
Efficient Construction of Diamond Structures

Abstract. A cryptographic hash function is a function H : {0, 1}∗ →
{0, 1}n, that takes an arbitrary long input and transforms it to an n-
bit output, while keeping some basic properties that ensure its security.
Because they are very useful in computer security, cryptographic hash
functions are amongst the most important primitives in the modern cryp-
tography.
The Merkle-Damg̊ard structure is an iterative construction for trans-
forming a compression function f : {0, 1}n × {0, 1}m → {0, 1}n into a
hash function, and it is widely used by different hash functions such
as MD4, MD5, SHA0 and SHA1. Some generic attacks on this struc-
ture were presented in the last 15 years. Some of these attacks use the
diamond structure, first introduced by Kelsey and Kohno in the herding
attack. This structure is a complete binary tree that allows 2k differ-
ent inputs to lead to the same hash value, and it used in numerous
attacks on the Merkle-Damg̊ard structure. Following the herding attack,
other papers analyzed and optimized the diamond structure. The best
time complexity of constructing a diamond structure to date is about

a · 2n+k
2

+2 for a ≈ 2.732.
In this work we suggest a new method for constructing a diamond struc-

ture with better time complexity of c · 2n+k
2

+2 for c ≈ 1.254. We present
a pseudo-code for this new method, and a recursive formulation of it. We
also present analysis supported by experiments of our new method.

1 Introduction

Cryptographic hash functions are one of the important basic primitives in cryp-
tography. Their importance is reflected in their wide use: digital signatures,
hashed passwords, message authentication code (MAC), etc.

Design and cryptanalysis of hash functions has become one of the hottest
research topics in the last fifteen years, when a series of groundbreaking works
showed that some of the hash function designs (including Merkle-Damg̊ard con-
struction) are theoretically insecure [2, 9, 14, 16, 17], and that most of used hash
functions (including SHA0, SHA1, MD4, MD5, RIPEMD, etc.) are theoreti-
cally (and some of them also practically) insecure [6, 18, 26, 28, 27, 29–31]. These
results called for rethinking of the hash functions design methodologies, and in-
vited new designs and their analysis. As part of this rethinking, the National
Institute of Standards and Technology (NIST) announced a selection process of
a new hash function standard called SHA3, which culminated in the choice of
Keccak [5] as SHA3 function in October 2012. The SHA3 process gave rise to

numerous new design methodologies and continuously developing cryptanalytic
techniques.

One of the main sources for comparison between design strategies are generic
attacks. While usually non-practical, they point out structural weaknesses in a
strategy that may make us prefer a more conservative (or just a different) de-
sign. One of the basic designs of numerous hash functions is the Merkle-Damg̊ard
structure [8, 22], which, given a compression function f : {0, 1}n × {0, 1}m →
{0, 1}n, creates a cryptographic hash function MDHf : {0, 1}∗ → {0, 1}n, so
that the hash function has certain security properties. Numerous generic at-
tacks were presented against this construction, e.g., Joux’s multicollision attack
on iterative hash functions [14], the expandable messages attack of Kelsey and
Schneier [17] and the herding attack of Kelsey and Kohno [16]. Naturally, generic
attacks are used at complex algorithms and designs, often become used by other
attacks.

This work improves the complexity of attacks based on the diamond structure,
first introduced by Kelsey and Kohno in the herding attack [16]. Kelsey and
Kohno calculated the diamond construction complexity by intuitive reasoning

concluded that it is 2
n+k

2 +2 compression function calls. Blackburn et al. [7]
showed that their calculation is wrong, and the real complexity, by the method

presented by Kelsey-Kohno, is actually
√
k · 2n+k

2 +2 compression function calls.
In [21] Kortelainen and Kortelainen suggested a new method to construct the

diamond in a ·2n+k
2 +2 compression function calls, for a = 2.732. In this paper we

suggest a new method for constructing the diamond in c · 2n+k
2 +2 compression

function calls, for 1 ≤ c ≤ 2. Our experiments and analysis suggest that for our
algorithm c = 1.254. The advantage of our work over the previous is not only the
time complexity improvement, but also the algorithmic improvement: While the
Kortelainen algorithm is very complex, our algorithm is simple and intuitive.

This paper is organized as follows: Section 2 gives notations and definitions
used in this paper. In Section 3 we quickly recall the herding attack, and most
importantly, the construction of diamond structures. We discuss the different
methods to construct a diamond structure in Section 4. Our new ideas on how to
efficiently build a diamond structure are given in Section 5. Finally, we conclude
the paper in Section 6.

2 Notations and Definitions

Definition 1. A cryptographic hash function is a function H : {0, 1}∗ → {0, 1}n,
that takes an arbitrary length input and transforms it to an n-bit output such
that H(x) can be computed efficiently, while the function has three basic security
properties:

1. Collisions resistance: It is hard to find (with high probability) an adversary
that could find two different messages M,M ′ such that H(M) = H(M ′) in
less than O(2n/2) calls to H(·).

2. Second pre-image resistance: Given h,M such that H(M) = h, an adversary
cannot find (with high probability) an additional message M ′ 6= M such
that H(M ′) = h in less than O(2n) calls to H(·).

3. Pre-image resistance: Given a hash value h, an adversary cannot find (with
high probability) any message M such that H(M) = h in less than O(2n)
calls to H(·).

Definition 2 (Merkle-Damg̊ard structure (MDH)). The Merkle-Damg̊ard
structure [8, 22] is a structure of an iterative hash function, based on a compres-
sion function f : {0, 1}n × {0, 1}m → {0, 1}n. The compression function takes
an n-bit chaining value and an m-bit message block and transforms them into a
new n-bit chaining value, keeping the three basic properties described above. In
order to hash a whole message M , the following steps are required (let b be the
number of bits in the message, and ` be the number of bits used to encode the
message length in bits1):

1. Padding step:
(a) Concatenate ’1’ to the end of the message.
(b) Pad a sequence of 0 ≤ k < m zeros, such that b+ 1 +k+ ` ≡ 0 (mod m).
(c) Append the message with the original message length in bits, encoded

in ` bits.
2. Divide the message to blocks of m bits, so if the length of padded message

is L ·m then
M = M0||M1|| . . . ||ML−1.

3. The iterative chaining value hi starts with a constant IV , defined as h−1
of the hash function, and it updated in every iteration, according to the
appropriate message block Mi, to new chaining value:

hi = f(hi−1,Mi).

4. The output of this process is:

MDHf (M) = hL−1

Fig. 1. The Merkle-Damg̊ard structure

Merkle [22] and Damg̊ard [8] proved that if the compression function is collision-
resistant then the whole structure (when the padded message includes the orig-
inal message length) is also collision-resistant.

1 It is common to set 2` − 1 as the maximal length of a message.

3 The Herding Attack and the Diamond Structure

A well known generic attack on the Merkle-Damg̊ard structure is the Kelsey-
Kohno herding attack [16]. This attack has two phases. In the first phase, the
adversary performs some precomputation and commits to a hash value h. In the
second phase, given a prefix P , he finds a suffix S s.t.

H(P ||S) = h.

In the precomputation the adversary constructs a complete binary tree called
a diamond structure. This structure allows 2k sequences of k message blocks to
iteratively lead to the same chaining value. This may seem related to Joux’s
multicollision attack [14] where 2k different message blocks result in the same
chaining value. However, in the case of Joux’s multicollision attack, all these 2k

options start from the same chaining value, whereas in the diamond structure,
there are 2k different starting chaining values.

To construct the diamond structure, the adversary starts with 2k different
chaining values, and looks for collisions between pairs of these chaining values to
map them down to 2k−1 chaining values. In Section 4 we discuss different meth-
ods to do so. He repeats this process k times, s.t. in every iteration 1 ≤ i ≤ k
he maps the 2k−i+1 chaining values he received at the end of the previous itera-
tion down to 2k−i chaining values. The output of this process, after k iterations,
is a single hash value h. Fig. 2 illustrates this structure for k = 3, when the
arrows represent message blocks, and the values hi,j represent chaining values.
This structure generates a multicollision of 2k messages, when k is the diamond
width. After the construction of the diamond structure the adversary commits
the output h.2 According to Kelsey and Kohno, the work done to construct

the diamond structure is about 2
n+k

2 +2 compression function calls, and we will
discuss it later in Section 4.

Fig. 2. Diamond Structure for k = 3

2 He should consider the length of the prefix P , or at least the maximum length of
it, and if the real length is less than he considered, he can add some blocks to the
Mlink block, which will defined in the second phase.

In the second phase, the adversary is challenged with a prefix P , and he has
to find a suffix S yielding the desired result H(P ||S) = h. To do so, he looks
for a message block Mlink that links the chaining value yielded from the prefix
P to one of the leaves {h0,i} of the diamond structure. Given a chaining value
h0,i0 , traversing the tree from this leave to the root, appending the message
blocks from each edge, leads the string Q, which creates, together with Mlink,
the desired suffix S = Mlink||Q. Since the diamond has 2k leaves, the work done
to find the Mlink block is about 2n−k compression function calls, and thus the
total work (according to Kelsey and Kohno) is about

2
n+k

2 +2 + 2n−k.

We note that the diamond structure was later used in [1, 2, 4] to offer second
pre-image attacks against Merkle-Damg̊ard hash functions, including dithered
hash functions [25].

4 Previous Methods for Constructing Diamond Structure

After Kelsey and Kohno published their attack based on the diamond structure
and suggested their method and its analysis [16], several papers were published
on methods for constructing and analyzing the diamond structure. We now dis-
cuss them.

4.1 Kelsey-Kohno’s Method

In [16] Kelsey and Kohno suggest a method for constructing a diamond struc-
ture. We now describe their method for the first level of the diamond, and the
application for the other levels is immediate.

Given 2k starting chaining values, {h0,0, h0,1, · · · , h0,2k−1}, the adversary
should find 2k−1 collisions between pairs of them to map them down to 2k−1 new
chaining values. i.e., he should find a partition to pairs of {h0,0, h0,1, · · · , h0,2k−1},
and for each pair (h0,i, h0,j)i 6=j he should find message blocks M,M ′ (not nec-
essarily different) such that f(h0,i,M) = f(h0,j ,M

′).
If he fixes pairs of them, like {(h0,0, h0,1), (h0,2, h0,3), . . . , (h0,2k−2, h0,2k−1)},

then he should generate about 2
n
2 candidate message blocks for each pair to find

a collision, and thus the work done to find 2k−1 collisions is about 2k−1 · 2n
2 =

2
n
2 +k−1 compression function calls.

Instead, he generates about 2
n−k+1

2 candidate message blocks from each start-
ing chaining value h0,i, and then looks for collisions between all the possibility
pairs dynamically. When he finds a collision, i.e., two starting chaining values
h0,i, h0,j and two message blocks M,M ′ s.t. f(h0,i,M) = f(h0,j ,M

′) = h, he
chooses these message blocks for these chaining values, and takes the new chain-
ing value h for the next level of the diamond.

Kelsey and Kohno expected to find 2k−1 such collisions (we present their

computation in Section 4.2), i.e., 2k · 2n−k+1
2 = 2

n+k+1
2 message blocks should

be sufficient to map all the 2k starting chaining values into 2k−1 new chaining
values will be in the next level of the diamond.

4.2 Kelsey-Kohno’s Original Analysis

Kelsey and Kohno calculate the complexity of the diamond construction, and
conclude the following:

“The work done to build the diamond structure is based on how many
messages must be tried from each of 2k starting values, before each has
collided with at least one other value. Intuitively, we can make the follow-
ing argument, which matches experimental data for small parameters:
When we try 2

n
2 + k

2+
1
2 messages spread out from 2k starting hash values

(lines), we get 2
n
2 + k

2+
1
2−k messages per line, and thus between any pair

of these starting hash values, we expect about (2
n
2 + k

2+
1
2−k)2 × 2−n =

2n+k+1−2k−n = 2−k+1 collisions. We thus expect about 2−k+k+1 = 2
other hash values to collide with any given starting hash value.” [16]

According to [16], if the adversary generates 2
n−k+1

2 message blocks for each
starting chaining value then the probability of a collision between any two start-
ing chaining values is 2−k+1. Thus, given a starting chaining value, since it could
collide with any other starting chaining value, he expects about 2−k+1+k = 2
collisions. Since for any starting chaining value he expects at least one collision,
he expects to map all the 2k starting chaining values down to 2k−1 new chaining
values.

Now, to construct the whole diamond he should repeat this work k times,
for every 1 ≤ i ≤ k, and thus the total complexity is about

k∑
i=1

2
n+i+1

2 ≈ 2
n+k

2 +2.

4.3 On the Inaccuracy of Kelsey-Kohno’s Analysis

Blackburn et al. [7] show that although this calculation is correct, their con-
clusion is wrong. They suggest to model the Kelsey-Kohno’s method by the
Erdös-Rényi random graph G(n, p). The G(n, p) is a random graph with n ver-
tices, and there is an edge between any two vertices with probability p inde-
pendently of other edges. In Kelsey-Kohno’s case we get G(2k, 2−k+1), where
V = {h0,0, h0,1, . . . , h0,2k−1} and (h0,i, h0,j) ∈ E if and only if there exist two
message blocks M,M ′ s.t. f(h0,i,M) = f(h0,j ,M

′), and it happens with proba-
bility of 2−k+1, as described in Kelsey-Kohno’s calculation. In this perspective,
mapping the 2k starting chaining values into 2k−1 new chaining values is equal
to the existence of a perfect matching in G. In [10–12] Erdös and Rényi show

that for a random graph G(n, p), if p > (1+ε) lnn
n then G will almost surely be

connected and will contain a perfect matching, and if p < (1−ε) lnn
n then G will

almost surely contain isolated vertices and thus it will not contain any perfect
matching. It means that p = lnn

n is a sharp threshold for the existence of a
perfect matching in G(n, p). In Kelsey-Kohno’s case we get that (for k > 2)

p = 2−k+1 < k · ln 2 · 2−k =
ln(2k)

2k
.

Thus, the graph will almost surely contain isolated vertices and thus it will not
contain any perfect matching.

Hence, despite of the correct conclusion of Kelsey and Kohno that about
2−k+k+1 = 2 edges for each vertex are expected, there will be many isolated
vertices.3

To fix the problem, Blackburn et al. [7] conclude that we should generate

about
√
k · 2n−k

2 message blocks from each vertex. Thus, to construct the entire
diamond structure about

k∑
i=1

√
i · 2

n+i
2 ≈

√
k · 2

n+k
2 +2

message blocks are needed.4

4.4 Kortelainen-Kortelainen’s Method

In [21] Kortelainen and Kortelainen suggest a new method to construct the
diamond structure. Their general idea is to divide the construction into steps
such that in every step exactly two vertices are matched to a single chaining
value. If a vertex is matched they stop generating more message blocks for it.
We describe here their algorithm for the first level of the diamond, the application
for the other levels is immediate.

They divide the process into k phases (in reduced order), such that in every
phase 2 ≤ j ≤ k they match exactly 2j−1 vertices, and in the last phase j = 1
they match the two remaining vertices, so at the end of these phases all the
vertices are matched. Every phase 2 ≤ j ≤ k is divided into 2j−2 steps, such
that in every step they match exactly two vertices to a new chaining value. The
last step is done by finding a collision between the last two remaining vertices.
Before the process, an initialization phase is performed as follow: Given the initial

hash values (denoted by Ak,0), create a set Mk,0 of 2
n−k

2 −1 message blocks, such
that the cardinality of Hk,0 := f(Ak,0,Mk,0) = {f(a,m)|a ∈ Ak,0,m ∈ Mk,0} is

2
n+k

2 −1, i.e., there are no collisions by these message blocks.5 In Addition, they

3 The degree of each vertex follows Poi(2) distribution. Thus, for each vertex, the
probability that it is an isolated vertex is e−2, and thus we expect to about 2k · e−2

isolated vertices.
4 Blackburn et al. [7] discuss another model to represent the diamond construc-

tion: Sampling With Replacement Random Intersection Graph GSWR(ν,m,L) ran-
dom graph, defined as follow: Let V be a set of vertices where |V | = ν (in our case
ν = 2k), and F be a colors set where |F | = m (in our case m = 2n). For each vertex
v ∈ V generate a subset Fv ⊂ F by sampling uniformly with replacement L colors

from F (in Kelsey-Kohno’s case L = 2
n−k+1

2). Finally, (v, u) ∈ E ⇐⇒ Fv ∩Fu 6= φ.
They achieve from this model the same results as from the G(n, p) model.

5 Although usually we are looking for collisions, this requirement about the cardinality
of Hk,0 is needed for their analysis. Later, by our method, we will show how to use
such collisions. If there are collisions, they replace the appropriate message blocks
one by one until the required cardinality is obtained.

initialize a pairing set, denoted by Bk, as an empty set. This set contains pairs
of the form (hi, Di) where hi is a chaining value, and Di is a message block such
that f(hi, Di) will be in the next layer of the diamond structure.

For the algorithm they define the following integers:

Let r ≥ 2, n be positive integers. Define the integers sr,0, sr,1, . . . sr,2r−2

as follow:

sr,0 =
⌈
2

n−r
2 −1

⌉
, sr,j+1 = sr,j +

⌈
2

n−r
2 +1

2r − 2j

⌉
, j = 0, 1, . . . 2r−2 − 1

They prove that:

∀j ∈ {0, 1, . . . 2r−2} : sr,j ≥
2

n−r
2 −1

2r − 2j

Let i ∈ {k, k − 1, . . . , 3, 2}, j ∈ {0, 1, . . . , 2i−2 − 1}, The input for the step j in
the phase i, denoted by S(i, j), is the set Ai,j of the 2i− 2j unmatched vertices,

the set Mi,j of the si,j ≥ 2
n+i
2
−1

2i−2j message blocks generated until now, and the

set Hi,j = f(Ai,j ,Mi,j) = {f(a,m)|a ∈ Ai,j ,m ∈Mi,j}, such that

|Hi,j | = |Ai,j | · |Mi,j | = (2i − 2j) · si,j ≥ (2i − 2j) · 2
n+i
2 −1

2i − 2j
= 2

n+i
2 −1

Now, they create a setM ′i,j of si,j+1−si,j message blocks such that |f(Ai,j ,M
′
i,j)| ≥

2
n−i
2 +1. They look for a collision, i.e., hij , h

′
ij ∈ Ai,j ,mij ∈ Mi,j ,m

′
ij ∈ M ′i,j

such that f(hij ,mij) = f(h′ij ,m
′
ij). Note, that since |Hi,j × f(Ai,j ,M

′
i,j)| ≥ 2n

the expected number of collisions is at least one, and they assume that it
is exactly one.6 Let Ai,j+1 := Ai,j r {hij , h′ij},Mi,j+1 := Mi,j ∪ M ′i,j , and
Hi,j+1 := f(Ai,j+1,Mi,j+1). In addition set up Bk = Bk∪{(hij ,mij), (h

′
ij ,m

′
ij)}.

These sets are the output of this step, and the input for the next step. The
pseudo-code for this algorithm is given in Algorithm 1.

They concluded that the total message complexity of the whole diamond
construction is

a ·

(
k∑
i=2

2 · 2
n+i
2 + 4 · 2n

2

)
≤ a · 2

n+k
2 +2

for a = 1
4 ·
[
1 + 1√

2
+ 2 e

e−1

(
1 + 1√

2

)2]
≈ 2.732 (the detailed analysis is in [20]).7

4.5 Memoryless Diamond Structure Construction

A different optimization target is reducing the memory used in the construction
of the diamond structure. Barham et al. [4] show that it is possible to eliminate

6 If not, they replace some message blocks one by one until it is obtained.
7 We note that the analysis of [20] uses a slightly different definition of a, but for more

natural comparison with previous methods, we took a as the coefficient of 2
n+k

2
+2.

Algorithm 1 Kortelainen-Kortelainen’s method

1: Input: Hk ⊆ 0, 1n, |Hk| = 2k

2: Ak,0 ← Hk

3: Create a set Mk,0 of 2
n−k

2 −1 message blocks s.t. |f(Ak,0,Mk,0)| = 2
n−k

2 −1.
(Initialization part)

4: Hk,0 ← f(Ak,0,Mk,0)
5: Bk ← φ
6: for i = k downto 2 do
7: for j = 0 to 2i−2 − 1 do
8: Create a set M ′i,j of si,j+1 − si,j message blocks s.t. Mi,j ∩M ′i,j = φ

and |f(Ai,j ,M
′
i,j)| ≥ 2

n−i
2 +1.

9: look for a collision: hi,j , h
′
i,h ∈ Ai,j ,mi,j ∈ Mi,j ,m

′
i,j ∈ M ′i,j s.t.

f(hi,j ,mi,j) = f(h′i,j ,m
′
i,j).

10: Ai,j+1 ← Ai,j r {hi,j , h′i,j}
11: Mi,j+1 ←Mi,j ∪M ′i,j
12: Hi,j+1 ← f(Ai,j+1,Mi,j+1)
13: Bk ← Bk ∪ {(hi,j ,mi,j), (h

′
i,j ,m

′
i,j)}

14: end for
15: end for

the memory used in the construction of the diamond structure. In this approach,
the chaining values that build the diamond are not kept in the memory. Thus,
we can use this construction when at the online phase not all the diamond
structure’s chaining values are needed.

Similarly to Merkle hash tree [22], they decide in advance which leave collides
with which leave. Now, for every pair they use a memoryless collision search [19,
23, 24] to find a collision. When a collision between two chaining values is found,
i.e.,

f(hi,2j ,M) = f(hi,2j+1,M
′) = hi+1,j ,

it is possible to build the diamond’s part that is needed to obtain the chaining
value hi+1,j+1, and then to look for a collision between the two new chaining
values hi+1,j , hi+1,j+1. The memory complexity of this construction is about
k + 1 blocks. The time complexity of this construction is about 2

n
2 +k+1, since

the construction includes 2k+1 − 1 collisions, and each collision requires about
2

n
2 compression function calls. Although the time complexity of this method is

larger than that of the previous methods, its memory complexity is very small.

5 Our New Method

In Section 4.3 we discussed the time complexity when all the messages are gen-
erated simultaneously and uniformly between all vertices. If we generate about

2
n−k+1

2 message blocks per vertex, the expected number of collisions for a vertex
is 2. In this case the G(2k, 2−k+1) random graph contains some isolated vertices

(about 2k · e−2), and thus it does not contain any perfect matching. The conclu-

sion of Blackburn et al. [7] is that about
√
k ·2n−k

2 message blocks per vertex are
needed for the existence of a perfect matching in the graph. The disadvantage
of this method is that we need to generate many message blocks for each vertex
to get a perfect matching, of which only a small portion of the found collisions
is used.

We now suggest a new method to construct the diamond. Our method is
based on two ideas, described in the next sections:

1. Messages-Layers Trade-off: We generate less than
√
k · 2n−k

2 message blocks.
Since we expect to have isolated vertices, we expect to have more than
2k−1 vertices in the next layer. Thus, we should add some layers to the
construction to reach a single chaining value at the root of the diamond
structure. We show that by generating less message blocks in each layer in
exchange for more layers in the construction, we can reduce the total time
complexity.

2. Match While Generate (MWG): We generate the message blocks one by one
and look for collision after every generation. If two vertices collide with each
other, we match them and do not generate more message blocks for them.
We show that by this method we can further reduce the time complexity.

After their description, we show how to use them together to obtain the best
time complexity for constructing the diamond structure.

5.1 Messages-Layers Trade-off

The first idea, which we call “Messages-Layers Trade-off” is that we can weaken
the requirement of a perfect matching in each layer exchange for more layer in

the construction of the diamond. Instead of generating
√
k ·2n−k

2 message blocks
per vertex, we generate fewer messages. The result is that in the G(2k, p) graph
we get that p < lnn

n , and thus it does not contain a perfect matching. We then
match all vertices we can (e.g., by a greedy algorithm like Karp-Sipser [15] or
its variants [3]) and for the remaining vertices we choose an arbitrary message
block to get an arbitrary chaining value in the next layer. Since G does not
contain a perfect matching, the number of vertices in the second layer is greater
than 2k−1. Similarly, the number of vertices in any layer 1 ≤ i ≤ k is greater
than 2k−i. Thus, we need to add some layers to get a single chaining value at
the end of this process. We note that our experiments show that the number of
layers does not increase by much. Moreover, the additional layers have almost no
affect on attacks on Merkle-Damg̊ard hash functions, and have a small impact
on dithered hash functions.

We tested this idea on the Kelsey-Kohno’s case, i.e., when we generate

about 2
n−k+1

2 message blocks per vertex. In this case we get the G(2k, 2−k+1)
model, and we know that the degree of each vertex follows Poi(2) distribu-

tion. According to the handshaking lemma we know that
|V |∑
i=1

deg(vi) = 2|E|,

where E is the edges’ set. We also know that if X1, . . . Xt ∼ Poi(λ) then
t∑
i=1

Xi ∼ Poi(t · λ). Thus, in our graph we get |E| ∼ Poi(|V |).8 We gener-

ated such a graph G = (V,E) where |V | = 2k and the edges’ set E determined
by sampling the |E| according to Poi(|V |), and for each edge sampling its two
vertices uniformly between all vertices. Now we match the vertices to each other
according to their degrees from low to high as follow: Let M = φ be an empty
set. We run over the vertices and if deg(v) = 1 we add v and its single connected
vertex u to the matching, i.e., M = M ∪ {v, u}. In addition, we remove the
vertices (and all their edges) from the graph, i.e., G = Gr {u, v}. We repeat it

until the graph has no edges. Now we move on to the next layer with 2k − |M |2
vertices. Clearly, this method has no advantage when |V | is quite small. Thus,
for the sake of simplicity, we repeat this method until |V | ≤ 16 and then we use
the Blackburn et al. [7] computation.9

We tested this algorithm on some different parameters for k and n. We per-
formed 100 experiments for each pair (k, n). The output of each experiment is
the number of message blocks required to construct a diamond structure with
2k leaves, using a compression function of n bits, and the diamond’s length.
We present here the average of these outputs from the 100 experiments and the
sample standard deviation. Table 1 lists the number of message blocks (log2 of
them) and the diamond’s length.

5.2 Match While Generate (MWG)

Intuitive Explanation of the Idea As we discussed earlier, when we generate

all the message blocks and then look for collisions, about
√
k·2n+k

2 message blocks
are required such that the G(2k, p) graph contains a perfect matching. In this
case the expected number of collisions for each vertex is k, but in the matching we
use only one of them. Our second idea, named “Match While Generate (MWG)”,
is to look for collisions throughout the process, i.e., after we generate a message
block Mj for vi we check if the candidate f(vi,Mj) is already generated by
another vertex u. If yes, we match them and do not generate any additional
message blocks for them. Our second idea is inspired by Hoch’s thesis [13]. The
process is as follow:

We keep in a Boolean array, denoted by isMatched, the state of each vertex,
i.e., isMatched[i] = True ⇐⇒ vi is already matched. The set of the chain-
ing values for the next level is denoted by nextV . We start with an empty set
Candidates ⊆ {0, 1}n×V where {0, 1}n is the set of all available chaining values,
and V is the set of all vertices (initial values). In each iteration j we generate a
new message block Mj , and run over the vertices to calculate the chaining value

8 We tested this idea on more cases: when |E| ∼ Poi(a · |V |), a = 0.5 + t
20
, ∀t ∈

{0, 1, 2, . . . , 19}. The difference between the results in the Kelsey-Kohno’s case and
the best results is quite small (less than one standard deviation).

9 It is easy to see that if we switch to the Blackburn et al. process earlier, the expected
length of the diamond will decrease.

n\k 14 16 18 20 22

28

Blocks

Average 223.681 224.683 225.683 226.682 227.683

S.D. 216.374 216.395 216.413 216.418 216.566

Min 223.662 224.668 225.677 226.68 227.68

Max 223.717 224.695 225.689 226.685 227.685

Length

Average 20.13 22.85 25.8 28.34 31.35
S.D. 1.522 1.41 1.583 1.32 1.424
Min 18 21 24 26 30
Max 26 31 32 34 36

32

Blocks

Average 225.683 226.683 227.682 228.683 229.683

S.D. 218.117 218.267 218.553 218.237 218.541

Min 225.666 226.665 227.677 228.679 229.681

Max 225.709 226.692 227.689 228.686 229.684

Length

Average 20.39 22.8 25.81 28.67 31.39
S.D. 1.984 1.443 2.043 1.735 1.435
Min 18 21 24 26 29
Max 29 27 35 37 36

36

Blocks

Average 227.682 228.682 229.683 230.683 231.683

S.D. 220.126 220.262 220.455 220.411 220.51

Min 227.661 228.667 229.677 230.68 231.681

Max 227.697 228.694 229.689 230.685 231.685

Length

Average 20.24 22.76 25.68 28.62 31.43
S.D. 1.525 1.443 1.723 1.523 1.416
Min 18 21 24 27 29
Max 27 30 33 34 36

Table 1. The number of required message blocks (represented by their log2), and the
diamond’s length, using the Messages-Layers Trade-off method.

candidate hcandidate = f(vi,Mj) for each vertex vi. If hcandidate is already gener-
ated by another vertex, i.e., ∃0 ≤ r 6= i ≤ 2k − 1 : (hcandidate, vr) ∈ Candidates,
then match vi and vr, add hcandidate to nextV , and do not generate any addi-
tional message blocks for them. Otherwise, add (hcandidate, vi) to Candidates.

Algorithm 2 presents the Match While Generate algorithm.

Analysis of the Algorithm Here we suggest a recursive presentation for the
diamond structure construction. We present here the construction of the first
layer of the diamond structure (the application for the other layers is immediate).
For the reading convenience we fix an arbitrary order of the vertices v0, . . . v2k−1.
Let us define some random variables, depending on the process “time” t, i.e.,
the generation of the t’th candidate:

10 We can use a hash table to keep the Candidates elements, to maintain a constant
search time.

Algorithm 2 Match While Generate (MWG)

1: Candidates← φ
2: nextV ← φ
3: for i = 0 to 2k − 1 do
4: isMatched[i]← False
5: end for
6: j ← 0
7: nmatched ← 0
8: while nmatched < 2k do
9: Generate a message block Mj

10: for i = 0 to 2k − 1 do
11: if isMatched[i] then
12: Go to 10
13: end if
14: Calculate hcandidate = f(vi,Mj)
15: if ∃0 ≤ r ≤ 2k − 1, r 6= i : (hcandidate, vr) ∈ Candidates10 ∧
¬isMatched[r] then

16: nextV ← nextV ∪ {hcandidate}
17: isMatched[i]← True
18: isMatched[r]← True
19: nmatched ← nmatched + 2
20: else
21: Candidates← Candidates ∪ {(hcandidate, vi)}
22: end if
23: end for
24: j ← j + 1
25: end while

– m(t) :=The number of matched vertices at time t.
– c(t) :=The number of candidates available for matching at time t.
– bu(t) :=The number of candidates generated from the current vertex at time
t, i.e., sum of values in Candidates of the form (hi, v).

– be(t) := The number of unmatched vertices before the current vertex at time
t.

– af(t) := The number of unmatched vertices after the current vertex at time
t.

– We also use a counter variable to count the number of self-collisions, denoted
by sc.

The initialization of the variables is: sc = m(0) = c(0) = bu(0) = be(0) = 0, and
af(0) = 2k − 1. At time t+ 1 we generate a new candidate, and we compute the
value of all the variables, given the values of all variables at time t. When we
generate a new candidate from a vertex vi, there are four possible cases:

1. The new candidate leads to a self-collision. In this case we continue to gen-
erate new candidates from the current vertex until it is not a self-collision.

For each new message block, we increment the sc counter by one. This case
happens with probability

bu(t)

2n
.

2. The new candidate leads to a matching with vj , for j < i. We have a match-
ing, and since j < i we match a vertex whose position is before the current
position. In addition, we remove these two vertices, where vi with bu(t)
candidates, and vj with bu(t) + 1 candidates. Finally, we move to the next
vertex. Thus, the updating of the variables is as follow: m(t+ 1) = m(t) + 2,
be(t+ 1) = be(t)− 1, af(t+ 1) = af(t)− 1 and c(t+ 1) = c(t)− 2 · bu(t)− 1.
This case happens with probability

be(t) · (bu(t) + 1)

2n
.

3. The new candidate leads to a matching with vj , for j > i. We have a match-
ing, and since j > i, we match a vertex whose position is after the current
position. In addition, we remove these two vertices, both with bu(t) candi-
dates. Finally, we move to the next vertex. Thus, the updating of the vari-
ables is as follow: m(t+1) = m(t)+2, af(t+1) = af(t)−2, be(t+1) = be(t)
and c(t+ 1) = c(t)− 2 · bu(t). This case happens with probability

af(t) · bu(t)

2n
.

4. The new candidate does not lead to any matching. There is no matching,
and we add the new candidate. In addition, we move to the next vertex, so
that the current vertex is added to the vertices that before the next, and the
next removed from the vertices that are after it. Thus, the updating of the
variables is as follow: m(t + 1) = m(t), be(t + 1) = be(t) + 1, af(t + 1) =
af(t)− 1 and c(t+ 1) = c(t) + 1. This case happens with probability

1− bu(t)

2n
− be(t) · (bu(t) + 1)

2n
− af(t) · bu(t)

2n
.

Finally, if af(t+ 1) < 0 (after the above updates), it means that we finished an
iteration over the unmatched vertices, and at time t+1 we start a new iteration.
Thus, be(t+ 1) = 0, af(t+ 1) = 2k −m(t+ 1)− 1 and bu(t+ 1) = bu(t) + 1. If
af(t+1) ≥ 0 it means that we remain at the same iteration and thus bu(t+1) =
bu(t).

Using this recursion, we tested the MWG algorithm with some parameters for
k and n. We performed 100 experiments for each pair (k, n). The output of each
experiment is the number of message blocks required to construct a diamond
structure with 2k leaves, using a compression function of n bits. We present in
Table 2 the average of these numbers from the 100 experiments and the sample
standard deviation.

n\k 14 16 18 20 22

28

Average 223.399 224.411 225.418 226.423 227.43

S.D. 216.175 216.289 216.65 216.67 216.666

Min 223.374 224.396 225.411 226.42 227.428

Max 223.425 224.423 225.428 226.428 227.431

32

Average 225.4 226.411 227.417 228.421 229.423

S.D. 218.245 218.683 218.839 218.795 218.881

Min 225.375 226.389 227.403 228.417 229.421

Max 225.429 226.427 227.426 228.424 229.425

36

Average 227.399 228.41 229.416 230.419 231.422

S.D. 220.237 220.465 220.831 220.788 220.975

Min 227.371 228.397 229.406 230.416 231.419

Max 227.425 228.429 229.426 230.423 231.424

Table 2. The number of required message blocks (represented by their log2), using the
MWG algorithm.

Actual Experiments In addition to the simulations which are based on the
mathematical model, we tested this algorithm on a diamond structure with
218 leaves, using a 28-bit compression function (we used the 28 first bits of
SHA1), i.e., k = 18, n = 28. According to Kelsey and Kohno [16] we should

generate about 2
28+18

2 +2 = 225 message blocks. Blackburn et al. [7] prove that

by Kelsey-Kohno’s method about
√

18 · 2
28+18

2 +2 > 227 message blocks are
needed. According to Kortelainen and Kortelainen we should generate about

a·2 28+18
2 +2 > 226 message blocks. We constructed a diamond structure 100 times

with different initial values. The mean value of the number of required message
blocks was µ = 45672583.18 ≈ 225.445, and the sample standard deviation was
σ = 104866.202 ≈ 216.678. Fig. 3 illustrates the distribution of the number of
message blocks required to construct it (the numbers are represented by their
log2). According to the t-Test, the data follows Norm(µ, σ2) distribution, with
statistical significance of 2.5091 · 10−14.

We note that the mean value of the experiment is greater than those of the
recursion by a few standard deviation units. This difference is a subject for a
future research.

5.3 Combining these Two Ideas Together

It is possible to improve the MWG algorithm, using the method described in
Section 5.1. Before we present the improvement, we want to look at the number
of message blocks required for each collision, throughout the construction of a
diamond structure’s first layer. Intuitively, at the beginning of the construction
there are only a few candidates for matching, and thus we need to generate
many message blocks for a collision. Similarly, near the end of the layer, since
only a few unmatched vertices remain, i.e., only a few candidates for matching

+
+

+

+
++

++
+++

++
+

+++
++

+
+

++
++
+
++

+++
+++

++++++++
++++++++++++++ +++++++++++++

++++
++

+
++++
+++

+
+

+++
++++

+++
+

+

+

+

+

P
D
F

log2(·) of Num. of Message Blocks

25.436
25.438

25.440
25.442

25.444
25.446

25.448
25.450

25.452
25.454

×10−7

0

6

12

18

24

30

36

42

Fig. 3. Sampled distribution of the number of message blocks (represented by its log2)
required to construct a diamond structure with 218 leaves, and compression function
of 28 bits, using the MWG algorithm.

exist, we need to generate many message blocks for a collision. In the middle
part of the layer, on the one hand we already generated a significant amount of
message blocks per vertex, and on the other hand still have a significant amount
of unmatched vertices, so we have enough candidates, thus, we expect a collision
after fewer messages. We tested this intuition, and Fig. 4 shows an example for
the average number of message blocks generated between 256 collisions using
the MWG algorithm, where k = 18, n = 28.

As we discussed above, the investment of the beginning is needed to ensure
we have enough candidates. At the same time, the last matchings require a lot of
message blocks in return of a small benefit. Thus, we can stop the construction
near the end, as was discussed in Section 5.1, and move to the next layer. As a
result we will have to add some layers. To do so, we improve the MWG algorithm
by adding a boundary on the number of message blocks. Clearly, this method
has no advantage over the previous when |V | is quite small, and it may even be
the case that it is less efficient. Thus, for the sake of simplicity, we repeat this
method until |V | ≤ 16 and then we use the original MWG algorithm.

We tested this improved algorithm by bounding the number of message blocks

by 2
28+18+1

2 (Kelsey-Kohno’s number). We adapted the recursion presented in
Section 5.2 to this improved algorithm, and using the adapted recursion we
tested the improved MWG algorithm on some parameters for k and n. We per-
formed 100 experiments for each pair (k, n). The output of each experiment is

+

+

+
+
++
+++

+
+++++
+++

++
++++++++++++++++++++++

++++++++++
++++++++

+
+++++++++

++++++
+++++
++++
++++
+
+++

++
+

+

+

A
v
g
.
C
o
m
p
.
F
u
n
c.

C
a
ll
s

The i’th set of 256 collisions

0 60 120 180 240 300 360 420 480 512
0

200

400

600

800

1000

1200

1400

Fig. 4. Average number of compression functions calls needed for 256 collisions during
the construction of the first layer of the diamond structure (for k = 18, n = 28)

the number of message blocks required to construct a diamond structure with
2k leaves, using a compression function of n bits, and the diamond’s length.
We present here the average of these outputs from the 100 experiments and the
sample standard deviation. Table 3 lists the number of message blocks (log2 of
them) and the diamond’s length.

In addition to the simulations which are based on the mathematical model,
we also tested this improved algorithm on a diamond structure with 218 leaves,
using a 28-bit compression function (we used the 28 first bits of SHA1), i.e.,
k = 18, n = 28. We constructed a diamond structure 100 times with differ-
ent initial values. The mean value of the number of required message blocks
was µ = 42078721.93 ≈ 225.327, and the sample standard deviation was σ =
58941.064 ≈ 215.847. Fig. 5 illustrates the distribution of the number of message
blocks required to construct it (the numbers are represented by their log2). Ac-
cording to the t-Test, the data follows Norm(µ, σ2) distribution, with statistical
significance of 4.0967 · 10−14.

We note that the mean value of the experiment is greater than those of the
recursion by a few s.d. units. This difference is a subject for a future research.

n\k 14 16 18 20 22

28

Blocks

Average 223.304 224.309 225.313 226.315 227.318

S.D. 215.946 215.688 215.672 215.842 215.945

Min 223.279 224.301 225.308 226.313 227.317

Max 223.323 224.321 225.317 226.318 227.32

Length

Average 15.01 17 19.01 21.07 23.11
S.D. 0.1 0 0.1 0.256 0.314
Min 15 17 19 21 23
Max 16 17 20 22 24

32

Blocks

Average 225.304 226.309 227.312 228.314 229.315

S.D. 217.667 217.627 217.678 217.776 217.865

Min 225.282 226.3 227.306 228.311 229.314

Max 225.323 226.318 227.315 228.317 229.316

Length

Average 15.01 17.02 19.03 21.01 23.07
S.D. 0.1 0.141 0.171 0.1 0.256
Min 15 17 19 21 23
Max 16 18 20 22 24

36

Blocks

Average 227.303 228.309 229.312 230.313 231.314

S.D. 219.639 219.893 219.756 219.67 219.765

Min 227.287 228.296 229.308 230.311 231.313

Max 227.322 228.319 229.317 230.315 231.315

Length

Average 15 17.03 19.02 21.02 23.1
S.D. 0 0.171 0.141 0.141 0.302
Min 15 17 19 21 23
Max 15 18 20 22 24

Table 3. The number of required message blocks (represented by their log2), and the
diamond’s length, using the improved MWG algorithm.

6 Summary

In this paper we showed a time complexity optimization for the construction of
diamond structures. We presented two ideas to optimize the construction:

1. Messages-Layers Trade-off: We generate less message blocks in each layer in
exchange for more layers in the construction.

2. Match While Generate (MWG): We generate the message blocks one by one
and look for collision after every generation.

We also showed how to combine these two ideas together to improve the MWG
algorithm. Using the improved MWG we got the best results to date with respect
to time complexity.

For comparison, we present in Table 4 the number of required message blocks
using the previous methods and using our improved MWG algorithm, for each
(k, n).

+

++

+

++

++
+
+++
+
+++

++
++

+
++

+
+++
+++

+++
+++

++++
++++++++

++++++++++
++++++++++++++++

++++++

+

++++

++

+
++

++
++

++

+

++
+

P
D
F

log2(·) of Num. of Message Blocks

25.320
25.321

25.322
25.323

25.324
25.325

25.326
25.327

25.328
25.329

25.330
25.331

25.332

×10−7

0

10

20

30

40

50

60

70

Fig. 5. Sampled distribution of the number of message blocks (represented by its log2)
required to construct a diamond structure with 218 leaves, and compression function
of 28 bits, using the improved MWG algorithm.

Method Time Complexity

Kelsey-Kohno [16] 11 2
n+k

2 +2

Blackburn et al. [7]
√
k · 2n+k

2 +2

Kortelainen-Kortelainen [21]
1+ 1√

2
+2 e

e−1

(
1+ 1√

2

)2

4 · 2n+k
2 +2 ≈ 2.732 · 2n+k

2 +2

Improved MWG 1.254 · 2n+k
2 +2

Table 4. Comparing the time complexity of the different methods.

References

1. Andreeva, E., Bouillaguet, C., Dunkelman, O., Fouque, P., Hoch, J.J., Kelsey,
J., Shamir, A., Zimmer, S.: New second-preimage attacks on hash functions. J.
Cryptology 29(4), 657–696 (2016)

2. Andreeva, E., Bouillaguet, C., Fouque, P.A., Hoch, J.J., Kelsey, J., Shamir, A.,
Zimmer, S.: Second preimage attacks on dithered hash functions. In: Advances in
Cryptology - EUROCRYPT 2008, 27th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-
17, 2008. Proceedings. Lecture Notes in Computer Science, vol. 4965, pp. 270–288.
Springer (2008)

11 We remind the reader that Kelsey-Kohno’s analysis is inaccurate.

3. Aronson, J., Frieze, A., Pittel, B.G.: Maximum matchings in sparse random graphs:
Karp-Sipser re-visited. Random Structures & Algorithms 12, 111–178 (1998)

4. Barham, M., Dunkelman, O., Lucks, S., Stevens, M.: New Second Preimage At-
tacks on Dithered Hash Functions with Low Memory Complexity. In: Proceedings
of Selected Areas in Cryptology 2016. Springer, to appear in Lecture Notes in
Computer Science

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function
family main document. Submission to NIST (Round 2) 3, 30 (2009)

6. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions
of SHA-0 and Reduced SHA-1. In: Advances in Cryptology - EUROCRYPT 2005,
24th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings. Lecture
Notes in Computer Science, vol. 3494, pp. 36–57. Springer (2005)

7. Blackburn, S.R., Stinson, D.R., Upadhyay, J.: On the complexity of the herding at-
tack and some related attacks on hash functions. Designs, Codes and Cryptography
64(1-2), 171–193 (2012)

8. Damg̊ard, I.: A design principle for hash functions. In: Advances in Cryptology -
CRYPTO ’89, 9th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 1989, Proceedings. Lecture Notes in Computer
Science, vol. 435, pp. 416–427. Springer (1989)

9. Dean, R.D.: Formal aspects of mobile code security. Ph.D. thesis, Princeton Uni-
versity, Princeton (1999)

10. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci 5, 17–61 (1960)

11. Erdös, P., Rényi, A.: On the strength of connectedness of a random graph. Acta
Mathematica Hungarica 12(1-2), 261–267 (1961)

12. Erdös, P., Rényi, A.: On the existence of a factor of degree one of a connected
random graph. Acta Mathematica Hungarica 17(3-4), 359–368 (1966)

13. Hoch, Y.Z.: Security analysis of generic iterated hash functions. Ph.D. thesis, Weiz-
mann Institute of Science, Rehovot, Israel (2009)

14. Joux, A.: Multicollisions in iterated hash functions. application to cascaded con-
structions. In: Advances in Cryptology - CRYPTO 2004, 24th Annual International
CryptologyConference, Santa Barbara, California, USA, August 15-19, 2004, Pro-
ceedings. Lecture Notes in Computer Science, vol. 3152, pp. 306–316. Springer
(2004)

15. Karp, R.M., Sipser, M.: Maximum Matchings in Sparse Random Graphs. In:
22nd Annual Symposium on Foundations of Computer Science, Nashville, Ten-
nessee, USA, 28-30 October 1981. pp. 364–375. IEEE Computer Society (1981),
https://doi.org/10.1109/SFCS.1981.21

16. Kelsey, J., Kohno, T.: Herding hash functions and the Nostradamus attack. In:
Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, St. Petersburg,
Russia, May 28 - June 1, 2006, Proceedings, Lecture Notes in Computer Science,
vol. 4004, pp. 183–200. Springer (2006)

17. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Advances in Cryptology - EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005, Proceedings. Lecture Notes in Com-
puter Science, vol. 3494, pp. 474–490. Springer (2005)

18. Klima, V.: Finding MD5 Collisions on a Notebook PC Using Multi-message Mod-
ifications. Cryptology ePrint Archive, Report 2005/102 (2005)

19. Knuth, D.E.: The Art of Computer Programming, Volume 2 (3rd Ed.): Seminu-
merical Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA (1997)

20. Kortelainen, T.: On iteration-based security flaws in modern hash functions. Ph.D.
thesis, University of Oulu, Finland (2014)

21. Kortelainen, T., Kortelainen, J.: On diamond structures and Trojan message at-
tacks. In: Advances in Cryptology - ASIACRYPT 2013: 19th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Bengaluru, India, December 1-5, 2013, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 8270, pp. 524–539. Springer (2013)

22. Merkle, R.C.: One way hash functions and DES. In: Conference on the Theory and
Application of Cryptology–CRYPTO 1989. Lecture Notes in Computer Science,
vol. 435, pp. 428–446. Springer (1989)

23. Nivasch, G.: Cycle Detection Using a Stack. Inf. Process. Lett. 90(3), 135–140 (May
2004)

24. van Oorschot, P.C., Wiener, M.J.: Parallel Collision Search with Cryptanalytic
Applications. Journal of Cryptology 12(1), 1–28 (1999)

25. Rivest, R.L.: Abelian Square-Free Dithering for Iterated Hash Functions. Presented
at ECrypt Hash Function Workshop, June 21, 2005, Cracow, and at the Crypto-
graphic Hash workshop, November 1, 2005, Gaithersburg, Maryland (August 2005)

26. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: Advances in Cryptology - EUROCRYPT 2009: 28th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Cologne,
Germany, April 26-30, 2009. Proceedings. Lecture Notes in Computer Science, vol.
5479, pp. 134–152. Springer (2009)

27. Stevens, M.: Attacks on hash functions and applications. Ph.D. thesis, Leiden
University (2012)

28. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A.K., Molnar, D., Osvik, D.A.,
de Weger, B.: Short Chosen-Prefix Collisions for MD5 and the Creation of a Rogue
CA Certificate. In: Advances in Cryptology - CRYPTO 2009, 29th Annual Inter-
national Cryptology Conference. Lecture Notes in Computer Science, vol. 5677,
pp. 55–69. Springer (2009)

29. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Advances in Cryptology - EUROCRYPT 2005, 24th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings. Lecture Notes in
Computer Science, vol. 3494, pp. 1–18. Springer (2005)

30. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Advances in
Cryptology - CRYPTO 2005: 25th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 14-18, 2005, Proceedings. Lecture Notes
in Computer Science, vol. 3621, pp. 17–36. Springer (2005)

31. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Advances
in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-
26, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3494, pp. 19–35.
Springer (2005)

