> p:=n->sqrt(n+1)-sqrt(n);
> evalf(p(100));
> evalf(p(1000));
> evalf(p(10000));
> evalf(p(100000));
seems p(n) -> 0
>
Many ways to do the next one. Let's try to find the value for n=1000
> n:=1000; s:=0; for i from 1 to n do s:=evalf(s+1/i) od: evalf(s-ln(n));
> n:=10000; s:=0; for i from 1 to n do s:=evalf(s+1/i) od: evalf(s-ln(n));
> n:=100000; s:=0; for i from 1 to n do s:=evalf(s+1/i) od: evalf(s-ln(n));
Seems to be converging to 0.5772.....
Another way (using "sum", which we didn't learn)
> p:=n->sum(1/z,z=1..n)-ln(n);
> evalf(p(1000));
> limit(p(N),N=infinity);
This is a constant known as "catalan's constant", gamma.
> evalf(gamma);
>
>
Next one.....
> n:=1000; s:=0; for i from 1 to n do s:=evalf(s+1/(n+i)) od: s;
> n:=10000; s:=0; for i from 1 to n do s:=evalf(s+1/(n+i)) od: s;
> n:=100000; s:=0; for i from 1 to n do s:=evalf(s+1/(n+i)) od: s;
Again seems to be converging
> p:=n->sum(1/(z+n),z=1..n);
> evalf(p(10000));
> limit(p(N),N=infinity);
> evalf(ln(2));
>
> q:=n->n!*exp(n)/n^(n+1/2);
> evalf(q(10));
> evalf(q(100));
> evalf(q(1000));
also seems to be converging....
> limit(q(N),N=infinity);
> evalf(sqrt(2*Pi));
>