1 Preliminary: Multivariate Gaussians

Definition 1.1 (multivariate normal distribution). A random vector $X \in \mathbb{R}^d$ is said to have a multivariate normal distribution with mean vector $\mu \in \mathbb{R}^d$ and covariance matrix Σ if Σ is positive definite and x has density

$$p(X; \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} \det(\Sigma)^{1/2}} \exp\left(-\frac{1}{2}(X - \mu)^T \Sigma^{-1} (X - \mu)\right).$$

We can partition the d variables to two sets, A and B. In this case we can write $X = \begin{bmatrix} X_A \\ X_B \end{bmatrix}$, $\mu = \begin{bmatrix} \mu_A \\ \mu_B \end{bmatrix}$, $\Sigma = \begin{bmatrix} \Sigma_{AA} & \Sigma_{AB} \\ \Sigma_{BA} & \Sigma_{BB} \end{bmatrix}$.

Proposition 1.2. The conditional density $p(X_A|X_B) = \frac{p(X_A,X_B; \mu, \Sigma)}{\int_{X_B} p(X_A,X_B; \mu, \Sigma) dX_B}$ are also multivariate normal:

$$p(X_A|X_B) \sim \mathcal{N}\left(\mu_A + \Sigma_{AB} \Sigma_{BB}^{-1} (X_B - \mu_B), \Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA}\right).$$

Proof.

$$p(X_A|X_B) = \frac{p(X_A,X_B; \mu, \Sigma)}{\int_{X_B} p(X_A,X_B; \mu, \Sigma) dX_B}$$

$$= \frac{1}{\int_{X_B} p(X_A,X_B; \mu, \Sigma) dX_B} \exp\left(-\frac{1}{2}(X - \mu)^T \Sigma^{-1} (X - \mu)\right)$$

$$= \frac{1}{Z} \exp\left(-\frac{1}{2} \begin{bmatrix} X_A - \mu_A \\ X_B - \mu_B \end{bmatrix}^T \begin{bmatrix} V_{AA} & V_{AB} \\ V_{BA} & V_{BB} \end{bmatrix} \begin{bmatrix} X_A - \mu_A \\ X_B - \mu_B \end{bmatrix}\right),$$

where Z does not depend on X_A, and $\Sigma^{-1} = V = \begin{bmatrix} V_{AA} & V_{AB} \\ V_{BA} & V_{BB} \end{bmatrix}$. Observe that

$$\begin{bmatrix} X_A - \mu_A \\ X_B - \mu_B \end{bmatrix}^T \begin{bmatrix} V_{AA} & V_{AB} \\ V_{BA} & V_{BB} \end{bmatrix} \begin{bmatrix} X_A - \mu_A \\ X_B - \mu_B \end{bmatrix} = (X_A - \mu_A)^T V_{AA} (X_A - \mu_A)$$

$$+ (X_A - \mu_A)^T V_{AB} (X_B - \mu_B)$$

$$+ (X_B - \mu_B)^T V_{BA} (X_A - \mu_A)$$

$$+ (X_B - \mu_B)^T V_{BB} (X_B - \mu_B).$$
Retaining only terms depending on X_A, and using the fact that $V_{AB} = V_{BA}^T$, we can thus have

$$p(X_A|X_B) \propto \exp \left(-\frac{1}{2} \left[X_A^T V_{AA} X_A - 2X_A^T V_{AA} \mu_A + 2X_A^T V_{AB} X_B \right] \right),$$

where the term inside the exponential is $X_A^T V_{AA} X_A - 2X_A^T V_{AA} \mu_A$. Completing the squares, we can write this as

$$(X_A - (\mu_A - V_{AA}^{-1} V_{AB} X_B))^T V_{AA} (X_A - (\mu_A - V_{AA}^{-1} V_{AB} X_B)) + c,$$

where c is a constant not depending on X_A. From this, we deduce that $p(X_A|X_B)$ is normal with mean

$$\mu = \mu_A - V_{AA}^{-1} V_{AB} X_B$$

and covariance V_{AA}^{-1}. Finally, we recall the form of the inverse of a block matrix to have

$$V_{AA} = (\Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA})^{-1},$$

and $V_{BA} = -(\Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA})^{-1} - \Sigma_{AB} \Sigma_{BB}^{-1}$.

\section{Gaussian Processes}

Gaussian processes are extension of multivariate Gaussians from vectors to functions.

\begin{definition}[Gaussian process] A GP with mean function $m(\cdot)$ and covariance function $k(\cdot, \cdot)$ is a stochastic process \{\(Z_t : t \in T\)\} such that for every finite collection t_1, \ldots, t_n of indices, the vector $(Z_{t_1}, \ldots, Z_{t_n})^T$ has a multivariate normal distribution with mean vector $\mu = (m(Z_{t_1}), \ldots, m(Z_{t_n}))^T$ and covariance matrix K such that $K_{ij} = k(Z_{t_i}, Z_{t_j})$. We

Since the covariance function has to be positive definite, it makes sense that k will be a kernel function. A typical choice for k is the RBF function

$$k(x, y) = \exp \left(-\frac{\|x - y\|^2}{\sigma^2} \right).$$

When we say that a function f is a sample drawn from a GP prior, we can think of f as a sample from an infinite dimensional multivariate normal vector, where each entry corresponds to an index $t \in T$. That is, $f = \{f(x_t) : t \in T\}$.

\section{Gaussian Process Regression}

GPR is a popular tool to quantify prediction uncertainty. Let $\{(x_i, y_i)\}, i = 1, \ldots n$ be a training set, drawn from some data distribution D, where $x_i \in \mathbb{R}^d$, and $y_i \in \mathbb{R}$. We model the data by $y_i = f(x_i) + \epsilon_i$, where $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is some function, drawn from a GP prior with zero mean and covariance function k, and the ϵ_i's are iid samples from zero mean normal distribution with variance σ^2. Let $\{(x_j^*)\}, j = 1, \ldots m$ be a test set, also drawn from the x-marginal distribution induced from D. In vector form we can write

$$\bar{y} = \bar{f} + \bar{\epsilon},$$

and

$$\bar{y}^* = \bar{f}^* + \bar{\epsilon}^*,$$

where $\bar{y} = (y_1, \ldots, y_n)^T$, $\bar{f} = (f(x_1), \ldots, f(x_n))^T$, and so on. Similarly, we write $X = (x_1^T, \ldots, x_n^T)^T$, i.e., an $n \times d$ matrix.
3.1 Prediction

Since \(f \) is a sample from a Gaussian process prior with zero mean vector and covariance function \(k \), it follows that given \(X, X^* \)

\[
\begin{bmatrix}
\tilde{f} \\
\tilde{f}^*
\end{bmatrix} \sim \mathcal{N} \left(\tilde{0}, \begin{bmatrix}
k(X, X) & k(X, X^*) \\
k(X^*, X) & k(X^*, X^*)
\end{bmatrix} \right)
\]

where \(k(X, X^*)_{ij} = k(x_i, x_j^*) \), and so on. Since both \(\tilde{f} \) and \(\epsilon \) are Gaussians, it follows that so is \(\tilde{y} \), i.e., given \(X, X^* \)

\[
\begin{bmatrix}
\tilde{Y} \\
\tilde{Y}^*
\end{bmatrix} \sim \mathcal{N} \left(\tilde{0}, \begin{bmatrix}
k(X, X) + \sigma^2 I & k(X, X^*) \\
k(X^*, X) & k(X^*, X^*) + \sigma^2 I
\end{bmatrix} \right)
\]

Finally, we are interested in the predictive distribution

\[
p(\tilde{Y}^*|X, X^*, \tilde{y}).
\]

recalling proposition 1.2, this distribution is multivariate Gaussian

\[
p(\tilde{Y}^*|X, X^*, y^*) = \mathcal{N}(\mu^*, \Sigma^*),
\]

with

\[
\mu^* = k(X, X^*)(k(X, X) + \sigma^2 I)^{-1}\tilde{y},
\]

and

\[
\sigma^* = k(X^*, X^*) + \sigma^2 I - k(X^*, X)((k(X, X) + \sigma^2 I)^{-1}k(X, X^*)).
\]

And that’s :)

In particular, this gives us a measure of uncertainty in the prediction of \(y^*_j \), which is \(\Sigma^*_{jj} \), as

\[
Y^*_j \sim \mathcal{N}(\mu^*_j, \Sigma^*_{jj})
\].