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Abstract. In this paper, we consider the problem of covering a plane region with unit discs. We present
improved upper and lower bounds on the number of discs needed for such a covering, depending on
the area and perimeter of the region. We provide algorithms for efficient covering of convex polygonal
regions using unit discs. We show that the computational complexity of the algorithms is polynomial
in the size of the input and the output. We also show that these algorithms provide a constant factor
approximation of the optimal covering of the region, and that the approximation becomes asymptotically
optimal for fat convex regions.

1 Introduction

In discrete geometry, an efficient covering with unit circles for a given domain is a well known
problem, with various applications such as facility location and cellular network design. The
question of the optimal covering of a region is also a fundamental question in discrete geom-
etry related to many deep questions on the nature of Euclidean space. In this manuscript, we
introduce an algorithm which determines the locations of unit discs that induce an efficient
covering of a given polygonal domain. Our approach is based on the properties of the hexag-
onal regular lattice (the honeycomb), which is the optimal lattice among all lattices in the
plane in the density of the covering for a given radius of the enclosing circle (see [12]). The
presented algorithms are based on placing the centers of the discs at lattice points, where
the location and orientation of the lattice relative to the covered region is optimally selected
by the algorithms. We describe three algorithms, from the simplest one, achieving good re-
sults for convex polygons with low computational complexity, to a more complex one, which
guarantees obtaining the optimal lattice-based covering for any convex polygon. It should
be noted that the presented algorithms are presented for obtaining a covering based on the
hexagonal lattice, since it is asymptotically optimal for a fat region, as will be proven below.
However, they can be adapted to every given lattice, which may be desirable in some cases.
We show that the presented algorithms have polynomial complexity in the combined size of
input and output.

Blaschke, Tóth and Hardwiger [9] showed that a convex domain with area A and perimeter
L can be covered by at most⌊
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3
√

3
A+

2

π
√

3
L+ 1

⌋
≈ b0.384 · A+ 0.367 · L+ 1c (1)

unit discs. Their result, using the probabilistic method, is based on estimating the expected
number of hexagons in a hexagonal lattice that intersect a domain placed in a random
orientation and location (see section 6.1). This result is existential and not constructive, and
does not provide the desired locations of the discs that give such a covering. The algorithms
presented in this paper produce the list of discs location that guarantees a covering which
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achieves this bound. In fact, the second algorithm briefly described guarantees the optimal
covering among all coverings based on the hexagonal lattice. We also provide an improved
formula for this upper bound on the number of needed discs, which improves Eq. (1).

We also provide a bound on the approximation ratio between the number of discs in the
optimal covering and the number of discs required by the presented algorithms for any region.
Taking an asymptotic approach, and defining fat regions as a sequence of regions for which
L = o(A), we obtain an optimal approximation ratio. That is, the ratio between the number
of discs required by the algorithm to the minimum number of discs required for any covering
approaches 1 when the covered region becomes large.

2 Related work

[3, 4] described a mechanism for the special case which locates n discs with given radius r to
cover a maximum fraction of the area of a unit disc. The goal of the facility location problem
is to locate a minimal number of facilities such that a set of points (or possibly an entire
domain) is covered. The first studies of this subject focused on methods of Integral Geometry
[9, 6, 12, 13]. With the advances in computer science, new algorithms and approaches have
been developed for the facility location problem, and to the closely related k-centers and
P -centers problems.

Megiddo and Supowit showed that the P -centers is NP-hard [8]. In [10], a heuristic upper
bound to the optimal solution was described in a square. Hwang and Lee [7] showed that time

complexity of the most efficient algorithm is O(nO(
√
P )). In [11], a lower bound for the facility

location problem was obtained and an algorithm achieving a constant approximation ratio
was presented. In [5], a restricted version of the facility location problem was studied and a
constant factor approximation was presented. In [2], a learning mechanism was proposed to
solve the P -centre problem for a continuous area.

In [1], an algorithm for approximating the non-uniform minimum-cost multi-cover problem
was described by studying the example of matching clients to servers.

3 Preliminaries

Definition 1. The Minkowski sum of any two sets A,B ⊂ R2 is defined to be A � B :=
{x + y : x ∈ A, y ∈ B}. For s ≥ 0, the Minkowski dilation by factor s is defined to be
sA = {sx : x ∈ A}.

Definition 2. For every θ ∈ [0, 2π), the support function of a domain Ω, h(θ), is a function
that maps every θ to the largest p such that L(p, θ) ∩ Ω 6= ∅, where L(p, θ) is the line
{(x, y)| cos(θ)x+ sin(θ)y = p}. The width is w(θ) = h(θ) + h(θ + π).

Denote the diameter of a given domain Ω by D. We will define ∆ := [−D − 3, D + 3]×
[−D − 3, D + 3] ⊂ R2, i.e., there exists a rigid motion such that Ω ⊆ ∆.

Definition 3. Denote the n lattice points in ∆ by xmn := m · (
√

3, 0) + n · (
√
3
2
, 3
2
) m,n ∈ Z,

which are contained in the hexagonal regular lattice Λh. If m = n = 0, the respective hexagon
defined by 90.
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We state some standard theorems from integral geometry. Proofs can be found in standard
textbooks. e.g. [9].

Theorem 1 (Cauchy’s Formula). Let Ω be a bounded convex domain

L(∂Ω) =

∫ 2π

0

h(θ)dθ =

∫ π

0

w(θ)dθ ,

where h is the support function of Ω and w is the width.

Theorem 2. Suppose Ω is a compact, convex domain with a C2(R) boundary (C2 in the
sense that the derivative f ′ and f ′′ exist and continuous). Then

A(Ω) =
1

2

∫ 2π

0

(h2 − h′2)dθ . (2)

Definition 4. Let Tab := {(x, y) | (R(π) ·Ω) � 9ab} where R(π) denotes the rotation of Ω
by an angle of π, and (a, b) is the center of the unit hexagon)).

4 Lower bounds for covering

In this section we will give a lower bound based on the properties of multi-graphs. For a
convex region Ω (not necessarily a polygon) with area A and perimeter L we will prove the
following

Theorem 3. Let nopt be the number of unit discs in a minimum covering of Ω, then nopt ≥
max

{
2A
3
√
3
, L
4

}
− C, for some constant C.

We will prove the theorem in two parts, first proving the area term and then the perimeter
term.

Let Vi denote the Voronoi cell of the center of the ith disc, and let Ωc be the complement
of Ω. These regions define a graph G where adjacency in the graph reflects shared edges.
We will distinguish between two Voronoi cells types: inner cells are the Voronoi cells that do
not intersect the boundary of Ω (except possibly at discrete points) and exterior cells are
all the cells that do intersect the boundary of Ω. Each of the edges between Voronoi cells is
arbitrarily ascribed to only one of the cells, so the cells are disjoint and their union is the
entire plane. Assume there are a total of n cells, of which m are exterior.

We will use the following technical result

Lemma 1. Let i1, i2, i3, . . . , i` be the sequence of indices of cells visited by touring the bound-
ary counterclockwise starting at an arbitrary point. We have ` ≤ 2m.

Proof. The sequence cannot contain a subsequence of the form i, . . . , j, . . . , i, . . . , j since the
line segment between two points on the boundary pertaining to the two visits in the ith cell
bisects Ω into two disjoint regions, and thus the line segment between two points on the
boundary pertaining to the two visits in the jth cell, who belong to the two different regions,
must intersect it. However, by convexity of Voronoi cells, the intersection point must belong
to both Vi and Vj, that are disjoint, leading to a contradiction.

Thus, the graph of adjacency of the exterior cells is a cactus graph, which can be con-
structed by starting with a single vertex i, and using the following basic steps:
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1. Adding and edge, i.e., replacing some i in the sequence by i, j, i, where j does not appear
anywhere else in the sequence.

2. adding a triangle, i.e., replacing i in the sequence by i, j, k, i, where j and k do not appear
anywhere else in the sequence.

3. extending an edge, i.e., replacing i, j in the sequence with i, k, j where k does not appear
anywhere else in the sequence.

4. extending a bidirectional edge, i.e., replacing i, j, . . . , j, i in the sequence with i, k, j, . . . , j, k, i
where k does not appear anywhere else in the sequence.

It can be seen that each of these steps increases m by at least one, and none of the steps
increases t by more than two. Thus t ≤ 2m.

Lemma 2. For any covering of Ω by n unit discs, n ≥ 2(A−C)

3
√
3

, where C is a constant.

Proof. We define the Voronoi polygons Ui to be Vi if it is internal, and if it is external we
define it to be the convex polygon (convex hull) formed by the edges between the Voronoi cell
Vi and neighboring Voronoi celles and by the points of intersection of Vi with the boundary
of Ω. Denote by Ai the area of Ui.

If Ui is Voronoi polygon with di edges, then its area is maximized if it is a regular polygon
inscribed in the unit disc, thus Ai ≤ di

2
sin 2π

di
. By the convexity of the function x sin(2π/x)

and using Jensen’s inequality we get

n∑
i=1

Ai ≤
n∑
i=1

di
2

sin
2π

di
≤ n

d

2
· sin 2π

d
.

Consider the graph of adjacency between the Vis and Ωc. This is a planar graph with
n + 1 vertices, and thus the sum of degrees is at most 6(n + 1) − 12 = 6n − 6. m of
these edges are incident with Ωc. Thus the sum of degrees of the Voronoi cells is at most
6n − 6 −m. However, each of the exterior cells may have more than one edge shared with
Ωc. The excess degrees obtained by this is at most t− n ≤ n (by Lemma 1), which leads to∑m

i=1 di ≤ 6m− 6− n+ n = 6m− 6, or d < 6. Thus,

n∑
i=1

Ai < n
6

2
· sin 2π

6
=

3
√

3

2
.

Now let C = A−
∑n

i=1Ai be the area of Ω not included in any of the Voronoi polygons.
Let ei, i = 1, . . . , t be the exterior edges of the exterior Voronoi polygons. Let li be the
lengths of the boundary of Ω that are external to their respective ei. by the isoperimetric
inequality we have that the maximum area between each li and its ei is obtained when li
is a circular arc and the area is a circular segment. The area of the segment is given by
Ci = (liri − r2i sin(li/ri))/2, where ri is the radius of curvature. Since the boundary of Ω is
a Jordan curve we have that the total curvature is

∑t
i=1 li/ri = 2π. We also have that since

each li resides in a unit disc, its length is at most li ≤ 2π. Thus, the total area outside the
Voronoi polygons is thus

C ≤
t∑
i=1

liri − r2i sin(li/ri)

2
≤

t∑
i=1

l3i /ri
12
≤ (2π)2

t∑
i=1

li/ri
12

=
2π3

3
,

using the fact that sinx ≥ x−x3/6 for 0 ≤ x ≤ π. Therefore, C is bounded by a constant.
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For the perimeter term we have the following:

Lemma 3. For any covering of Ω by n unit discs, n ≥ L
4
− C.

Proof. Consider the boundary of U := ∪iUi. U is a polygon, which has at most t ≤ 2m ≤ 2n
edges by Lemma 1. For each disc, i, having Di exterior edges we get that the longest total
length of the external edges is obtained when the external edges form a regular polygon
inscribed in the disc. This polygon has perimeter 2 for Di = 1 and perimeter 2Di sin(π/Di)
for Di ≥ 2. Assume k cells have Di = 1 and the rest of the exterior cellas have Di ≥ 2. The
total length of the external edges is thus at most

2k+
m∑
i=1

2Di sin
π

Di

≤ 2k+2(m−k)D sin
π

D
≤ 2k+2(m−k)

2m− k
n− k

sin
π(m− k)

2m− k
≤ 4m ≤ 4n ,

where D is the average degree of the cells having at least two exterior edges, and we have
used the Jensen inequality and Lemma 1.

Now each point on the boundary of Ω has a point at a distance at most 2 on inside U ,
since they fit in the same disc. Thus, the support function hΩ(θ) of Ω relative to some point
inside U satisfies hΩ(θ) ≤ hU(θ) + 2. By Theorem 1 L(∂Ω) ≤ L(∂U) + 4π.

It should be noted that both the area and perimeter terms are asymptotically sharp, as
can be seen in the case of covering a large fat region by discs arranged in a hexagonal lattice
configuration (see Section 6.3), and by covering a long narrow (width zero) rectangle by a
line of kissing discs, respectively. However, it may be possible to improve Theorem 3 by using
some combination of the area and perimeter terms which is not the maximum.

5 Algorithms for covering

We would like to obtain a covering by unit circles. Since every regular hexagon is bounded by
a unit circle, the covering by a set of unit circles can be represent by the hexagonal regular
lattice which has been proven by Tóth in the optimal lattice in the plane. We would like to
find a special point for locating the domain Ω leading to a minimal number of regions in the
hexagonal regular lattice which intersects the domain Ω. This number of intersections leads to
the number of lattice points (in the hexagonal regular lattice) which cover the convex domain.
Obviously, the domain Ω can be placed on the lattice in different positions, every position
leads to a different number of intersections. We will show that due to the group of rigid
motion, we can shift and rotate the given domain Ω such that the number of intersections
can be minimized, i.e., find the appropriate location.

Its turn out (see Theorem (4)) that the Minkowski sum is a tool for defining a covering
for a given lattice which leads to the number of hits of a given domain and the number of
fundamental regions in the given lattice.

5.1 2D Algorithm for a given θ

We will take in consideration that these two variables are independent. Let the optimal
orientation θ be given. We will describe below an algorithm which determines the exact
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position for a given θ. For each of the lattice points we will find the respective Minkowski
sum

TΩxmn(θ) := (R(π + θ) ·Ω) � 9xmn ,

where θ is the optimal orientation of Ω.

Notice that if xmn /∈ ∆, then 90∩Txmn(θ) = ∅. Therefore, we can concentrate only on the
points xmn ∈ ∆.

Since the lattice is periodic, we can limit our discussion to the hexagon 90 (it is sufficient
to do the shifting in (R(π + θ) ·Ω) � 9(0+ε), where ε ∈ 90).

Algorithm 1: The 2D Algorithm
Result: List of centers of unit discs covering Ω.

1 Given a convex polygon Ω
if Diameter of minimum enclosing circle of Ω ≤ 1 then

2 return center of minimum enclosing circle
3 end
4 Calculate the width function w0

Find the diameter of the given domain
Calculate the Minkowski sum of (R(π + θ) ·Ω) � 90

5 Find all the lattice points xmn which are contained in ∆
6 Find the optimal angle θ by minimizing:

θ0 = arg min
θ

{
w0(θ) + w0

(
θ +

π

3

)
+ w0

(
θ +

2π

3

)
(0 < θ ≤ π)

}
Place Ω in orientation with θ0

7 points = ∅
8 for xmn ∈ ∆ do
9 Find TΩxmn

(θ)
10 end
11 for i = 1:|xmn| do
12 for j = i+ 1:|xmn| do
13 for each intersection point y ∈ ∂Ti ∩ ∂Tj ∩ 90 do
14 points = [points, yi]
15 end

16 end

17 end
18 for j=1:|points| do
19 for i=1:|xmn| do
20 Index(j)=0

21 if pointsi ∈ IntTΩi (θ) then
22 Indexj = Indexj + 1
23 min(Indexj)

24 end

25 end

26 end
27 point∗ = points(arg min {Index(j)})
28 return list of all lattice points contained in the Minkowski sum
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5.2 3D Algorithm

The algorithm we presented in Section (5.1) finds the optimal orientation for a random
location and finds the optimal location for this orientation. However, this does not guarantee
that the combination of orientation and location is optimal. We now present an algorithm
that determines this optimal combination.

We define the Minkowski sum as follows:

Tab(θ) :=
{

(x, y, θ) | (x, y) ∈ (R(π + θ) ·Ω � 9ab) , θ ∈
[
0,
π

3

]}
, (3)

where R(π + θ) is a rotation.
We define the Minkowski sum T for each of the n lattice points in the ball BD+3 (where

D + 3 is the radius of the ball), which is the sequence

{TΩxmn(θ) |xmn ∈ BD+3 ∩ Λh} .

In order to find the optimal placement and orientation of the convex region Ω, we suggest
the following algorithm:
Each point (x, y, θ) represents a placement of Ω at the location (x, y) and orientation θ.
Notice that a point (x, y, θ) is in the interior of a domain TΩxmn(θ) if and only if placing Ω
at a location (x, y) and orientation θ intersect with the hexagon that is centered at xmn. In
this case every Minkowski sum, respective to a a lattice point xmn, generates a 3D body by
rotating the convex domain continuously π

3
radians and adding the hexagon. We will examine

the domains inside P0 := 90 × [0, π
3
] (hexagonal prism).

The hexagonal prism will be divided into different regions each of which is the intersection
of a different number of TΩxmn(θ)’s for lattice points xmn ∈ B(D+3). As for the translation
optimizing version, it can be shown that by finding the intersections of the surfaces formed
by the boundaries of the Minkowski sums, the optimal placement and angle can now be
determined. The intersections can be found by solving systems of polynomial equations. An
extension can also be constructed for non-convex polygons by representing them as unions
of convex polygons. For brevity we skip the details.

6 Correctness and performance bounds

6.1 Upper bounds using integral geometry

The following two theorems are of classical results presented before by Blaschke. They are
brought here for completeness.

Theorem 4. Given domains Ω0 and Ω1, where Ω1 is of the form Ω1 = {(α, β, 0)} + Ω′,
where (α, β) is chosen randomly by the uniform distribution in a ball with radius r, then

P (Ω0 ∩Ω1 6= ∅) = Area(Ω0+R(π)·Ω1)
πr2

.

Proof. (Based on [9]) Denote by b0 and b1 the centers of Ω0 and Ω1, respectively. The vector z0
is the vector which determines Ω0. In a similar way, we will define for Ω1. Given Ω0∩Ω1 6= ∅,
there exists a point such that b0 + z0 = b1 + z1, i.e., z1 = z0 + b0 + (−b1) ). Without loss
of generality, take b0 = 0. If b1 ∈ Ω1 then −b1 ∈ R(π) · Ω1, so z1 ∈ K0 � R(π) · Ω1, which
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is the area intersection between Ω0 and Ω1 in R2. So the probability in R2 for the desired
intersection is

Area(Ω0 +R(π) ·Ω1)

πr2
,

where r � 1.

Theorem 5. Consider A1 as the area of a finite convex region Ω1 whose perimeter is L1,
then the region can be covered using

b 2

3
√

3
A1 +

2

π
√

3
L1 + 1c

unit circles, where the square brackets indicate the floor function.

Proof. As a consequence of the above theorem, the mean value of the number of pieces in
which a domain Ω1, limited by a single curve of length L1, is divided when it is put at random
on a lattice whose fundamental domains have area A0 and contour of length L0, is

ν =
2π(A0 + A1) + L0L1

2πA0

. (4)

The number N of fundamental domains which have a common point with Ω1 is always N ≤ ν.
Consequently, N ≤ ν and we get: Any domain Ω1 of area A1, limited by a single curve of
length L1, can be covered by a number µ of fundamental domains of area A0 and contour L0

which satisfies the inequality µ ≤ ν, where ν has the value (4).
If the lattice is that of regular hexagons (which is the optimal lattice) of side a, we find

that every Ω1 can be covered by a number of hexagons not exceeding[
1 +

2L1√
3aπ

+
2A1

2
√

3a2

]
. (5)

Considering the circles circumscribed about the regular hexagons of side a, we obtain the
result that every Ω1 can be covered by this number of circles of radius a. Choose a = 1 and
we have the desired result.

Definition 5. The support function of the hexagon will be denoted by h9(ϕ). The support
function of the convex domain Ω will be denoted by h0(θ).

The canonical hexagon is the diamter 2 regular hexagon having the center of gravity at
the origin and two vertices on the y axis. Directly calculating the support function of the
canonical hexagon, one obtains h9(ϕ) maxn∈Z cos

(
ϕ− nπ

3

)
.

Lemma 4. If we place Ω in orientation θ such that

w0(θ) + w0

(
θ +

π

3

)
+ w0

(
θ +

2π

3

)
(0 < θ ≤ π)

is minimal, where w0 is the width of Ω, then the Minkowski sum (R(π) ·Ω)�9 is minimized,
and the expected number of covering hexagons is⌊

2

3
√

3
A+

2

3
√

3

(
w0(θ) + w0

(
θ +

π

3

)
+ w0

(
θ +

2π

3

))
+ 1

⌋
.
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Proof. We will define the Minkowski sum of (R(π) ·Ω) � 9. The hexagon will be defined by
(??). The convex domain Ω will be placed such that the hexagon and Ω intersect. We will
denote the center of gravity of Ω by r. Take an intersection point of Ω and 9. Then

r + z0 = z1 + 0⇐⇒ r = z1 + (−z0) ,

where z0 ∈ Ω and z1 ∈ 9. Denote the respective support function of z0 by h1 and in a similar
way for z1 by h9. So, we will define the support function of the Minkowski sum as

ĥ = h9(ϕ) + h0(ϕ+ θ + π) .

By (2) the area of the Minkowski sum is:

A(9�R(π + θ) ·Ω) =
1

2

∫ 2π

0

(
(h9(ϕ) + (h0(ϕ+ π + θ))2 −

(
h′9(ϕ) + h′0(ϕ+ π + θ)

)2)
dϕ

= A+

√
27

2
+

∫ 2π

0

(
h0(ϕ+ π + θ)h9(ϕ)− h′0(ϕ+ π + θ)h′9(ϕ)

)
dϕ .(6)

Denote the shifting factor in (??) for every interval by c. Thus we will get∫ 2π

0

(h0(ϕ+ π + θ) · cos(ϕ+ c) + h′0(ϕ+ π + θ) sin(ϕ+ c)) dϕ

=
∫ 2π

0
(h0(ϕ+ π + θ) · sin(ϕ+ c))′ dϕ . (7)

The solution for (7) where −π
6
< ϕ ≤ π

6
gives the support function h9 = cos (ϕ), is∫ π

6

−π
6

(h0(ϕ+ π + θ) · sin(ϕ))′ dϕ =
1

2
· h0

(
7π

6
+ θ

)
+

1

2
h0

(
5π

6
+ θ

)
.

Similar calculations can be conducted for the other five regimes.
Merging all the results gives:∫ 2π

0

(h0(ϕ+ π + θ) · sin(ϕ+ c))′ dϕ =
5∑

n=0

h0

(
(2n+ 1)π

6
+ θ

)
, (8)

leading to

f(θ) = w0(θ) + w0

(
θ +

π

3

)
+ w0

(
θ +

2π

3

)
. (9)

Since we would like to determine the orientation ofΩ such that the Minkowski sum is minimal,
it is sufficient to minimize f . Thus the points that should be inspected are the critical points
of (9) which are either zeroes or discontinuities of the derivative of f .

Theorem 6. For any convex domain, Ω, there exists a covering of Ω with at most⌊
2

3
√

3
A+

2

3
√

3

(
w0(θ) + w0

(
θ +

π

3

)
+ w0

(
θ +

2π

3

))
+ 1

⌋
unit discs, for any θ.



10 S. Gul et al.

Proof. There exists a cover with at most the integer part of the expected cover size, where
the expected size is given in Lemma 4.

The definition of f is valid for every 0 < θ ≤ π. Obviously, if the width is constant a
minimization to θ is not possible. In this case we will get that f(θ) = 3L

π
. Since the area of

the fundamental region in the hexagonal lattice is
√
27
2

, the ratio
A((R(π)·Ω)�90)√

27/2
determines

the number of hexagonal lattice points which covers the convex domain Ω.

6.2 Correctness of the algorithm

The hexagon will be divided into different regions each of which is the intersection of a
different number of elements in the series (R(π + θ) · Ω) � 9xmn . In order to examine all of
these regions, we will choose for each region special points on its boundary, which will be
defined as follows:

Definition 6. Denote Q(x, y) =
{
TΩxmn(θ)|(x, y) ∈

∫
TΩxmn

}
.

That is, Q(x, y) is the set of all regions including the point (x, y) in their interior.

Definition 7. Denote C(x, y) =
⋂
T∈Q(x,y) T .

That is, C(x, y) is the intersection of all regions in Q(x, y). Notice that {C(x, y)|(x, y) ∈
90} is a partition of the unit hexagon into equivalence classes of points, which are convex.

Definition 8. Denote N(x, y) = |Q(x, y)|, i.e., the number of domains whose interior con-
tains (x, y).

The index of the intersections boundaries of the Minkowski sums are convex domains and
finite, thus the intersection points can be easily calculated.

Theorem 7. Let (x, y) ∈ 90 then ∃(x̃, ỹ) ∈ 90 such that N(x̃, ỹ) ≤ N(x, y) and (x̃, ỹ) is
either

(i) one of the intersection points of the pair of TΩxmn, whose boundaries lie inside the domain
90; or the intersection of a domain TΩxmn with the edges of the hexagon;

(ii) a corner point of TΩxmn (which is contained in 90) or a corner point of 90.

Proof. Take a point (x, y) ∈ 90. Now, let (x′, y′) be an arbitrary point in ∂C(x, y). If T ∈
Q(x′, y′) then

∫
T ∩ C(x, y) 6= ∅, since

∫
T is an open set and thus T ∈ Q(x, y). Thus

Q(x′, y′) ⊆ Q(x, y), and therefore N(x′, y′) ≤ N(x, y).
Now consider C(x′, y′). Every point in C(x′, y′) belongs to some edge of some TΩxmn or of

90. If the closure C(x′, y′) contains a corner of a polygon or of the unit hexagon, (x̃, ỹ), we
are done, as every TΩxmn covering (x̃, ỹ) must also cover the interior of C(x′, y′). Otherwise,

since C(x′, y′) is a closed set, consisting of the intersection of boundaries of polygons and
the unit hexagon, it must contain at least one point, (x̃, ỹ), of the intersection between two
TΩxmn or an intersection of one of the TΩxmn and the unit hexagon. By the same argument,
N(x̃, ỹ) ≤ N(x′, y′).

Theorem 8. The 2D Algorithm gives the optimal placement.
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Proof. The algorithm checks all points which are of one of the types mentioned in the state-
ment of Theorem 7. The correctness of the theorem follows immediately from the algo-
rithm.

So finally we will shift Ω to the point (x̃, ỹ) and get the desired location.

6.3 Performance bounds

Theorem 9. Let nopt be the minimum number of unit discs necessary to cover a convex
domain Ω with area A and circumference L, then the algorithms give an approximation ratio
of 1 + 8

π
√
3

+ o(1).

Proof. The algorithms find an optimal (placement or angle and placement, respectively)
covering using the hexagonal lattice. Thus, from Theorem 5, it follows that either algorithms
give a covering using n ≤ 2

3
√
3
A+ 2

π
√
3
L+ 1. Therefore, by Theorem 3,

n

nopt

≤ 2A/
√

27 + 2L/(π
√

3) + 1

max{2A/
√

27, L/4} − C
≤ 1 +

8

π
√

3
+ o(1) ,

and the theorem follows.

If we consider fat regions, having L = o(A) we have

Conclusion 10. Let Ω be a fat convex polygon. The algorithm is asymptotically optimal.
That is, the covering it produces uses n = (1 + o(1))nopt discs where nopt is the minimum
number of unit discs needed to cover Ω.

7 Computational Complexity

Theorem 11. The optimal location and translation of Ω can be found in O(D3N2) opera-
tions, where D is the diameter of Ω and N is the number of sides of Ω.

Proof. The number of domains is the number of lattice points in ∆. Due to the properties
of the Minkowski sum with the hexagon, the number of edges of each polygon is at most
N + 6. Thus, the number of intersection points between polygons is at most O(D2N). For
each such intersection point, one needs to examine how many other polygons contain it,
requiring O(ND) operations. Thus, the total time complexity is O(D3N2).
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