> p:=n->sqrt(n+1)-sqrt(n);

p := proc (n) options operator, arrow; sqrt(n+1)-sq...

> evalf(p(100));

.4987562e-1

> evalf(p(1000));

.1580744e-1

> evalf(p(10000));

.49999e-2

> evalf(p(100000));

.15812e-2

seems p(n) -> 0

>

Many ways to do the next one. Let's try to find the value for n=1000

> n:=1000; s:=0; for i from 1 to n do s:=evalf(s+1/i) od: evalf(s-ln(n));

n := 1000

s := 0

.577715578

> n:=10000; s:=0; for i from 1 to n do s:=evalf(s+1/i) od: evalf(s-ln(n));

n := 10000

s := 0

.577265665

> n:=100000; s:=0; for i from 1 to n do s:=evalf(s+1/i) od: evalf(s-ln(n));

n := 100000

s := 0

.57722098

Seems to be converging to 0.5772.....

Another way (using "sum", which we didn't learn)

> p:=n->sum(1/z,z=1..n)-ln(n);

p := proc (n) options operator, arrow; sum(1/z,z = ...

> evalf(p(1000));

.577715582

> limit(p(N),N=infinity);

gamma

This is a constant known as "catalan's constant", gamma.

> evalf(gamma);

.5772156649

>

>

Next one.....

> n:=1000; s:=0; for i from 1 to n do s:=evalf(s+1/(n+i)) od: s;

n := 1000

s := 0

.6928972424

> n:=10000; s:=0; for i from 1 to n do s:=evalf(s+1/(n+i)) od: s;

n := 10000

s := 0

.6931221867

> n:=100000; s:=0; for i from 1 to n do s:=evalf(s+1/(n+i)) od: s;

n := 100000

s := 0

.6931446830

Again seems to be converging

> p:=n->sum(1/(z+n),z=1..n);

p := proc (n) options operator, arrow; sum(1/(z+n),...

> evalf(p(10000));

.693122181

> limit(p(N),N=infinity);

ln(2)

> evalf(ln(2));

.6931471806

>

> q:=n->n!*exp(n)/n^(n+1/2);

q := proc (n) options operator, arrow; n!*exp(n)/(n...

> evalf(q(10));

2.527597120

> evalf(q(100));

2.508717995

> evalf(q(1000));

2.506837169

also seems to be converging....

> limit(q(N),N=infinity);

sqrt(2)*sqrt(Pi)

> evalf(sqrt(2*Pi));

2.506628274

>