Lecture Notes
Lecture 1 - Singular Value Decomposition
Lecture 2 - Canonical Correlation Analysis
Lecture 3 - Independent Component Analysis
Lecture 4 - Mahalanobis Distance
Lecture 5 - Laplacians and Diffusion
Lecture 6 - Reproducing Kernel Hilbert Spaces
Lecture 7 - Maximum Mean Discrepancy
Lecture 8 - Random Projections
Lecture 9 - Markov Chain Monte Carlo
Lecture 10 - Permutation Tests
Lecture 11 - Dynamic Time Warping
Lecture 12 - Dynamic Mode Decomposition
Lecture 13 - Gaussian Process Regression
Lecture 14 - Kalman Filters