theorem 6.3 shows that indeed, we can express any graph structure H with
ln ln ln lnn vertices as Hw(Ux) by using four vertices x1, x2, x3, w. The sentence
“Hw(Ux) satisfies BigGap∗” is first-order expressible, given that we have the
right vertices x1, x2, x3, w.

The only remaining problem is that we seem to have no direct way to express
the right vertices x1, x2, x3, w with first order logic. This is because we have no
direct way to claim that Ux has ln ln ln lnn vertices. To solve that we need one
final trick. We would like to choose not just any four vertices x1, x2, x3, w such
that Hw(Ux) satisfies Arith∗, but those for which the size of Ux is maximal. To
make it work, we need to be able to compare the sizes of sets of vertices by first
order means. Theorem 6.3 assures that this is indeed possible when the number
of vertices is slowly-growing.

Definition 7.7. Let U1, U2 be two sets of vertices. We say that a graph G on
U1 ∪ U2 proves |U2| > |U1| if:

� Every vertex from U1 \U2 is connected to exactly one vertex from U2 \U1.

� There exists a vertex from U2 \ U1 which is not connected to any vertex
from U1 \ U2.

Definition 7.8. Let U1, U2 be two sets of vertices in the random geometric
graph GT2(n, r). We say that U2 is pseudo-bigger than U1 if there exists a
vertex w such that Hw(U1 ∪ U2) proves |U2| > |U1|.

If U2 is pseudo-bigger than U1 then indeed |U2| > |U1|. Theorem 6.3 shows that
if |U1 ∪ U2| ≤ ln ln ln lnn and also the vertices of U1 ∪ U2 are nicely positioned
(see Definition 6.2) then the opposite is also true. Luckily, the property of being
nicely positioned is also expressible with first-order logic (at least to a good ap-
proximation). Indeed, recall that it requires well-spacedness and diameter ≤ r

4 .
But in Section 2 we constructed a first-order formula which approximates well-
spacedness, and first-order formulas which approximate any constant distance
( r4 in particular).

Definition 7.9. Suppose that U is a set of vertices in GT2(n, r), such that
the property v ∈ U is first-order expressible. Define the first-order sentence
NicePos[U ] as

∀u1, u2 ∈ U [WS(u1, u2) ∧ ∀u1, u2 (D(u1, u2))] .

Here WS(x, y) is the formula from Theorem 2.8 (for a sufficiently small constant
δ > 0) and D(x, y) is the formula from Theorem 2.1 for an sufficiently small ε
and α = 1

4 .

Lemma 7.10. A.a.s., for every set of vertices U in GT2(n, r), the following is
true.

� If NicePos[U ] holds then diam(U) ≤
(

1
4 + ε

)
r and ‖u1 − u2‖ ≥ n−

1
6−δ for

every u1, u2 ∈ U .
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� If diam(U) ≤
(

1
4 − ε

)
r and ‖u1 − u2‖ ≥ n−

1
6 +δ for every u1, u2 ∈ U , then

NicePos[U ] holds.

The lemma is a direct consequence of the results from Section 2. For sufficiently
small ε, δ, the fact that we have r

4 ± εr and n−
1
6±δ instead of r

4 and n−
1
6 makes

no essential difference; we may allow the definition of “nicely positioned” to be
slightly “stretched” accordingly.

We are now finally ready to define our first order sentence with no limiting
probability.

Definition 7.11. Let A be the sentence that claims the existence of vertices
x1, x2, x3, w such that:

1. Arith∗ holds for Hw(Ux).

2. NicePos[Ux] holds.

3. If x′1, x
′
2, x
′
3, w

′ are also vertices such that Arith∗ holds for Hw′(Ux′), then
Ux′ is not pseudo-bigger than Ux.

4. BigGap∗ holds for Hw(Ux).

Note that A is indeed a first order sentence: the graph structure Hw(Ux), the
sentences Arith∗ and BigGap∗, the sentence NicePos[Ux] and being pseudo-
bigger — they are all first order expressible. Theoretically A could be written
down explicitly as a formal first order sentence in the language of graph theory,
though it would be awfully long.

Theorem 7.12. The sentence A has no limiting probability in the random
geometric model: the limit

lim
n→∞

P (GT2(n, r) ∈ A)

does not exist.

Proof. First, we restrict to a sequence of n such that log∗ n is 99 modulo 100,
and show that the limiting probability of A along this sequence is 0. To do
that, we show that a.a.s., if x1, x2, x3, w are four vertices such that the first
three conditions from Definition 7.11 hold, then the fourth condition must fail.

A.a.s., for every x1, x2, x3 such that Ux is nicely positioned, there exist x′1, x
′
2, x
′
3

such that |Ux′ | = 1
2 ln ln ln lnn and Ux ∪ Ux′ is also nicely positioned (from the

same considerations as Remark 6.14). So, given x1, x2, x3 such that the first
three conditions from Definition 7.11 hold, we may assume the existence of a
suitable triplet x′1, x

′
2, x
′
3 as above. From Theorem 6.3 we may also assume that

for every set of nicely positioned vertices U with |U | ≤ ln ln ln lnn and for every
graph structure H on U there exists a vertex w with Hw(U) = H.
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Since Ux′ is nicely positioned, there exists a vertex w′ such that Arith∗ holds
for Hw′(Ux′). If |Ux| < |Ux′ | then Ux′ is pseudo-bigger than Ux; indeed,
Ux ∪ Ux′ is nicely positioned and its size is at most 2 |Ux′ | = ln ln ln lnn. But
that contradicts the second condition. Therefore

t = |Ux| ≥ |Ux′ | =
1

2
ln ln ln lnn.

By Lemma 7.5, log∗ t is one of 94, 95, . . . , 99 modulo 100, and from Proposition
7.6 BigGap∗ does not hold for Hw(Ux).

Second, we restrict to a sequence of n such that log∗ n is 49 modulo 100,
and show that the limiting probability of A along this sequence is 1. Choose
x1, x2, x3, w such that NicePos[Ux] holds, Hw(Ux) satisfies Arith∗ and |Ux| is
the maximal possible. From Theorem 6.3 we know that a.a.s. such vertices do
exist, and that

t = |Ux| ≥ ln ln ln lnn.

By definition, the first two conditions from Definition 7.11 hold. Since pseudo-
bigger implies bigger, the third condition also holds. Finally, by Lemma 7.5
log∗ t is one of 44, 45, . . . , 49 modulo 100, and from Proposition 7.6 BigGap∗

holds for Hw(Ux). That finishes the proof. �

8 Further Generalizations and Conjectures

There are several interesting approaches for generalizing our results, some are
relatively straightforward while others would require non-trivial adjustments.

First, recall Spencer and Agarwal’s third conjecture [18]: that a Zero-One law
holds for GT2(n, r(n)) whenever r(n) = o(1) but r(n) = no(1). We can disprove
this conjecture as well by straightforward generalization of our results from the
case when r is an arbitrarily small constant to the case when r(n) → 0 “suffi-
ciently slowly”. The idea is that the entire proof eventually relies on asymptotic
estimations of distances, expectations and probabilities. These asymptotic es-
timations, specifically those which involve r, are “flexible”: if we make sure
that r(n) → 0 sufficiently slowly, they are all still able to serve the same pur-
pose. No part of the proof relies on a phenomenon that is essentially unique
to the constant r case, in a way which cannot be “smoothed out” to r(n) → 0
accordingly.

Let us give a more detailed explanation. For concreteness let us set r(n) =
1

ln ln ln ln ln ln lnn . Theorem 2.1, for example, still holds, only now it does not
approximate constant distances but constant multiples of r(n). The same
proof applies: we can still add and subtract distances and express the dis-
tances r(n) and

√
3r(n). The fact that now some geometric loci have an area

of Θ (r(n)−const) instead of Θ(1) does not damage the proof, as the difference
is insignificant relative to the number of vertices n. In Section 4, following the
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proof of Theorem 4.1 reveals that the probability of the UN-relation becomes
Cr(n)n−2/3. Consequently, in Section 5 the joint distribution of witnesses over
different triplets will still be approximately independent Poisson variables with
parameters λ1, λ2, . . . , λt, but now the parameters λi will not be constant, but
Θ (r(n)−const). However, r(n) is chosen in such a way that the resulting estima-
tions of probabilities are not harmed by this change. The main example is the
proof of Theorem 6.3, in which we bound Pa(Z = z) from below by ct. Now,
instead of a constant, c will also be Θ (r(n)−const); but when we compare it to
much smaller error term, it makes no difference, and we still obtain the desired
positive lower bound.

Notice that this argument does not apply for the entire region where r(n)→ 0
and r(n) = no(1). Taking r(n) = 1

(lnn)10 , for example, breaks at least some

of the estimations. Investigating the logical behavior of the RGG in the entire
region would probably require more flexible adaptations of our ideas (and careful
attention to details). We leave it as an open question.

The next natural generalization is the case of higher dimensions: GTd(n, r) for
d > 2. We believe that our work can also be generalized to handle this case
as well. The main difference is that now the probability of the UN-relation

becomes ≈ Cn−
2
d+1 . This means that we must redefine the S-extension, in

order to maintain the balance between the number of vertices and the numbers
of UN-relations. Changing the definition of S also means that several other
technical details (mainly the proof of the Negligibility Theorem) would have
to be adjusted. However, we believe that these are just technicalities, and the
essential ideas remain the same. To further justify our belief, note that this
generalization is similar to a generalization that Spencer and Shelah [19] make.
When they disprove the Limit law for p = n−α with 0 < α < 1 rational, they
actually illustrate the proof only for α = 1

7 (or α = 1
3 in Spencer’s book [17]),

and claim that redefining the extension accordingly handles the general case. In
the RGG, changing the dimension becomes analogous to changing the value of
α (although with some added technical difficulties).

Another interesting case is when GTd(n, r(n)) with r(n) = n−β . The analogue
of Theorem 4.1 shows that the probability of the UN-relation is

≈ Crd−1n−
2
d+1 = Cn−

2
d+1−(d−1)β .

To maintain the analogy to the binomial case p(n) = n−α, where it is assumed
that 0 < α < 1, here we assume

0 <
2

d+ 1
+ (d− 1)β < 1

which implies 0 < β < 1
d+1 . Again, we expect that when the exponent is

rational, it is possible to find a suitable extension formula with asymptotically
constant expected number of witnesses, and can therefore serve as a basis for en-
coding arbitrary graph structures. However, the generalization is less straight-
forward, and may require significant adjustments to many of the asymptotic
estimations. We pose the following conjecture.
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Conjecture 8.1. Consider the d-dimensional RGG GTd(n, r(n)) with r(n) =
n−β, 0 < β < 1

d+1 .

1. If β is irrational, the Zero-One law holds.

2. If β is rational, the Limit law fails: there exists a first-order A with no
limiting probability.

Finally, an additional interesting generalization would be to investigate other
metrics on the torus. Let us consider the `p metric for 1 ≤ p ≤ ∞. For
concreteness, let us fix d = 2 and a constant r. The analogue of Theorem
4.1 shows that the probability of the UN-relation is now ≈ Cn−

p
p+1 (which

becomes ≈ Cn−1 when p = ∞). As always, we expect the logical behavior to
depend on the rationality of the exponent: rational exponents should allow the
construction of a suitable first-order extension, which serves to disprove a Limit
law. This line of reasoning leads to a surprising prediction: the logical behavior
of the RGG with `p should depend on the rationality of p! It would be very
interesting to study the nature of this phenomenon in depth.

A Appendix

A.1 Poissonization

Poissonization is a standard technique in the study of random geometric graphs.
We use it twice throughout the paper: in the proof of Lemma 2.16 and in the
proof of the Concentration Theorem 6.13. For completeness, we briefly review
it here.

Poissonization replaces the random geometric graph GT2(n, r), which generates
a fixed number of vertices, with a Poisson random graph, in which the set of
vertices is a Poisson point process. Here are the relevant definitions.

Definition A.1. Let N be a random variable with N ∼ Pois(λ), and let {vi}i∈N
an infinite set of random points in T2 which are uniformly and independently
distributed (while also being independent of N). Then the random set of points
Pλ = {v1, v2, . . . , vN} is called a Poisson point process with intensity λ.

Definition A.2. A Poisson random graph with intensity λ and distance pa-
rameter r (in the torus T2), denoted here by GT2 (Pλ, r), is a random graph
whose vertex set is a Poisson point process Pλ, and whose edges are defined by
vi ∼ vj ⇐⇒ ‖vi − vj‖ < r.

In the paper, we actually need a slight variation of the Poisson random graph,
which also incorporates a fixed set of vertices “in the background”.
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Definition A.3. Fix 1 ≤ v ≤ ln ln ln lnn (n is an underlying parameter). Also
fix a set U of v vertices and a geometric configuration u = a of U (see Definition
5.1). We define a random geometric graph as follows. Its vertex set is U ∪ Pλ,
where Pλ is a Poisson point process with intensity λ = n − v. Its edges are
defined geometrically as expected: vi ∼ vj ⇐⇒ ‖vi − vj‖ < r. We denote this
random geometric graph Ga(N, r), where N is the number of vertices, which is
a random variable with N − v ∼ Pois(n − v). Note that the expected number
of vertices is E(N) = n.

Remark A.4. Note that the distribution of Ga(N, r) conditioned by the event
N = n is identical to the distribution of the standard GT2(n, r), conditioned by
the configuration u = a.

The last remark serves as a bridge between Ga(N, r) and GT2(n, r). Here is an
important corollary.

Corollary A.5. Let P be a property of geometric graphs (it may depend on the
positions of the vertices). Suppose that

P (Ga(N, r) ∈ P ) = n−ω(1).

Then
P (GT2(n, r) ∈ P | u = a) = n−ω(1).

That is, if something happens with “very small” probability in the Poisson
random graph, it also happens with “very small” probability in the standard
RGG.

Proof. From the remark,

P (GT2(n, r) ∈ P | u = a) ≤ P (Ga(N, r) ∈ P )

P(N = n)
.

By Stirling’s approximation (and the bound on v), P(N = n) = Θ
(
n−1/2

)
and

the corollary easily follows. �

The reason that Poisson random graphs are so useful is a crucial property called
spatial independence. We formalize it for Ga(N, r) in the following proposition.

Proposition A.6. Let Ga(N, r) be as in Definition A.3. For a (measurable)
set A ⊆ T2, let ν(A) count the number of vertices that land inside A, excluding
vertices of U . Then:

1. ν(A) ∼ Pois((n− v) ·m(A)) where m(A) is the Lebesgue measure of A.

2. For any finite collection of pairwise-disjoint sets A1, A2, . . . , Ak, the vari-
ables ν(A1), ν(A2), . . . , ν(Ak) are independent.
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A.2 Proof of the Negligibility Theorem

This subsection is dedicated to the proof of Theorem 5.7. The theorem states
that certain situations, in which the witnesses for the extensions do not “behave
well”, have negligible contribution to the joint factorial moments. The consid-
erations of the proof are also relevant for similar situations from Section 6. The
different parts of the proof rely on different geometric lemmas, which we choose
to concentrate at the end of this subsection.

Recall the setting of the theorem: we fix a strongly well-spaced geometric config-
uration u = a, which fixes the positions of the t given triplets x(i), 1 ≤ i ≤ t. For
0 ≤ k ≤ K, the joint factorial moment Ea ((Z)k) counts k-tuples of quadruplets

Q =
(
q

(1)
1 , . . . ,q

(1)
k1
, . . . ,q

(t)
1 , . . . ,q

(t)
kt

)

such that q
(i)
1 , . . . ,q

(i)
ki

are all distinct quadruplets for every 1 ≤ i ≤ t and such

that each q
(i)
j satisfies S

(
x(i); q

(i)
j

)
. Also recall that K = ln ln lnn and that

t ≤ (ln ln ln lnn)3. Definition 5.6 and the replacement of S with S∗ both define
a list of all the “bad” situations which must be considered.

From now on let us fix 0 ≤ k ≤ K. All our estimations will be uniform in k. Q
will always denote a k-tuple of quadruplets

Q =
(
q

(1)
1 , . . . ,q

(1)
k1
, . . . ,q

(t)
1 , . . . ,q

(t)
kt

)

such that q
(i)
1 , . . . ,q

(i)
ki

are all distinct quadruplets for every 1 ≤ i ≤ t. We
denote k = k1 + · · ·+ kt.

Before handling the other situations, we must first be able to replace the UN-
relations with the stronger UN∗-relations.

Proposition A.7. The expected number of k-tuples Q of witnesses for the S-
extension (over the triplets x(i)), such that it contains a pair of vertices which
satisfies the UN relation but not the UN∗ relation, is n−Ω(1).

Proof. Let us fix a k-tuple of vertices Q. We prove that it contains a pair which
satisfies UN but not UN∗ with probability n−Θ(ln lnn). Then, the expectation is
the sum of those probabilities over all possible Q, which is nΘ(Kt) = no(ln lnn),
so overall we have

Ea(...) = no(ln lnn) · n−Θ(ln lnn) = n−Ω(1).

To prove the bound on the probability for a given Q, note that for a pair of
vertices x, y, satisfying UN(x, y) but not UN∗(x, y) means that

UN(x, y) ∧Hxy ∈ [hn, r].

However, Equation (5) from Section 4 shows that this happens with probability
n−Θ(ln lnn). This bound holds for each of the 6k relevant pairs, and a simple
union bound over them finishes the proof. �
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Remark A.8. We can now shed more light on the purpose of the strong well-
spacedness condition from Definition 5.3. Let q = (s1, s2, s3, z) satisfy S(x(i); q).
Following the last proposition, assume that all each of the six UN-relation is also
a UN∗-relation. Then, given that the triplet x(i) is strongly well-spaced, at least
two of s1, s2, s3 must be themselves well-spaced. Indeed, assume otherwise:

‖s1 − s2‖ , ‖s2 − s3‖ , ‖s3 − s1‖ ≤ n−
1/6.

The UN∗ relations tell us that

‖x1 − s1‖ , ‖x2 − s2‖ , ‖x3 − s3‖ ∈ [2r − 2hn, 2r].

Since hn = o
(
n−1/6

)
, the distance of each s-vertex from each x-vertex is in

[2r − 2n−
1/6, 2r + 2n

1/6]

which contradicts strong well-spacedness.

In the following key step, we simultaneously handle situations 1a-b and 2 from
Definition 5.6.

Proposition A.9. The expected number of k-tuples Q of witnesses for the S-
extension such that either 1a, 1b or 2 occur is n−Ω(1).

Proof. We handle only situations 1b and 2; situation 1a can be handled very
similarly (actually it is even simpler). So, our task is to bound the expected
number of k-tuples Q of witnesses in which there are two distinct quadruplets
which share a vertex, or two different vertices with distance ≤ n−1/6.

In this proof only, for the sake of brevity, if two vertices are not well-spaced we
say that they are badly close to each other.

First, from the previous proposition, we may consider k-tuples in which all the
6k UN-relations are also UN∗-relations. Actually, we show that the expectation
is n−Ω(1) even when we “relax” our conditions, and replace each UN∗(x, y) with
the simple distance requirement Hxy ∈ [0, hn]. This idea will repeat in all later
steps, and it is the main reason we replaced UN with UN∗. Let Srel(x; q) denote
the relaxed extension.

We fix a specific pattern of equalities and badly close vertices between the
vertices of a k-tuple Q and show that the contribution of k-tuples with this
pattern is (uniformly) n−Ω(1). Summing over all patterns still leaves a bound
of n−Ω(1), since the number of patterns is poly-logarithmic.

So, let us fix the pattern and consider the expected number of k-tuples Q with
this pattern. The strategy is to “expose” each of the k quadruplets one by
one. For every exposed quadruplet q, we bound the factor that it contributes
to the overall expectation. The idea is that each new vertex of q contributes a
factor of ≈ n to the expectation, while the probabilities that all the necessary
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requirements are satisfied contribute an o(1)-factor. We show that any case of
shared vertices or badly close vertices allows the probabilities to “win” over the
vertices by a factor of n−Ω(1).

WLOG we can arrange the order of exposure such that the the first two quadru-
plets already share vertices or have badly close vertices. Let handle those two
quadruplets first.

We expose the first quadruplet. Denote it q = (s1, s2, s3, z) and the correspond-
ing triplet x = (x1, x2, x3). It introduces four new vertices, which together
contribute a factor of O(n4). There are still no previous quadruplets to share
vertices with, and the UN∗ relations assure that z is not badly close to any of
s1, s2, s3. So there are two cases to consider.

Case 1. q has no badly closed vertices. So the only requirement on q is
Srel(x; q). It introduces the requirements

Hx1s1 , Hx2s2 , Hx3s3 , Hs1z, Hs2z, Hs3z ∈ [0, hn]

∧CD(x1, z) ∧ CD(x2, z) ∧ CD(x3, z),

Let us bound the probability of those requirements by O(h6
n).

� z must satisfy CD(x1, z) ∧CD(x2, z) ∧CD(x3, z). The probability that is
does is O(1).

� Given CD(x1, z), the probability that s1 satisfies Hx1s1 , Hs1z ∈ [0, hn] is
O(h2

n) by Lemma A.13 part 1. Indeed: this event geometrically means
that s1 is inside the intersection of the two annuli around x1, z with radii
2r − 2hn and 2r.

� The same is true for s2 and s3: each contributes a factor of O(h2
n).

Overall we get a factor of O
(
n4h6

n

)
. Recall that

hn = Θ

((
ln lnn · lnn

n

)2/3
)

so O
(
n4h6

n

)
= (lnn)O(1).

Case 2. q has two badly close s vertices. WLOG assume that s1, s2 are
badly close. We bound the probability as follows. The idea is to show that the
requirements force z to be inside a geometric locus with very small area, and
handle s1, s2, s3 like Case 1. Indeed, the Srel(x; q) requirement and the badly
close requirement imply that

‖x1 − s1‖ , ‖x2 − s2‖ , ‖z − s1‖ , ‖z − s2‖ ∈ [2r − 2hn, 2r],

‖s1 − s2‖ ≤ n−
1/6.
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It is not hard to see that such distances force z to be at distance O(n−1/6) from
one of the two intersection points between the circles of radius 2r around x1, x2.
This forces z to lie inside the union of two annuli whose widths are O(n−1/6).
The area of this union L is itself O(n−1/6). The rest is the same as before:

� z satisfies the CD-relations and also lies inside L with probabilityO
(
n−1/6

)
.

� Given that, the probability that s1 satisfies Hx1s1 , Hs1z ∈ [0, hn] is again
O(h2

n), and the same is true for s2, s3.

Overall we get a factor of

O(n4n−
1/6h6

n) = (lnn)O(1) · n−1/6.

Now expose the second quadruplet. Denote it q′ = (s′1, s
′
2, s
′
3, z
′) and the cor-

responding triplet x = (x′1, x
′
2, x
′
3). There are many different patterns for how

q′ may shares vertices with q or break well-spacedness; let us consider several
representative cases.

Case 1. q′ shares no vertices with q and has no badly close vertices. We proceed
like Case 1 for q and get a factor of (lnn)O(1). This case is possible only if q
already has two badly close vertices, so in this case q already contributed a
factor of n−Ω(1).

Case 2. q′ shares no vertices with q and s′1, s
′
2 are badly close to each other.

We proceed like Case 2 for q and get a factor of (lnn)O(1) · n−1/6.

Case 3. q′ shares no vertices with q and z′ is badly close to a vertex of q. The
vertices contribute O(n4). Let us bound the relevant probability.

� z′ must satisfy the CD-relations and also be badly close to one of 4 given
vertices, which it does with probability O

(
n−1/3

)
.

� Given that, the probability that s′1 satisfies Hx′1s
′
1
, Hs′1z

′ ∈ [0, hn] is again

O(h2
n) by Lemma A.13 part 1. The same is true for s′2, s

′
3.

Overall we get a factor of

O(n4n−
1/3h6

n) = (lnn)O(1) · n−1/3.

Case 4. s′2, s
′
3, z
′ are shared which q. The new vertex s′1 contributes O(n).

� If the existing vertex z′ does not satisfy the CD-conditions with x′, it
simply zeroes out the probability.

� Otherwise, the probability that s′1 satisfies Hx′1s
′
1
, Hs′1z

′ ∈ [0, hn] is again

O(h2
n).
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Overall we get a factor of O(nh2
n) = (lnn)O(1) · n−1/3.

Case 5. s′1, s
′
2, s
′
3 are shared with q. The new vertex z′1 contributes O(n). To

bound the probability, we further subdivide into two sub-cases.

Sub-case 5.1. s′1, s
′
2, s
′
3 are all well-spaced. In that case, the probability that z′

satisfies Hs′1z
′ , Hs′2z

′ , Hs′3z
′ ∈ [0, hn] is O

(
n1/6h2

n

)
by Lemma A.14. Overall

we get a factor of

O(n · n1/6h2
n) = (lnn)O(1) · n−1/6.

Sub-case 5.2. Two of s′1, s
′
2, s
′
3 are not well-spaced. This means that it was

Case 2 for q, so it already contributed n−Ω(1), and we can now be satisfied
with a bound of (lnn)O(1). From the assumption that x′ is strongly well-
spaced, we still know that at least two of s′1, s

′
2, s
′
3 are well-spaced (see

Remark A.8). WLOG assume that s′1, s
′
2 are well-spaced. z′ must satisfy

Hs′1z
′ , Hs′2z

′ ∈ [0, hn], which it does with probability O
(
h

3/2
n

)
by Lemma

A.13 part 3. Overall we indeed get a factor of

O(n · h3/2
n ) = (lnn)O(1).

Case 6. All the vertices of q′ are shared with q. We recalculate the factor added
by q and q′ and show that it is n−Ω(1). The vertices contribute O(n4). Now
we bound the probability that they satisfy Srel(x; q) and Srel(x

′; q′). First,
notice that we must have z = z′; indeed, quadruplets must have a vertex at
distances ≈ 2r from all the other three, and there can be only one. There
are different cases about which of s1, s2, s3 equal which of s′1, s

′
2, s
′
3, and also

whether x′ = x or not, but all cases are handled in the same way. Take the
case of s1 = s′1, s2 = s′2, s3 = s′3 and x′ 6= x for example. From x′ 6= x we
may WLOG assume that x1 6= x′1. From the assumption that the configuration
u = a is well-spaced we know that x1, x

′
1 are well-spaced. The probability is

bounded as follows.

� The probability that s1 satisfiesHx1s1 , Hx′1s1 ∈ [0, hn] isO(h
3/2
n ) by Lemma

A.13 part 3.

� The probability that z satisfies Hs1z ∈ [0, hn] and also the CD-conditions
is O(hn).

� Given all that, the probability that s2 and s3 satisfy Hx2s2 , Hs2z ∈ [0, hn]
and Hx3s3 , Hs3z ∈ [0, hn] is O(h4

n), once more by Lemma A.13 part 1.

Overall we get a factor of

O
(
n4h6+1/2

n

)
= (lnn)O(1) · n−1/3.
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In conclusion, we have shown that any pattern of shared vertices and badly
close vertices between q, q′ implies that together they contribute a factor of
n−Ω(1). Finally, we expose all the remaining quadruplets, one by one. It is now
sufficient to show that each of them contributes a factor of at most (lnn)O(1).
The final bound on the expectation will then be

(lnn)O(k) · n−Ω(1) = n−Ω(1)

as desired. Indeed, each of the new quadruplets can be handled by division to
cases in the exact same way as q′. In what we called Case 5, we can always
continue like Sub-case 5.2. In what we called Case 6, no new vertices are added
so we may actually ignore the new requirements and just take 1 as a bound. �

With Proposition A.9 at hand, we can handle much more easily the remaining
situations, which are the replacement of CD with CD∗ and situations 3a-b and
4a-b from Definition 5.6. We have already encountered the general idea: each
new quadruplet generally contributes a factor of (lnn)O(1), but an additional
“bad situation” requirement adds a factor of n−Ω(1) according to some geometric
considerations.

Proposition A.10. The expected number of k-tuples Q of witnesses for the S-
extension, such that Q contains a pair of vertices which satisfies the CD-relation
but not the CD∗-relation, or vice versa, is n−Ω(1).

Proof. From the previous propositions, we may count only k-tuples Q in which
all 4k vertices are distinct. We also replace each S(x; q) requirement with
Srel(x; q) like before. Again, we expose the k quadruplets of Q one by one and
bound the factor that they contribute to the expectation.

Suppose that we expose a new quadruplet q = (s1, s2, s3, z). Denote the corre-
sponding triplet x = (x1, x2, x3). If the only requirement is Srel(x; q), we obtain
the same bound on the factor contributed by q:

O
(
n4h6

n

)
= (lnn)O(1).

Now assume the additional requirement that CD is not equivalent to CD∗ in q.
We show that the contributed factor becomes n−Ω(1). WLOG we consider the
requirement

¬ (CD(x1, z)↔ CD∗(x1, z)) .

Recall Remark 2.5. Let us take, for example, ε = n−1/4. The remark claims
that with probability 1− exp

(
−Θ

(
n1/4

))
, if

‖x1 − z‖ 6∈
[
(
√

3− ε)r, (
√

3 + ε)r
]

then CD(x1, z) ↔ CD∗(x1, z). We can therefore bound the probability that
Srel(x; q) holds and also

‖x1 − z‖ ∈
[
(
√

3− ε)r, (
√

3 + ε)r
]
. (17)
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We do it in the standard way.

� z must satisfy the CD-relations and also Equation (17), which it does with
probability O (ε).

� Given that, the probability that s1 satisfies Hx1s1 , Hs1z ∈ [0, hn] is again
O(h2

n) by Lemma A.13 part 1. The same is true for s2, s3.

Overall we get a factor of

O(n4εh6
n) = (lnn)O(1) · n−1/4.

Such a factor is contributed by at least one of the exposed q (by assumption)
so the overall expectation is indeed n−Ω(1), as desired. �

Now for situations 3a-b from Definition 5.6, in which a vertex from a triplet x
or a quadruplet q also functions as a witness to a UN-relation.

Proposition A.11. The expected number of k-tuples Q of witnesses for the
S-extension such that either 3a or 3b occur is n−Ω(1).

Proof. Again, we count only k-tuples Q in which all 4k vertices are distinct
and replace each S(x; q) with Srel(x; q). We expose the k quadruplets one by
one. WLOG we can arrange the order of exposure such that situations 3a or
3b already occur in the first two quadruplets. We show that together the two
quadruplets contribute a factor of n−Ω(1). Every additional quadruplet will
contribute at most O(n4h6

n) = (lnn)O(1) so the overall expectation would then
be n−Ω(1), as desired.

We expose the first quadruplet. Denote it q = (s1, s2, s3, z) and the corre-
sponding triplet x = (x1, x2, x3). There are still no previous quadruplets, so
occurrence of 3a or 3b means that a vertex from x or from q must be a wit-
ness for one of the six UN-relations of S(x; q). Many cases can be ruled out
by simple distances considerations: for instance, s2 can never be a witness for
UN(s1, z), because then ‖s2 − z‖ would have to be both 2r− o(1) and r− o(1).
There are essentially two different possible cases, which we are covered by the
two representative cases below.

Case 1. s2 is the witness for UN(x1, s1). We bound the probability as follows.

� s1 satisfies Hx1s1∈[0,hn] with probability O(hn).

� Given that, s2 is inside Lx1s1 with probability O(h
3/2
n ) (the area of the

lens).

� Given that, z satisfies Hs1z, Hs2z ∈ [0, hn] with probability O(h2
n) by

Lemma A.13 part 1.
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� Given that z also satisfies the CD-relations, s3 satisfies Hx3s3 , Hs3z ∈
[0, hn] with probability O(h2

n) by the same lemma.

Overall we get a factor of

O
(
n4h

6 1
2
n

)
= (lnn)O(1) · n−1/3·

Case 2. x2 is the witness for UN(x1, s1). We show that the requirements force
z to be inside a geometric locus with very small area, and handle s1, s2, s3 like
in the standard way. Indeed, the requirements include

x2 ∈ Lx1s1 , ‖x1 − s1‖ , ‖s1 − z‖ ∈ [2r − 2hn, 2r].

It is not hard to see that such distances force s1 to be at distance O(n−1/3) from
the point a such that x2 is the midpoint of x1a. Therefore z to be at distance
2r +O(n−1/3) from this a. So:

� z satisfies the CD-relations and also keeps a distance 2r + O(n−1/3) from
a with probability O(n−1/3).

� Each of s1, s2, s3 contributes O(h2
n) as usual.

Overall we get a factor of

O
(
n4 · n−1/3 · h6

n

)
= (lnn)O(1) · n−1/3·

Now expose the second quadruplet q′ = (s′1, s
′
2, s
′
3, z
′). Denote the correspond-

ing triplet x′ = (x′1, x
′
2, x
′
3). Again, there are several ways in which 3a or 3b

can occur, and we handle two representative cases.

Case 1. s3 is the witness for UN(x′1, s
′
1). Continue like Case 2 for q (note that

the position of s3 is considered fixed because q was already exposed).

Case 2. x3 is the witness for UN∗(s′1, z
′). Again, we show how it forces z′ to

be inside a very small geometric locus. Here,

x3 ∈ Ls′1z′ , ‖s
′
1 − z′‖ ∈ [2r − 2hn, 2r]

force ‖z′ − x3‖ = 2r + O(n−1/3), which puts z′ in a locus with area O(n−1/3).
So again we get

O
(
n4 · n−1/3 · h6

n

)
= (lnn)O(1) · n−1/3·

�

Finally, we are left with situation 4 from Definition 5.6, in which two different
UN-relations have the same witness.
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Proposition A.12. The expected number of k-tuples Q of witnesses for the
S-extension such that situation 4 occurs is n−Ω(1).

Proof. Once more, we count only k-tuples Q in which all 4k vertices are distinct
and replace each S(x; q) with Srel(x; q). Moreover, we can disregard k-tuples Q
which are not well-spaced, and also disregard the situation in which a witness
for one of the 6k relevant UN-relations is already a vertex from Q or from one
of the triplets x(i).

As usual, we expose the k quadruplets of Q one by one. This time, however,
we bound the factor that each one contributes by the general bound O(n4h6

n) =
(lnn)O(1). So, after exposing all the quadruplets we get a bound of (lnn)O(k) =
no(1). The n−Ω(1) factor now comes after the exposure of all the quadruplets,
by considering the witnesses for the UN-relations.

Take the 6k lenses of the 6k pairs of vertices which are required to satisfy a
UN-relation. Let us denote them

L1, L2, . . . , L6k.

The UN-relations are satisfied when each of those lenses contains exactly one
vertex. Situation 4 occurs when one vertex is contained in two of those lenses.
Define I to be the union of all intersections between two lenses:

I =
⋃

1≤i,j≤6k, i 6=j
(Li ∩ Lj).

Then, the probability of situation 4 is bounded by the probability that I con-
tains a vertex. As explained, we may ignore vertices from Q or from the triplets
x(i), and look only for the remaining n−Θ(k) vertices in I (the vertices which
are not already exposed). We also explained why we may assume that the ver-
tices of Q are well-spaced. Now, Lemma A.15 tells us that the area of each
intersection Li ∩ Lj is n−1−Ω(1). A simple union bound over O(k2) intersec-
tions shows that area(I) = n−1−Ω(1). Now, a union bound over the n − Θ(k)
remaining vertices shows that the probability of having at least one vertex in I
is

(n−Θ(k))n−1−Ω(1) = n−Ω(1).

Overall, situation 4 does contribute a factor of n−Ω(1) to the expectation, and
that finishes the proof. �

The Geometric Lemmas

We state the geometric lemmas that we used and briefly explain their proofs.

Lemma A.13. Let a1, a2 ∈ T2 be two points and denote ∆ = ‖a1 − a2‖. Let
A be the area of the intersection between the two annuli with radii 2r − 2hn, 2r
around a1 and a2.
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1. If C1r ≤ ∆ ≤ C2r for constants 0 < C1 < C2 < 4 then A = O
(
h2
n

)
.

2. If n−1/6 ≤ ∆ ≤ Cr for a constant C < 4 then A = O
(
n1/6h2

n

)
.

3. If ∆ ≥ n−1/6 then A = O
(
h

3/2
n

)
.

Before the proof, let us provide some geometric intuition. For part 1, the the con-
dition on ∆ forces the two annuli to intersect with an angle α which is bounded
away from 0 and from π. So their intersection is asymptotically equivalent to
the intersection of two “strips” of width 2hn with angle α, which is

(2hn)2

sinα
= O(h2

n).

For part 2, note that now the condition on ∆ only assures α = Ω
(
n−1/6

)
and

that α is bounded away from π. So now the area is asymptotically equivalent
to

(2hn)2

sinα
= O

(
n

1/6h2
n

)
.

For part 3, the idea is that the maximal area is obtained for ∆ = 4r − 2hn, as

the intersection turns into a lens with width 2hn. Its area is then O(h
3/2
n ).

Let us present a more formal approach.

Proof of Lemma A.13. We can replace T2 with R2 because the local behavior
is Euclidean. Let us first tackle a more general problem: take any a1, a2 ∈ R2

and let ∆ = ‖a1 − a2‖. Consider the annulus with center a1 and radii α1 < β1

and the annulus with center a2 and radii α2 < β2. What is the area of their
intersection?

The idea is to define new coordinates based on the two distances from a1 and
from a2. WLOG assume that they are the points

(
±∆

2 , 0
)
. Let Φ∆(r1, r2)

be the function that receives r1, r2 > 0 and returns the unique point b in the
upper half plane with ‖b− a1‖ = r1 and ‖b− a2‖ = r2 (if one exists). Since
the function transforms a rectangle into half an intersection of annuli around a1

and a2, change of variables gives us that the area is

2

�

[α1,β1]×[α2,β2]

|detDΦ∆|dr1dr2.

By straightforward calculations, we can show that

Φ∆(r1, r2) = (x, y) =

(
r2
1 − r2

2

2∆
,

√
r2
1 + r2

2

2
− ∆2

4
− (r2

1 − r2
2)2

4∆2

)
,

|detDΦ∆| =
r1r2

∆y
.
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Let us return to our case. The area of the intersection is

2

�

[2r−2hn,2r]2

r1r2

∆y
dr1dr2

so it only remains to bound r1r2
∆y . It is not hard to show that for constants

0 < C1 < C2 < 4,

1. C1r ≤ ∆ ≤ C2r implies r1r2
∆y ≤ Const.

2. n−1/6 ≤ ∆ ≤ C2r implies r1r2
∆y ≤ Const · n1/6.

3. C1r ≤ ∆ ≤ 4r implies r1r2
∆y ≤ Const · 1√

hn
.

Together these inequalities prove the lemma. �

Lemma A.14. Let s1, s2, s3 be three points in T2 and assume that they are
well-spaced. Let A ⊆ T2 be the area of the intersection between the three annuli
around them with radii 2r − 2hn, 2r. Then A = O

(
n1/6h2

n

)
.

Proof. If the intersection is empty then the bound holds trivially. So assume
there is a point z in the intersection. s1, s2, s3 all lie inside the annulus with
radii 2r − 2hn, 2r around z. It is easy to see that at least one of

‖s1 − s2‖ , ‖s2 − s3‖ , ‖s3 − s1‖

must be at most
√

3r. But they are all ≥ n1/6 by assumption. So we can
bound the area A through Lemma A.13 part 2 and obtain the desired bound
O
(
n1/6h2

n

)
. �

Lemma A.15. Let s1, y1, s2, y2 be four points in T2. Assume

‖s1 − y1‖ , ‖s2 − y2‖ ∈ [2r − 2hn, 2r]

and also that s1, s2 are well-spaced. Then

Area (Ls1y1 ∩ Ls2y2) = n−1 1
6 +o(1).

Proof Sketch. If Ls1y1 ∩ Ls2y2 = ∅ then we are done. Assume that the inter-
section is non-empty. Let m1,m2 be the midpoints of s1y1, s2y2 (respectively).
They are obviously contained in Ls1y1 , Ls2y2 (respectively). The diameters of
the lens are O

(√
hn
)

and so

‖m1 −m2‖ = O
(√

hn

)
.

Now we can show that the angle α between s1y1 and s2y2 is α = Θ(n−1/6),
as described in Figure 7. Finally, we bound the area of the intersection of the
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lenses by the area of the intersection of the infinite strips that contain them,
with the same widths, perpendicular to s1y1 and s2y2 respectively. This area is
at most

(2hn)2

sin(α)
= O

(
n

1/6h2
n

)
= (lnn)

O(1) · n−1 1
6 = n−1 1

6 +o(1).

α

s1 s2

y1y2

m1 m2

Ls1y1
Ls2y2

a

α

Figure 7: Illustration of the lemma. The two lenses are shaded. To show that
α = Θ(n−1/6), we can “copy” the segment s1m1 to a parallel segment of the
same length am2. Now consider the triangle am2s2. It is easily shown that
‖a2 −m2‖ , ‖s2 −m2‖ = r − O(hn) and that ‖a− s2‖ = Θ(n−1/6). The cosine
theorem then yields α = Θ(n−1/6).

�
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