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We study the isomorphism problem for random hypergraphs. We show that it is solvable
in polynomial time for the binomial random k-uniform hypergraph H .k, for a wide range
of p. We also show that it is solvable w.h.p. for random r-regular, k-uniform hypergraphs
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1. Introduction

In this note we study the isomorphism problem for two
models of random k-uniform hypergraphs, k > 3. A hyper-
graph is k-uniform if all of its edges are of size k. The
graph isomorphism problem for random graphs is well un-
derstood and in this note we extend some of the ideas to
hypergraphs.

The first paper to study graph isomorphism in this con-
text was that of Babai, Erdés and Selkow [8]. They con-
sidered the model G, , where p is a constant indepen-
dent of n. They showed that w.h.p.> a canonical labelling of
G = Gp,p can be constructed in 0(n?) time. In a canoni-
cal labelling we assign a unique label to each vertex of a
graph such that labels are invariant under isomorphism. It
follows that two graphs with the same vertex set are iso-
morphic, if and only if the labels coincide. (This includes
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the case where one graph has a unique labelling and the
other does not. In which case the two graphs are not iso-
morphic.) The failure probability for their algorithm was
bounded by O(n~'/7). Karp [5], Lipton [7] and Babai and
Kucera [3] reduced the failure probability to O(c"),c < 1.
These papers consider p to be constant and the paper of
Czajka and Pandurangan [9] allows p = p(n) = o(1). We
use the following result from [9]: the notation A, > B,
means that A,/B, — 00 as n — oo.

4
Theorem 1. Suppose that p > n]lggg—lo"m and p < . Then there

is a polynomial time algorithm that finds a canonical labelling
q.s* for Gn,p. In fact the running time of the algorithm is
0(n?p) g.s.

Our first result concerns the random hypergraph Hy p.k,
the random k-uniform hypergraph on vertex set [n] in
which each of the possible edges in ([Z]) occurs inde-
pendently with probability p. We say that two k-uniform
hypergraphs Hq, H, are isomorphic if there is a bijection

4 A sequence of events &,,n > 1 occurs quite surely (q.s.) if P(&,) =
1— 0(n~X) for any positive constant K.
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f:V(Hy) = V(H3) such that {x1,x2,..., X} is an edge of
Hq if and only if {f(x1), f(x2), ..., f(X¢)} is an edge of H,.

Theorem 2. Suppose that k > 3 and p,1 — p > n~*=2 logn
then there exists an O (n%) time algorithm that finds a canoni-
cal labelling for Hy, p.; w.h.p.

Bollobas [1] and Kucera [6] proved that random regu-
lar graphs have canonical labellings w.h.p. We extend the
argument of [1] to regular hypergraphs. A hypergraph is
regular of degree r if every vertex is in exactly r edges.
We denote a random r-regular, k-uniform hypergraph on
vertex set [n] by Hp r.k.

Theorem 3. Suppose that r, k are constants. Then there is an
0 (n®°) time algorithm that finds a canonical labelling for
Hy .k w.h.p.

2. Proof of Theorem 2

Given H = Hyp we let H; denote the (k — 1)-
uniform hypergraph with vertex set [n] \ {i} and edges
{fe\{i}: ieee E(H)}. H; is known as the link associated
with vertex i. Let & denote the event {#i, j: H; = H;}.

Lemma 4. Suppose that k > 3 and w — oo and p,1 — p >
wn~%=2) logn. Then &, occurs gq.s.

Proof.
—4
P @i, j: Hi = Hj) <n*ni(p? + (1 — p)2) )
n\" -4
=3n%2(2) (p? + (1 - pHE?
< n—w/k!.
Explanation: There are (g) choices for i, j. There are at
most n? choices for y = f(i),x = f~1(j) in an isomor-
phism f between H; and H;. This accounts for the nt
term. There are (n — 3)! < n! possible isomorphisms be-
tween H; —{y, j} and H; —{x,i}. Then for every (k—1)-set
of vertices S that includes none of i, j, x, y, the probability
for there to be an edge or non-edge in both H; and Hj is
given by the expression p2 + (1 — p)2.
The above estimation shows that even disregarding

edges containing i, j,x or y, w.h.p. there are no i, j with
Hi=Hj. O

Let Gy be the event that a canonical labelling for Hy p.k
can be constructed in O(n%) time. Now assume induc-
tively that

P(Hp,p:k & Gk) < n—@/ (kDL (1)

The base case, k =2, for (1) is given by the result of [7],
although in addition [5], [9] can be used for constant p.
Let B; be the event that H; ¢ G,_1. Then

P(Hppi ¢ G) < (1 = P(E)) + Y _P(By). (2)

i=1
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Indeed, if none of the events in (2) occur then in time
0(n? x n**=Dy = 0(n?**) we can by induction uniquely
label each vertex via the labelled link. After this we can
confirm that & has occurred. This confirms the claimed
time complexity. Given that &, has occured, this will de-
termine the only possible isomorphism ¢ between H and
any other k-uniform hypergraph H’ on vertex set [n]. We
determine ¢ by comparing the links of H, H’, using induc-
tion to see if they are isomorphic. We can see if there is a
mapping ¢ such that the link of i in H is isomorphic to the
link of ¢ (i) in H' then and then we check to see whether
or not ¢ is actually an isomorphism.
Going back to (2) we see by induction that

P (Hnpik ¢ G <0~ 1% x (k — D 2n~/
< n—a)/(k+1)!.

This completes the proof of Theorem 2.

3. Proof of Theorem 3

We extend the analysis of Bollobéas [1] to hypergraphs.
For a vertex v, we let d¢(v) denote the number of vertices
at hypergraph distance ¢ from v in H = Hy ;.. We show
that if

3
= ’75 log, n—‘ where p = (T —1)(k —1).

then w.h.p. no two vertices have the same sequence
(d¢(v),£ =1,2,...,£%). By doing a breadth first search
from each vertex of H we can therefore w.h.p. distinctly
label each vertex within 0(npt") = 0 (n®/5) steps.

We use the configuration model for hypergraphs, which
is a simple generalisation of the model in Bollobas [2].
We let W = [rn] where m = rn/k is an integer. As-
sume that it is partitioned into sets Wi, Wy, ..., Wy
of size r. We define f: W — [n] by f(w)=1i if we
W;. A configuration F is a partition of W into sets
Fi,F,,..., Fy of size k. Given F we obtain the (multi)hy-
pergraph y (F) where F; = {w1, wy,..., wy} gives rise to
the edge {f(wy), f(w2),..., f(wy)} for i =1,2,...,m.
Configurations can contain multiple edges and loops. Nev-
ertheless, it is known that if ¢ (F) has a hypergraph prop-
erty w.h.p. then H; . will also have this property w.h.p.,
see for example [4].

In the following H = Hy ;.. For a set S C [n], we let
ey (S) denote the number of edges of H that are contained
in S.

Lemma 5. Let ¢o = [100log, logn]. Then w.h.p. ey(S) <
PHL forall S C [n], S| < 10,

Proof. We have that

k—1

52(9(&) Tm—T0Kkt) (3)
=4 k=1 ( k—1 )

S

SI+1
P(EIS:lSlSlOZo,eH(S)Z| I+ )
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104 s+1
ne\s s+1 rs
il k—1)k [ ———
S;(s ) (erte=1)) (rn—o(n))
10¢o "
< = D e (e(k — HryT =o(1).
s=4

Explanation for (3): we choose a set S and then a set X of
(s +1)/(k — 1) members of Ws =|J;cg W;. We then esti-
mate the probability that each member of X is paired in F
with k —1 members of W\ X. For each x € X, given some
previous choices, there are at most (ksj 1) choices contained

in W, out of at least ("m;l?uo) choices overall. O

Let £ denote the high probability event in Lemma 5.
We will condition on the occurrence of £.

Now for v € [n], let Sy(v) denote the set of vertices at
distance ¢ from v and let S<,(v) = Ujgl Sj(v). Here the
distance between vertices u, v is the minimum length of a
path/sequence of edges eq,e3,...,e, such that uceq,v e
ex and e; Nej1q # @ for 1 <i <k. We note that

ISe(v)| < (k— Drp*~forallv en], > 1. (4)

Furthermore, Lemma 5 implies that there exist b, y < a, x <
(k—1)r such that w.h.p., we have for all v, w € [n],1<¢ <
Lo,

1Se(V)| = ar k1. (5)
1Se(W)\ Se(w)| > b gL (6)

To see this, observe that |S¢y1| = p|S¢| unless there are
two vertices x,y € Sy and either (i) an edge e of y(F)
such that e D {x, y} or (ii) a vertex z € Sy4+; and edges
e, f of y(F) such that e 2 {x,z} and f 2 {y,z}. Lemma 5
implies that w.h.p. there is at most one such case of (i)
or (ii) for 1 < ¢ < £y. Suppose that there are two distinct
edges e;,i =1, 2 that cause (i) at levels ¢1, £, and suppose
that {x;, y;} corresponds to e;,i =1,2. Each x € Sy lies in
the final edge of an ¢-length path P, from v to x. Now
P = Px,, Px,, Py,, Py, spans I1 < 2(€; + £2) < 2¢p edges
and we can choose these paths to not contain e or ej.
Furthermore, P spans at most 1+ (k — 1)I1 vertices, since
adding a new edge to a connected set of vertices adds
at most k — 1 new vertices. If we add eq,e; to these II
edges then we have at most 1+ (k — 1)IT + 2(k — 2) ver-
tices spanning IT + 2 edges and this contradicts Lemma 5.
The remaining two cases (2 times (ii) or (i) and (ii)) can be
argued similarly. So, typically adding an edge in the con-
struction of Sy4q adds k — 1 new vertices. W.h.p., there is
one case and this only adds k—2 vertices. This explains (5).

A similar argument yields (6). Having constructed
S¢(w), we see that typically adding an edge in the con-
struction of Sg(v) adds k — 1 new vertices to the union
S¢(v) U Sge(w) and that w.h.p. it adds at least k — 2 ver-
tices.

Now consider ¢ > £g. Consider doing breadth first
search from v or v,w exposing the configuration pair-
ing as we go. Let an edge be dispensable if it contains two
vertices already known to be in S<,. The argument above
implies that w.h.p. there is at most one dispensable edge
in SSZO'
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Lemma 6. With probability 1 — o(n~2), (i) at most 20 of the
first n exposed edges are dispensable and (ii) at most n'/4 of
the first ni exposed edges are dispensable.

Proof. The probability that the oth edge is dispensable is
at most W independent of the history of
the process. (Knowing one vertex of this edge and choosing
the rest of it, there are at most r((c — 1)(k—1)+1)(k—1)
choices out of at least rn — ko that will lead to this edge

being dispensable.) Hence,

P(3 20 dispensable edges in the first n%/)

20
(R (NS
—\ 20 rm—o(n) '

P(3n'/* dispensable edges in first n/%)

< n3/> rk2n3/> n1/4_ )
i) nom) =00 0

Now let ¢; = [log,_1n?*] and € = [log,_;n3/"].
Then, we have that, conditional on &, with probability
1—o(n™?),

1Se)| = (@rp® ™" —40)p" 0 bo < £ <ty
IS¢ = (@ kp" ™1 = 40p" 0 — 201/ pt=0
b1 <l <.
1Se(wW)\ Se(V)] = (brip® ! —40)p 01 £p <L <.
1Se(W) \ Se(V)| = (brgp® ™" —40p 10 — 2n1/%) pt01;
1<l <{.

We deduce from this that if £3 = [log,_;n%7] and ¢ =
¢3+a,a= 0(1) then with probability 1 —o(n=2),

1SeW)| > (arx —o(M)p ! ~ar g p® 'n/7.

1Se(W) \ Se(W)| = (bry — 0(1)p" " & by 'n*7.

Suppose now that we consider the execution of breadth
first search up until we have exposed Syy1(v) U Sgr1(W)

and the edges E defining this set. We let U =W \E. We
will show that we can find a position in the process so that
conditioning up to this point, in order to have |S;+1(v)| =
|S¢+1(w)| there will have to be a prescribed, but unlikely,
outcome for a large number of edge selections.

Our conditioning includes all the choices of e € F that
are necessary to construct Sy4q(v) U Sg(w). We refer to
a choice of e as an edge-selection. After an edge-selection
e, we update U < U \ {e}. Consider the edge-selections in-
volving Wy, x € Sg(w)\ S¢y1(v). Now at most n!/4 of these
edge-selections involve vertices in S<¢41(v)US<¢(w). Con-
dition on these as well. There must now be A = ©(n*7)
further edge-selections containing elements of Wy, x €
Se(W)\Se+1(v) and Wy, ¥y ¢ Sey1(v)USe(w). Let Z denote
the vertices in S¢(w) involved in these A edge-selections.
Furthermore, to have |Sy11(v)| =|S¢+1(w)| these A selec-
tions must involve exactly t of the sets Wy, y ¢ Sy11(v) U
S¢(w). Here t is the unique value that will ensure that
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|S¢+1(W)| =|Se+1(v)|. The important point is that t is de-
termined before the making of these A edge-selections. Let
R=Uy¢s,,1vus,w) Wy at the point immediately prior to
the 1 edge-selections. Let S = RN (Jg.nz.4 € and note that
S is a random s-subset of R for some s = ©(n*/7).

The following lemma will easily show that w.h.p. H has
a canonical labelling defined by the values of |Sy(v)|,1 <
L <¢e* veln)

Lemma 7. Let R = Uf‘:] R; be a partitioning of an ru set R
into w subsets of size r. Suppose that S is a random s-subset of
R, where 1/ <'s < 13/5. Let X5 denote the number of sets R;
intersected by S. Then

1/2

Ci

max P (Xs = j) < —°’§ ,
J

fOT some constant co.

Proof. The probability that S has at least 3 elements in
some set R; is at most

nGL) @
(M) e e
But

P(Xs=j)<P (max|san| 23)
1

+]P’<X5:jand max|5ﬂR,~|§2).
1

So the lemma will follow if we prove that for every j,

cpl’?
Pj=P <X5 = jand max |S N R;] 52) < — (7)
1
for some constant c;.
Clearly, P; =0 if j <s/2 and otherwise
D)6
Pj= - . (8)
()

Now for s/2 < j <s we have
Pj - D= 2r

1 (H=DE—1J) 9)

Pi  Qj+2-5)Qj+1-5r—-1

We note that if s — j > % then it > 10~ 5 and so

P = 30-1)
the j maximising Pj is of the form s — "%2 where o < 10.
If we substitute j=s — “752 into (9) then we see that
P; 2ar S
j—-H c 1+ Ccy—
P; r—1 "

for some absolute constant c; > 0.
It follows that if jo is the index maximising P; then
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—1)s2
jo_<s_u>’51_
2rp

Furthermore, if j; = jo — ﬁ then

P 1/2
L 51+C3M— for j1 <j < jo.
p; S
for some absolute constant c3 > 0.
This implies that for all j; <j < jo,
172\ —Uo—in
P> Pj, (1 +C3T)
1/2
: : W 1% _
= Pj, exp {—(]o —Jv <C3—S +0 (S—2)>} > Pjpe %,

It follows from this that

32C3
Pj0§€263 min ij—, - Z Pj
Jjelir,jol Jo—J1 . 5.
J€ljr.Jjol
2c3,,1/2
e
<LEHT 4

N

We apply Lemma 7 with u=n —o®),s = ©n*7) to
show that

1724 15
P((ISe(V)| = [Se(W)l. £ € [€3, €3+ 14]) < (%)
n

= o(n’z).

This completes the proof of Theorem 3.
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