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We study the q states Potts model with four site interaction on the square lattice. Based on the
asymptotic behaviour of lattice animals, it is argued that when q ≤ 4 the system exhibits a second
order phase transition, and when q > 4 the transition is first order. The q = 4 model is borderline.
We find 1/ln q to be an upper bound on Tc, the exact critical temperature. Using a low temperature
expansion, we show that 1/θ ln q, where θ > 1 is a q dependent geometrical term, is an improved
upper bound on Tc. In fact, our findings support Tc = 1/θ ln q. This expression is used to estimate
the finite correlation length in first order transition systems. These results can be extended to other
lattices. Our theoretical predictions are confirmed numerically by an extensive study of the four site
interaction model using the Wang-Landau entropic sampling method for q = 3, 4, 5. In particular,
the q = 4 model shows an ambiguous finite size pseudo-critical behaviour.

PACS numbers: 05.10.Ln, 05.70.Fh, 05.70.Jk

I. INTRODUCTION

The Potts model [1, 2] has been widely explored in the
literature for the last few decades. While many analyt-
ical and numerical results exist for the traditional two
site interaction model in various geometries and dimen-
sions [2], little is yet known about models with multisite
interactions [3–7]. Baxter et al [3] and other authors [5–
7] obtained the exact transition point for the three site
interaction model on the triangular lattice. The Four
spin interaction model has been studied by several au-
thors [8–10]. Specifically, it has been shown [8, 9] that
the site percolation problem on the square lattice can
be formulated as a four site interaction Potts model in
the limit q → 1. Burkhardt [10] argued that the four
site Hamiltonian H, with interaction strength K defined
for every other square of the lattice (chequerboard), can

be mapped onto another four site Hamiltonian H̃ with
strength K̃, defined for every elementary square in the
dual lattice. This mapping yielded the transformation

(eK − 1)(eK̃ − 1) = q3, (1)

in agreement with a more general expression [2, 11]

(eKγ − 1)(eK̃γ − 1) = qγ−1, (2)

which assumes arbitrary γ site interaction. Results like
(1),(2) may be conveniently obtained if one equivalently
represents the Potts spin configurations as graphs on reg-
ular lattices [2, 12, 13]. However, the set of monochro-
matic graphs associated with non-zero interaction terms
in the checkerboard Hamiltonian, is small compared to
the set of monochromatic graphs involved in the parti-
tion sum of a problem where every elementary square is
considered. Therefore, (1) suggests that the transition
point (if exists) should be rather different from that of a
four site interaction model defined for every elementary
square.

In this paper we consider a four site interaction model
described by a Hamiltonian with a partition sum that

exhausts all the elementary squares of the lattice. We
propose a simple equilibrium argument that results in a
critical condition for the transition point. This condition
is in fact a zero order approximation to the exact point.
It relies on the observation that tracing out spin states
in the partition sum is equivalent to the enumeration of
large scale lattice animals at the vicinity of the transition
point. Using a self consistent low temperature approxi-
mation, we obtain a more general condition which allows
one to approach the exact point up to an arbitrarily small
distance, at least when q > 4. The modified condition is
used to define the first order finite critical correlation
length and to relate it to the critical point. It is ar-
gued that these considerations can be applied to other
lattices. To demonstrate the generalization, we briefly
also discuss the triangular lattice. We next test our ana-
lytical predictions by an extensive numerical study of the
Four site interaction Potts model on the Square lattice
(FPS) with q = 3, 4, 5 states per spin. For that purpose
we use the Wang-Landau (WL) [14, 15] entropic sam-
pling method. The simulations results, together with
finite size scaling (FSS) analysis, enable us to approxi-
mate the infinite lattice transition point for each of the
three models. An estimate of the correlation length for
the q = 5 model, which according to the simulations ex-
hibits a strong first order transition, is additionally made.
It should be noted that another microcanonical ensemble
based approach that may be useful in simulating the first
order transition FPS has been introduced in [16].

The rest of the paper is organized as follows. In Sec. II
we present the model and describe the role of lattice ani-
mals in determining the order of the phase transition. We
find the (seemingly) exact transition point and show it is
related to the finite correlation length in the first order
transition case. In Sec. III we present the WL simula-
tions results and FSS analysis. Finally, our conclusions
are drawn in Sec. IV.
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FIG. 1. A portion of the square lattice showing a graphG with
c(G) = 4 monochromatic clusters, f(G) = 18 faces (coloured
squares), and ν(G) = 43 nodes residing in the corners of these
squares. The three different colours represent a model with
q ≥ 3.

II. ANALYTICAL RESULTS

We consider the four site interaction Potts model on
the square lattice (FPS), defined by the Hamiltonian

−βH = K
∑
�

δσ� , (3)

where β = 1/kBT and K = βJ is the dimensionless
coupling strength (for convenience we shall assume from
now on kB = J = 1). Each spin can take an integer value
1, 2, ..., q. The δσ� symbol assigns 1 if all the four spins in
a unit cell � are equal and 0 otherwise. The summation
is taken over all the unit cells. It is convenient to write
the partition function for the Hamiltonian (3) [17]

ZN =
∑
σ�

∏
�
(1 + vδσ�) ≈ qN

∑
G

qc(G)−ν(G)vf(G), (4)

where v = eK − 1 and G is a graph made of f(G) unit
cell faces placed on the edges of the lattice. The faces
are grouped into c(G) clusters with a total number of
ν(G) nodes. The approximation sign is due to perime-
ter terms o(N) with contributions o((1 − 1/q)N ) to the
partition sum, which are omitted. Clusters with perime-
ters O(N) (“snake-like”, “snail-like”, etc.) are energet-
ically unfavourable and also assumed to be poor in en-
tropy, therefore their corresponding graph contributions
are absent. An illustration of a graph G is given in Fig.
1. Provided all the interacting spins are shown in the
figure, G is associated with a qN−39v18 term in (4).

We now consider a low temperature expansion (v ≈
u = eK) in which we assume only ”k clusters” exist.
That is, for each k large enough we assume a single cluster
(c(G) = 1) with f(G) = k faces and ν(G) = mk sites.
It is conjectured that in a typical k cluster mk ≈ k. In
terms of the new variables, the low temperature partition

function may take the form

Z low
N ∝ qN

∑
k

∑
mk

G(k,mk)q
−mkuk, (5)

where G(k,mk) is the number of configurations with
k faces and mk sites, associated with a k cluster. It
is known [18–20] that the combinatorial term gk =∑

mk
G(k,mk) for large k is (apart from boundary contri-

butions occurring with probability a.a.s. zero) the asymp-
totic number of lattice animals gk ≈ cλk/k, where λ ≈
4.0626 and c ≈ 0.3169. This observation distinguishes
between q > 4 and q ≤ 4. Making a k cluster (animal)
monochromatic, the total change in entropy if an asymp-
totic number of site configurations is exhausted, can be
written, to leading order, as

∆Stot = k ln(λ/q). (6)

Thus, when q > λ > 4, it is energetically disadvantageous
for the system to occupy animals at the asymptotic rate.
Instead, to optimize the energy gain to entropy loss ra-
tio, it possesses a giant component (GC), typically at the
system size, that may be distorted from a perfect square
in shape. This mechanism is usually associated with sys-
tems which exhibit a first order phase transition. In case
that q ≤ 4, since λ > q, the entropy of the system in-
creases. To avoid this, the system will again form a GC
but this time with a fractal dimension rather than a sim-
ple component as in the q > 4 case. This scenario is
typical to second order transitions, where the correlation
length at criticality diverges. A single monochromatic
GC approximately reduces the entropy in the amount of
∆S = − ln qkGC+h.o.t ≈ − ln qkGC . The resulting gain in
energy is ∆E = −kGC . Thus, ∆F = ∆E − T∆S < 0 iff
T < 1/ ln q, yielding the zero order bound on the critical
point

T̃c =
1

ln q
. (7)

Consider for a first order q the class (denoted by Â) of
large k animals with perimeters proportional (to leading

order) to
√
N . Higher order contributions to (6) from

the simple GC may then be depicted by writing

θ = sup
k

(
sup
mk

mk

k

)
, (8)

where mk are now site variables of animals in Â. Replac-
ing q−mk in (5) with q−θk and noticing the number of
different configurations occupied by the simple GC may
be bounded by K

(
N

a
√
N

)
, with K, a ≤ 1 constants, it can

be shown (see App. A) that

Λ = lim
N→∞

(Z low
N )1/N = uq1−θ. (9)

The (minus) dimensionless free energy −βf low = lnΛ is
then maximal iff uq−θ > 1, leading to the critical condi-
tion

uc = qθ, (10)
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or equivalently to the critical temperature

T̂c =
1

θ ln q
. (11)

Note that if one does not adopt the low temperature
approximation, one has to add the term ln(1 − 1/u) to
−βf low, hence does not violate the critical condition (10).
Note also that long range order is uniquely controlled by
large animals. These two observations imply that the
critical temperature (11) is exact. Observe also the ap-
proximation mk = k (in the exponent) in (5) results in
the critical condition uc = q, likewise (7). Eq. (11) can be
used to relate the critical point to the finite correlation
length through

θ = 1 + c1/ξ + ..., (12)

where ξ is a typical length for clusters that are not k
clusters. For instance, for the square lattice, it can be
easily shown that the simple GC consists of k faces and
mk sites satisfying

mk

k
≤ 1 +

ĉ√
k
+ ... (13)

with ĉ ≥ 2 constant. It follows from (12),(13) (see App.
B) that c1 = ĉ. With the further aid of (11), one readily
obtains

T̂c(q, ξ) =
1

ln q

(
1− ĉ

ξ

)
+O(1/ξ2). (14)

Finally, we address the issue of the lattice structure.
In agreement with ref. [21], the formation mechanism of
a GC, either simple or fractal, which controls the criti-
cal properties of the model, applies also to other systems.
Specifically, the zero order approximation (7) is expected
to be valid (up to a constant multiplicative factor) for
other lattices. In the first order transition case, the lat-
tice structure is captured by means of the constant term
in (14). For example, in the triangular lattice, a simple

GC consisting of mk = k/2 + O(
√
k) sites, satisfies (14)

with ĉ ≥ 1. The lower bound corresponds to the marginal
case where the GC, when embedded in the square lattice,
forms a perfect monochromatic square with no vacancies.

III. SIMULATIONS

To test our analytical predictions, we study the FPS
for three different models, namely, with q = 3, 4 and
q = 5 states per spin. The Wang-Landau (WL) [14, 15]
entropic sampling method is chosen for this purpose since
it enables one to accurately compute canonical averages
at any desired temperature. We use lattices with linear
size L = 4, 8, 12, ..., 68 and periodic boundary conditions
are imposed. For each lattice size, we compute Ω(E),
the number of states with energy E. These quantities
allow us to calculate energy dependent moments ⟨En⟩ ∝
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FIG. 2. Variation of the specific heat of each model against
temperature for L = 44. While the q = 4 and, especially,
the q = 5 model display sharp and narrow peaks at the q
dependent position of the specific heat maximum, TL(q), the
q = 3 peak is an order magnitude smaller and rather broad.

∑
E EnΩ(E)e−βE . In particular, we are interested in the

specific heat per spin given by [22, 23]

cL = L−dβ2(⟨E2⟩ − ⟨E⟩2). (15)

A plot of the specific heat for the three models is given
in Fig. 2. For each model, the location of the peak serves
as L dependent pseudo-critical temperature and denoted
by TL ≡ TCmax

L
. Indeed, in agreement with (11), the

pseudo-critical temperatures increase with q. To deter-
mine the order of the transition for each model we are
simultaneously also interested in the energy probability
density. The latter may be written

PL(ϵ) ∝ gL(ϵ)e
−βLdϵ ≈ LdΩ(E)e−βE , (16)

with ϵ = L−dE and gL(ϵ) is the energy density of states.
In Fig. 3a we display the probability density at TL(q).
The q = 3, 4 models apparently suffer from significant fi-
nite size effects. Specifically, the q = 4 model has a dou-
ble peaked shape, usually seen in first order transitions
[24]. Evidently, there is a large dip between the peaks,
but (unlike in the q = 5 case) also a domain where the
two humps overlap. A fit of the minimal density between
the peaks to a power law, generates a slope −1.09±0.19.
This may indicate finite size interface contributions to the
pdf. Either way, the dip does not exponentially vanish
as expected from systems which undergo a discontinu-
ous transition. When q = 5, the energy is narrowly dis-
tributed in the vicinity of the ”ordered” and ”disordered”
states’ energies (denoted by ϵ− and ϵ+ respectively), and
has a typical 1/L width.
Armed with these observations we next perform FSS

analysis to each of the models. For each q we locate
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FIG. 3. (a) Pseudo-critical canonical energy distribution com-
puted at TL(q) for q = 3, 4, 5 and L = 44. Note the peaks
width 1/L behaviour when q = 5, typical to normal distri-
butions. Conversely, the distributions for the q = 4 (and of
course the q = 3) models are essentially not normal. (b) Scal-
ing of the specific heat maximum cmax

L with L on a log-log
scale for q = 3 (N), q = 4 (•) and q = 5 (�).

cmax
L (q) and TL(q). We fit these observables to linear
models according to conventional scaling laws. We then
vary Lmin, the smallest lattice size used in the fit, simul-
taneously, and consider the intercept term in the TL(q)
fit and the deviations of TL(q) (L = Lmin, ...) from the
intercept, in a chi square test [25, 26]. The best fit is
determined for Lmin > 4 from which the p value be-
comes monotonically increasing. The corresponding Lmin

is denoted by Lbest
min . Since it is assumed (and evidently

from Figs. 3b,4 correct) that the exponents involved in
the scaling laws of cmax

L (q) and TL(q) are not indepen-
dent, it is reasonable that Lbest

min simultaneously serves
in the best fit of cmax

L (q). As observed in Fig. 3b, for

q = 3 it is plausible to try the ansatz cmax
L ∼ (lnL)α/ν

for the specific heat maximum. For the distance be-
tween TL and the infinite volume critical point, we use
TL − Tc ∝ L−1/ν(lnL)α/ν [27] and assume α, ν satisfy
the hyperscaling relation

dν = 2− α. (17)

The g.o.f test yields χ2/d.o.f = 1.14/7 a p value of 0.021
and Lbest

min = 20 (from now on we shall give for each TL(q)
fit its corresponding χ2/d.o.f, followed by the p value and
Lbest
min , in parenthesis). The intercept term in the TL(3)

fit (Fig. 4a) is 0.827(9) and α/ν ≈ 2.197(5). The q = 4
model displays a pronounced power-law scaling. We as-
sume a second order scaling law cmax

L = ALα/ν + h.o.t.
The h.o.t stands for a correction to the leading order
term, of the form BLα/ν−ω. The distance between TL(4)
and Tc scales (to leading order) as L−1/ν . Again, next-
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FIG. 4. Scaling of the position (temperature TL(q)) of the
specific heat maximum with L, for the three models. Solid
lines are presented to guide the eye. (a) q = 3 and TL − Tc ∝
L−1/ν(lnL)α/ν . (b) q = 4 and TL − Tc ∝ L−1/ν+h.o.t. (c)
q = 5 and TL − Tc ∝ L−d

.

to leading order unknown correction terms are appar-
ently involved. A fit to a power-law decay of L yields an
intercept term 0.689(9) (1.72/7, 0.044, 32). The specific
heat maximum scales as L1.832(7). The picture is differ-
ent when q = 5. The rather asymptotic behaviour of the
energy pdf as shown in Fig. 3a suggests the q = 5 data
are compatible with the first order transition volume de-
pendent scaling laws. The conventional TL−Tc ∝ L−d fit
gives Tc(5) ≈ 0.606(1) (2.08/8, 0.033, 16). A log-log fit to
cmax
L against L, for L ≥ 16 gives a slope 1.992(6), so as a
volume dependent scaling for the specific heat maximum
is indeed plausible. To further support a second order
behaviour when q = 4 we consider the universal scaling
form

cL = Lα/νF(tL1/ν), (18)

where F(x) is a universal scaling function of the dimen-
sionless variable x = tL1/ν and t = (T − Tc)/Tc is the
reduced temperature. As clearly observed in Fig. 5, the
specific heat, normalized by Lα/ν , collapses on a single
curve as follows from (18). Thus, it is reasonable to as-
sume the hyperscaling relation indeed holds, in consis-
tency with the scaling relations we use.
Another manifestation of the q = 5 discontinuous tran-

sition is the latent heat, estimated in two different ways.
First, by measuring the distance between the locations
of the peaks in a Gaussian fit to the energy pdf (Fig. 6)

and then trying the ansatz ∆ϵpdfL ≈ ∆ϵpdf∞ +const×L−d.
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FIG. 5. The specific heat universal scaling function F(x) for
several lattice sizes L. The estimated values Tc(4) ≈ 0.689(9)
and α/ν ≈ 1.832(7) are used in all the plots.
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FIG. 6. Reweighted pdf [24] (blue symbols) together with
a double Gaussian fit for L = 44. Note that the peaks are
centred at points satisfying PL(ϵ−) ≈ qPL(ϵ+). Inset: The
difference between these points, as a function of L−d (filled
squares). Absent error bars are smaller than the symbols. The
estimated infinite volume ∆ϵpdf∞ ≈ 0.814(2) is denoted by the
filled circle. Lattices with L < 24 have too noisy distributions
around the peaks, therefore omitted.

Second, using [28]

cmax
L ≈ (ϵ+ − ϵ−)

2

4T 2
c

Ld +
c+ + c−

2
, (19)

where c+, c− are temperature independent terms. The

pdf fit, for L ≥ 24, produces ∆ϵpdf∞ = ϵpdf+ − ϵpdf− ≈
0.814(2) (χ2/d.o.f = 1.41/6, p = 0.061) while (19), choos-
ing Tc(5) ≈ 0.606(1), yields ∆ϵ = ϵ+ − ϵ− ≈ 0.809(5).
The two results reasonably agree.

To conclude, we turn to test our analytical predictions
against some of the simulations results. First we compare
the zero order bounds with the simulations predictions.
The results are summarized in Table I. As expected, (7)
becomes a better approximation as q grows. Next, having
in mind that for q = 5 the transition is first order, we give
a lower bound on the correlation length ξ(5) with the help

of (13),(14). Taking T̂c ≈ 0.606(1) we obtain ξ(5) > 81.
This result justifies our FSS analysis in the sense that
the lattice sizes we use are compatible with ξ(5).

TABLE I. Estimates of the transition temperatures for the
three models, using the zero order bound (7) and the simula-
tions results. The relative error is given in the last column.
The supplementary q = 10 result is based on additional sim-
ulations for lattices with 4 ≤ L ≤ 36 and a TL − Tc ∝ L−d fit
(2.75/7, 0.084, 8).

q Bound Simulations Error (%)
3 0.910(2) 0.827(9) 9.9
4 0.721(3) 0.689(9) 4.6
5 0.621(3) 0.606(1) 2.5
10 0.434(2) 0.432(5) 0.4

IV. CONCLUSIONS

The transition nature of the FPS is controlled by
large scale lattice animals. Based on the lattice animals
asymptotic growth, the transition is found continuous for
q ≤ 4 and discontinuous for q > 4. The q = 4 is bor-
derline. In case the assumption that typical large clus-
ters have (to leading order) the same number of sites
and faces breaks down (e.g when the number of clus-
ters satisfying limk→∞

mk

k > 1 is sufficiently large), the
q = 4 model might undergo a first order transition. It
is expected that large animals growth controls the tran-
sition order in other lattices as well. Specifically, it is
known [29] that the asymptotic number of triangular an-
imals (polyamonds) ak satisfies limk→∞

k
√
ak = λt with

2.8424 < λt < 3.6050. The number of faces in a typi-
cal large cluster is (to leading order) twice the number
of sites. Thus, the transition is continuous at least for
q ≤ 4. Moreover, it can be easily shown the transition
point is no larger than 2/ ln q. The WL simulations and
FSS analysis confirm our analytical predictions. That is,
the q = 3 model displays a scaling behaviour typical to
a second order transition and the q = 5 numerical foot-
prints are significantly first order. While the q = 3 FSS
shows a very slow approach to the asymptotic regime,
the q = 5 samples sizes are compatible with ξ(5). Chi
square g.o.f tests support the scaling laws we use. In
particular, for q = 3 it follows that the free energy singu-
lar part is homogeneous in the small L regime, since the
critical indices apparently obey (17). The q = 4 model
is rather unique. The double peaked shape of the en-
ergy distribution is also observed in models exhibiting a
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relatively weak first order transition such as the q = 8
usual Potts model, (c.f Fig. 1c in [24]). On the other
hand, Fig. 5 remarkably confirms (18), suggesting a di-
vergence of the correlation length ξ(4) ∝ |t|−ν as t → 0.
The indefiniteness of the four states model manifested
both analytically and numerically, is in agreement with
Renormaliztion Group (RG) predictions. The dynam-
ics of models lying in the universality class of the two
site interaction q = 4 Potts model (TSP) flows towards
the multicritical point qc = 4 [30–32]. However, a certain
choice of parameters [33] may drive the dynamics in some
of these models away from qc, to the first order domain.
In other words, in the marginal q = 4 case, the transi-
tion nature (first versus second order) is sensitive to the
model’s details [33]. The lattice animals mechanism sug-
gests that FPS may belong to the TSP universality class.
Nevertheless, it leaves room for a first order like RG de-
scription. It should be emphasized that unlike the RG
method which makes assumptions on the model under
scaling, our approach is direct and fundamental, build-
ing on first principles, and thus, we think, is preferable to
RG for the studied question. As a concluding remark, we
believe that being general, our theoretical framework can
be extended to other lattices, more complicated Hamil-
tonians and higher dimensions.
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Appendix A: The critical point

1. Derivation of (9)

We give a detailed derivation of Eq. (9) yiedling the
critical temperature (11). Since (11) is also useful in
estimating the finite correlation length in the first order
case (see. (12) and App. B), the derivation concerns with
this class of models. However, it is stressed that (11)
holds for arbitrary q.

Let ϵn be a sequence of positive small numbers. Then
there exist a sequence k(ϵn) and sets

κn =

{
k > k(ϵn) s.t

∣∣∣∣
∑

mk
G(k,mk)

cλk/k
− 1

∣∣∣∣ < ϵn

}
,

(A1)
associated with animals G(k,mk) with k faces and mk

sites in the asymptotic regime. Consider further, for ev-
ery n, the set An of all the animals with an asymptotic
k

An = { G(k,mk) s.t k ∈ κn} . (A2)

We now define the (small) class of large k simple animals

Â =

{
G(k,mk) ∈

∪
n

An s.t
mk − k√

k
≤ B

}
, (A3)

where B is a positive constant. Eqs. (A1)-(A3) allow us
to define

θ = sup
k

(
sup

mk: G(k,mk)∈Â

mk

k

)
. (A4)

Next, let rj , j = 1, 2, ..., jmax ≤ N , N ∈
∪

n κn be a
sequence satisfying 1

N < rj < 2
N . Construct another

sequence with jmax integers kj ≤ N from
∪

n κn. Define
now for every 1 ≤ j ≤ jmax

Âj =

{
G(kj ,mkj ) ∈ Â s.t

mkj

kj
> θ − rj

}
. (A5)

Take Z low
N ≤ Ẑ low

N where

Ẑ low
N ∝ qN

∑
j

∑
mkj

G(kj ,mkj )q
−mkj ukj

≤ qN
∑
j

∑
mkj

G(kj ,mkj
)

(
u

qθ−rj

)kj

≤ qN
∑
j

ĝkj

(
u

qθ−1/N

)kj

≤ KqNN
(

N
a
√
N

)(
u

qθ−1/N

)N

. (A6)

The mkj
summations in (A6) taken over site variables of

animals in Âj [34] satisfy∑
mkj

G(kj ,mkj
) ≤ ĝkj

. (A7)

Since ĝkj
count simple animals, they are no larger than

K
( N
a
√
N
)
where K, a ≤ 1 are constants. It follows imme-

diately from (A6) that

lim
N→∞

(Ẑ low
N )1/N = lim

N→∞
(Z low

N )1/N = uq1−θ. (A8)

2. Eq. (8) and first order transitions

When the system undergoes a first order phase tran-
sition, q ordered states coexist with a single disordered
state at the critical point. In (8) we utilize this as follows.
Consider a simple large animal with k = αN, α < 1
faces and mk sites. Then, the change in the free en-
ergy when making a macroscopic number of finite clusters
monochromatic may be written

∆F (k,mk, T ) = N [−(1− α) + σ(1− α)

+(1− α
mk

k
)T ln q] + h.o.t, (A9)
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where 0 < σ < 1 controls the energy loss due to bound-
ary interactions of the finite clusters. Indeed, (A9) is
minimized by animals satisfying (A4). It then may be
written

∆Fu(T ) = N [−(1− α)(1− σ)

+(1− αθ)T ln q] + h.o.t. (A10)

Eq. (A10) holds provided the leading term vanishes at the
critical point. In addition, (A10) should be unstable in
some left neighbourhood of Tc. These can be established
first by taking ∆Fu(Tc) = h.o.t for Tc = T̂c = 1/θ ln q,
leading to

θ =
1

1− σ(1− α)
. (A11)

Second, consider ∆Fs(T ), the free energy change due to
the formation of a single giant component, given by

∆Fs(T ) = N(−α+ αθT ln q) + h.o.t. (A12)

Plugging (A11) to (A10) and (A12) it follows that
∆Fs(T

−
c ) < ∆Fu(T

−
c ) iff

α >
1

2θ
. (A13)

Eqs. (A10)-(A13) assert that when a (first order) phase
transition occurs, the fraction of faces constructing a
monochromatic GC is no smaller than 1/2θ. It should
be noted that the critical threshold αc = 1/2θ increases
with q (see App. B) in accordance with the system’s at-
tempt to reduce entropy.

We conclude by stating that (9) (and so (11)) holds
for the second order models as well. In order that the
number of animals with k faces is maximal, the system
picks those with a maximal number of sites. Eq. (8) then
immediately follows. In addition, constructing θ, fractal
animal are involved so that Â in (A4) may be replaced

with Â ⊆
∪

n An [35].

Appendix B: The correlation length

In the following, we derive the relation between the
first order models finite correlation and the critical tem-
perature, formulated by (12). Observe that for animals

in Â, (A3) implies

mk

k
≤ 1 +

ĉ√
k
+ ... (B1)

Hence there exist a sequence k̂n ≤ k(ϵn) s.t

θ ≤ 1 +
ĉ√
k̂n

+ ..., (B2)

leading to

θ = 1 +
c1
ξ

+ ... = inf
n

(
1 +

ĉ√
k̂n

+ ...

)
, (B3)

with [ξ2] = maxn(k̂n) and c1 = ĉ. The correlation length,
as follows from (B3), may be interpreted as a typical
length measuring large finite domains. Writing the RHS
of (12) as a power series

∑∞
n=0 cnx

n at x = ξ−1, it follows
from (A11) that limn→∞ n

√
cn = ξσ(1−α) so as the series

indeed converges to θ.

Observe that the above analysis can be extended to ar-
bitrary q first order systems. We expect that as q grows
the deviations from a “perfect square” critical giant com-
ponent, become smaller. This may be formulated by
constructing subclasses Â(q) ⊆ Â with animals G(k,mk)

satisfying supk
mk−k√

k
= B(q), where the constants B(q)

are expected to decrease with q. Replacing Â in (A4)

with Â(q), θ essentially becomes q dependent. It acquires
lower values as q grows, as also realized in Table I, where
the simulated temperature approaches better the bound
1/ ln q, when q changes from q = 5 to q = 10.
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