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We study the isomorphism problem for random hypergraphs. We show that it is solvable 
in polynomial time for the binomial random k-uniform hypergraph Hn,p;k , for a wide range 
of p. We also show that it is solvable w.h.p. for random r-regular, k-uniform hypergraphs 
Hn,r;k, r = O (1).
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1. Introduction

In this note we study the isomorphism problem for two 
models of random k-uniform hypergraphs, k ≥ 3. A hyper-
graph is k-uniform if all of its edges are of size k. The 
graph isomorphism problem for random graphs is well un-
derstood and in this note we extend some of the ideas to 
hypergraphs.

The first paper to study graph isomorphism in this con-
text was that of Babai, Erdős and Selkow [8]. They con-
sidered the model Gn,p where p is a constant indepen-
dent of n. They showed that w.h.p.3 a canonical labelling of 
G = Gn,p can be constructed in O (n2) time. In a canoni-
cal labelling we assign a unique label to each vertex of a 
graph such that labels are invariant under isomorphism. It 
follows that two graphs with the same vertex set are iso-
morphic, if and only if the labels coincide. (This includes 
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the case where one graph has a unique labelling and the 
other does not. In which case the two graphs are not iso-
morphic.) The failure probability for their algorithm was 
bounded by O (n−1/7). Karp [5], Lipton [7] and Babai and 
Kucera [3] reduced the failure probability to O (cn), c < 1. 
These papers consider p to be constant and the paper of 
Czajka and Pandurangan [9] allows p = p(n) = o(1). We 
use the following result from [9]: the notation An � Bn

means that An/Bn → ∞ as n → ∞.

Theorem 1. Suppose that p � log4 n
n log logn and p ≤ 1

2 . Then there 
is a polynomial time algorithm that finds a canonical labelling
q.s.4 for Gn,p . In fact the running time of the algorithm is 
O (n2 p) q.s.

Our first result concerns the random hypergraph Hn,p;k , 
the random k-uniform hypergraph on vertex set [n] in 
which each of the possible edges in 

([n]
k

)
occurs inde-

pendently with probability p. We say that two k-uniform 
hypergraphs H1, H2 are isomorphic if there is a bijection 

4 A sequence of events En, n ≥ 1 occurs quite surely (q.s.) if P (En) =
1 − O (n−K ) for any positive constant K .
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f : V (H1) → V (H2) such that {x1, x2, . . . , xk} is an edge of 
H1 if and only if { f (x1), f (x2), . . . , f (xk)} is an edge of H2.

Theorem 2. Suppose that k ≥ 3 and p, 1 − p � n−(k−2) logn
then there exists an O (n2k) time algorithm that finds a canoni-
cal labelling for Hn,p;k w.h.p.

Bollobás [1] and Kucera [6] proved that random regu-
lar graphs have canonical labellings w.h.p. We extend the 
argument of [1] to regular hypergraphs. A hypergraph is 
regular of degree r if every vertex is in exactly r edges. 
We denote a random r-regular, k-uniform hypergraph on 
vertex set [n] by Hn,r;k .

Theorem 3. Suppose that r, k are constants. Then there is an 
O (n8/5) time algorithm that finds a canonical labelling for 
Hn,r;k w.h.p.

2. Proof of Theorem 2

Given H = Hn,p;k we let Hi denote the (k − 1)-
uniform hypergraph with vertex set [n] \ {i} and edges 
{e \ {i} : i ∈ e ∈ E(H)}. Hi is known as the link associated 
with vertex i. Let Ek denote the event 

{
�i, j : Hi ∼= H j

}
.

Lemma 4. Suppose that k ≥ 3 and ω → ∞ and p, 1 − p ≥
ωn−(k−2) log n. Then Ek occurs q.s.

Proof.

P (∃i, j : Hi
∼= H j) ≤ n4n!(p2 + (1 − p)2)(

n−4
k−1)

≤ 3n9/2
(n

e

)n
(p2 + (1 − p)2)(

n−4
k−1)p

≤ n−ω/k!.

Explanation: There are 
(n

2

)
choices for i, j. There are at 

most n2 choices for y = f (i), x = f −1( j) in an isomor-
phism f between Hi and H j . This accounts for the n4

term. There are (n − 3)! < n! possible isomorphisms be-
tween Hi −{y, j} and H j −{x, i}. Then for every (k −1)-set 
of vertices S that includes none of i, j, x, y, the probability 
for there to be an edge or non-edge in both Hi and H j is 
given by the expression p2 + (1 − p)2.

The above estimation shows that even disregarding 
edges containing i, j, x or y, w.h.p. there are no i, j with 
Hi ∼= H j . �

Let Gk be the event that a canonical labelling for Hn,p;k
can be constructed in O (n2k) time. Now assume induc-
tively that

P (Hn,p;k /∈ Gk) ≤ n−ω/(k+1)!. (1)

The base case, k = 2, for (1) is given by the result of [7], 
although in addition [5], [9] can be used for constant p. 
Let Bi be the event that Hi /∈ Gk−1. Then

P (Hn,p;k /∈ Gk) ≤ (1 − P (Ek)) +
n∑

P (Bi). (2)

i=1

2

Indeed, if none of the events in (2) occur then in time 
O (n2 × n2(k−1)) = O (n2k) we can by induction uniquely 
label each vertex via the labelled link. After this we can 
confirm that Ek has occurred. This confirms the claimed 
time complexity. Given that Ek has occured, this will de-
termine the only possible isomorphism φ between H and 
any other k-uniform hypergraph H ′ on vertex set [n]. We 
determine φ by comparing the links of H, H ′ , using induc-
tion to see if they are isomorphic. We can see if there is a 
mapping φ such that the link of i in H is isomorphic to the 
link of φ(i) in H ′ then and then we check to see whether 
or not φ is actually an isomorphism.

Going back to (2) we see by induction that

P (Hn,p;k /∈ Gk) ≤ n−ω/k! + n2 × (k − 1)n2k−2n−ω/k!

≤ n−ω/(k+1)!.

This completes the proof of Theorem 2.

3. Proof of Theorem 3

We extend the analysis of Bollobás [1] to hypergraphs. 
For a vertex v , we let d�(v) denote the number of vertices 
at hypergraph distance � from v in H = Hn,r;k . We show 
that if

�∗ =
⌈

3

5
logρ n

⌉
where ρ = (r − 1)(k − 1).

then w.h.p. no two vertices have the same sequence 
(d�(v), � = 1, 2, . . . , �∗). By doing a breadth first search 
from each vertex of H we can therefore w.h.p. distinctly 
label each vertex within O (nρ�∗

) = O (n8/5) steps.
We use the configuration model for hypergraphs, which 

is a simple generalisation of the model in Bollobás [2]. 
We let W = [rn] where m = rn/k is an integer. As-
sume that it is partitioned into sets W1, W2, . . . , Wn

of size r. We define f : W → [n] by f (w) = i if w ∈
W i . A configuration F is a partition of W into sets 
F1, F2, . . . , Fm of size k. Given F we obtain the (multi)hy-
pergraph γ (F ) where Fi = {w1, w2, . . . , wk} gives rise to 
the edge { f (w1), f (w2), . . . , f (wk)} for i = 1, 2, . . . , m. 
Configurations can contain multiple edges and loops. Nev-
ertheless, it is known that if γ (F ) has a hypergraph prop-
erty w.h.p. then Hn,r;k will also have this property w.h.p., 
see for example [4].

In the following H = Hn,r;k . For a set S ⊆ [n], we let 
eH (S) denote the number of edges of H that are contained 
in S .

Lemma 5. Let �0 = ⌈
100 logρ logn

⌉
. Then w.h.p., eH (S) <

|S|+1
k−1 for all S ⊆ [n], |S| ≤ 10�0 .

Proof. We have that

P

(
∃S : |S| ≤ 10�0, eH (S) ≥ |S| + 1

k − 1

)

≤
10�0∑ (

n

s

)(
sr

s+1
k−1

)( ( sr
k−1

)(km−10k�0
)) s+1

k−1

(3)

s=4 k−1
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≤
10�0∑
s=4

(ne

s

)s
(er(k − 1))

s+1
k−1

(
rs

rn − o(n)

)s+1

≤ 1

n1−o(1)

10�0∑
s=4

ses (e(k − 1)r)
s+1
k−1 = o(1).

Explanation for (3): we choose a set S and then a set X of 
(s + 1)/(k − 1) members of W S = ⋃

i∈S W i . We then esti-
mate the probability that each member of X is paired in F
with k − 1 members of W S \ X . For each x ∈ X , given some 
previous choices, there are at most 

( sr
k−1

)
choices contained 

in W S , out of at least 
(km−10k�0

k−1

)
choices overall. �

Let E denote the high probability event in Lemma 5. 
We will condition on the occurrence of E .

Now for v ∈ [n], let S�(v) denote the set of vertices at 
distance � from v and let S≤�(v) = ⋃

j≤� S j(v). Here the 
distance between vertices u, v is the minimum length of a 
path/sequence of edges e1, e2, . . . , ek such that u ∈ e1, v ∈
ek and ei ∩ ei+1 �= ∅ for 1 ≤ i < k. We note that

|S�(v)| ≤ (k − 1)rρ�−1 for all v ∈ [n], � ≥ 1. (4)

Furthermore, Lemma 5 implies that there exist br,k < ar,k <

(k −1)r such that w.h.p., we have for all v, w ∈ [n], 1 ≤ � ≤
�0,

|S�(v)| ≥ ar,kρ
�−1. (5)

|S�(v) \ S�(w)| ≥ br,kρ
�−1. (6)

To see this, observe that |S�+1| = ρ|S�| unless there are 
two vertices x, y ∈ S� and either (i) an edge e of γ (F )

such that e ⊇ {x, y} or (ii) a vertex z ∈ S�+1 and edges 
e, f of γ (F ) such that e ⊇ {x, z} and f ⊇ {y, z}. Lemma 5
implies that w.h.p. there is at most one such case of (i) 
or (ii) for 1 ≤ � ≤ �0. Suppose that there are two distinct 
edges ei, i = 1, 2 that cause (i) at levels �1, �2 and suppose 
that {xi, yi} corresponds to ei, i = 1, 2. Each x ∈ S� lies in 
the final edge of an �-length path Pu from v to x. Now 
P = P x1 , P x2 , P y1 , P y2 spans � ≤ 2(�1 + �2) ≤ 2�0 edges 
and we can choose these paths to not contain e1 or e2. 
Furthermore, P spans at most 1 + (k − 1)� vertices, since 
adding a new edge to a connected set of vertices adds 
at most k − 1 new vertices. If we add e1, e2 to these �
edges then we have at most 1 + (k − 1)� + 2(k − 2) ver-
tices spanning � + 2 edges and this contradicts Lemma 5. 
The remaining two cases (2 times (ii) or (i) and (ii)) can be 
argued similarly. So, typically adding an edge in the con-
struction of S�+1 adds k − 1 new vertices. W.h.p., there is 
one case and this only adds k −2 vertices. This explains (5).

A similar argument yields (6). Having constructed 
S�(w), we see that typically adding an edge in the con-
struction of S�(v) adds k − 1 new vertices to the union 
S�(v) ∪ S�0 (w) and that w.h.p. it adds at least k − 2 ver-
tices.

Now consider � > �0. Consider doing breadth first 
search from v or v, w exposing the configuration pair-
ing as we go. Let an edge be dispensable if it contains two 
vertices already known to be in S≤� . The argument above 
implies that w.h.p. there is at most one dispensable edge 
in S≤�0 .
3

Lemma 6. With probability 1 − o(n−2), (i) at most 20 of the 
first n

2
5 exposed edges are dispensable and (ii) at most n1/4 of 

the first n
3
5 exposed edges are dispensable.

Proof. The probability that the σ th edge is dispensable is 
at most r((σ−1)(k−1)+1)(k−1)

rn−kσ , independent of the history of 
the process. (Knowing one vertex of this edge and choosing 
the rest of it, there are at most r((σ − 1)(k − 1) + 1)(k − 1)

choices out of at least rn − kσ that will lead to this edge 
being dispensable.) Hence,

P (∃ 20 dispensable edges in the first n2/5)

≤
(

n2/5

20

)(
rk2n2/5

rn − o(n)

)20

= o(n−2).

P (∃ n1/4 dispensable edges in first n3/5)

≤
(

n3/5

n1/4

)(
rk2n3/5

rn − o(n)

)n1/4

= o(n−2). �

Now let �1 = ⌈
logr−1 n2/5

⌉
and �2 = ⌈

logr−1 n3/5
⌉

. 
Then, we have that, conditional on E , with probability 
1 − o(n−2),

|S�(v)| ≥ (ar,kρ
�0−1 − 40)ρ�−�0 : �0 < � ≤ �1.

|S�(v)| ≥ (ar,kρ
�1−1 − 40ρ�1−�0 − 2n1/4)ρ�−�1 ;

�1 < � ≤ �2.

|S�(w) \ S�(v)| ≥ (br,kρ
�0−1 − 40)ρ�−�0 : �0 < � ≤ �1.

|S�(w) \ S�(v)| ≥ (br,kρ
�1−1 − 40ρ�1−�0 − 2n1/4)ρ�−�1 ;

�1 < � ≤ �2.

We deduce from this that if �3 = ⌈
logr−1 n4/7

⌉
and � =

�3 + a, a = O (1) then with probability 1 − o(n−2),

|S�(w)| ≥ (ar,k − o(1))ρ�−1 ≈ ar,kρ
a−1n4/7.

|S�(w) \ S�(v)| ≥ (br,k − o(1))ρ�−1 ≈ br,kρ
a−1n4/7.

Suppose now that we consider the execution of breadth 
first search up until we have exposed S�+1(v) ∪ S�+1(w)

and the edges Ê defining this set. We let U = W \ Ê . We 
will show that we can find a position in the process so that 
conditioning up to this point, in order to have |S�+1(v)| =
|S�+1(w)| there will have to be a prescribed, but unlikely, 
outcome for a large number of edge selections.

Our conditioning includes all the choices of e ∈ F that 
are necessary to construct S�+1(v) ∪ S�(w). We refer to 
a choice of e as an edge-selection. After an edge-selection 
e, we update U ← U \ {e}. Consider the edge-selections in-
volving W x, x ∈ S�(w) \ S�+1(v). Now at most n1/4 of these 
edge-selections involve vertices in S≤�+1(v) ∪ S≤�(w). Con-
dition on these as well. There must now be λ = 
(n4/7)

further edge-selections containing elements of W x, x ∈
S�(w) \ S�+1(v) and W y, y /∈ S�+1(v) ∪ S�(w). Let Z denote 
the vertices in S�(w) involved in these λ edge-selections. 
Furthermore, to have |S�+1(v)| = |S�+1(w)| these λ selec-
tions must involve exactly t of the sets W y, y /∈ S�+1(v) ∪
S�(w). Here t is the unique value that will ensure that 
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|S�+1(w)| = |S�+1(v)|. The important point is that t is de-
termined before the making of these λ edge-selections. Let 
R = ⋃

y /∈S�+1(v)∪S�(w) W y at the point immediately prior to 
the λ edge-selections. Let S = R ∩⋃

e:e∩Z �=∅ e and note that 
S is a random s-subset of R for some s = 
(n4/7).

The following lemma will easily show that w.h.p. H has 
a canonical labelling defined by the values of |S�(v)|, 1 ≤
� ≤ �∗, v ∈ [n].

Lemma 7. Let R = ⋃μ
i=1 Ri be a partitioning of an rμ set R

into μ subsets of size r. Suppose that S is a random s-subset of 
R, where μ5/9 < s < μ3/5 . Let X S denote the number of sets Ri

intersected by S. Then

max
j

P (XS = j) ≤ c0μ
1/2

s
,

for some constant c0.

Proof. The probability that S has at least 3 elements in 
some set Ri is at most

μ
(r

3

)(rμ−3
s−3

)(rμ
s

) ≤ s3

6μ2
≤ μ1/2

6s
.

But

P (XS = j) ≤ P

(
max

i
|S ∩ Ri| ≥ 3

)
+ P

(
XS = j and max

i
|S ∩ Ri | ≤ 2

)
.

So the lemma will follow if we prove that for every j,

P j = P

(
XS = j and max

i
|S ∩ Ri| ≤ 2

)
≤ c1μ

1/2

s
, (7)

for some constant c1.
Clearly, P j = 0 if j < s/2 and otherwise

P j =
(μ

j

)( j
s− j

)
r2 j−s

(r
2

)s− j(rμ
s

) . (8)

Now for s/2 ≤ j < s we have

P j+1

P j
= (μ − j)(s − j)

(2 j + 2 − s)(2 j + 1 − s)

2r

r − 1
. (9)

We note that if s − j ≥ 10s2

μ then P j+1
P j

≥ 10r
3(r−1)

≥ 2 and so 

the j maximising P j is of the form s − αs2

μ where α ≤ 10. 
If we substitute j = s − αs2

μ into (9) then we see that

P j+1

P j
∈ 2αr

r − 1

[
1 ± c2

s

μ

]
for some absolute constant c2 > 0.

It follows that if j0 is the index maximising P j then
4

∣∣∣∣ j0 −
(

s − (r − 1)s2

2rμ

)∣∣∣∣ ≤ 1.

Furthermore, if j1 = j0 − s
μ1/2 then

P j+1

P j
≤ 1 + c3

μ1/2

s
for j1 ≤ j ≤ j0,

for some absolute constant c3 > 0.
This implies that for all j1 ≤ j ≤ j0,

P j ≥ P j0

(
1 + c3

μ1/2

s

)−( j0− j1)

= P j0 exp

{
−( j0 − j1)

(
c3

μ1/2

s
+ O

( μ

s2

))}
≥ P j0 e−2c3 .

It follows from this that

P j0 ≤ e2c3 min
j∈[ j1, j0]

P j ≤ e2c3

j0 − j1

∑
j∈[ j1, j0]

P j

≤ e2c3μ1/2

s
. �

We apply Lemma 7 with μ = n − o(n), s = 
(n4/7) to 
show that

P ((|S�(v)| = |S�(w)|, � ∈ [�3, �3 + 14]) ≤
(

c0n1/2

n4/7

)15

= o(n−2).

This completes the proof of Theorem 3.
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