Integration
>
Simple indefinite integrals
> I1:=int( x^3*sin(2*x) , x ) ;
Simple definite integrals
> I2:=int( x^2*ln(x) , x=2..3 );
> I3:=int( ln(x)/x^2 , x=1..infinity);
Many special functions appear when doing integrals
> I4:=int ( ln(x)/(1+x) , x );
> I5:=int ( sqrt(1+x^3) , x=0..1 );
> evalf(I5);
Some integrals can simply not be done
> I6:=int( ln(1+x)*exp(-x^2) , x );
> I7:=int( sin(1+x^2)/(1+exp(x)) , x=0..1 );
>
Maple is very good at integrals, but not good at writing the answer in the most sensible form.
Look at I8 below....the answer is real, but Maple uses I !!
Look at I9 below...the answer is equal to Pi*exp(-1) !!
> I8:=int( cos(x)/(1+x^2), x );
> I9:=int( cos(x)/(1+x^2), x=-infinity..infinity );
>
The student package
> with(student);
Int is an "inert" form of int:
> I10:=Int( x^3*sin(x), x);
intparts takes two arguments: the first is an unevaluated integral, the second is the factor to differentiate
> I11:=intparts( I10, x^3 );
> I12:=intparts( I11, x^2 );
> I13:=intparts( I12, x );
> I14:=intparts( I13, 1 );
changevar takes three arguments: the first is an equation defining x in terms of u, the second is an unevaluated integral, the third is the name of the new variable
> I15:=Int( x*sin(x^2), x);
> I16:=changevar( x^2=u, I15, u );
> I17:=Int( arcsin(x), x );
Sometimes Maple does not do what you want.....
> I18:=changevar( x=sin(u), I17, u);
> I19:=Int(u*cos(u),u);
To find the value of an unevaluated integral use "value"
> value(I19);
Partial fractions:
> a1:=(1+x^3)/(2+x+2*x^2+x^3);
> a2:=convert(a1,parfrac,x);
> a3:=1/(1+x^4);
> a4:=convert(a3,parfrac,x);
> a5:=convert(a3,parfrac,x,sqrt(2));
> a6:=convert(a3,parfrac,x,{sqrt(2),I});
> a7:=convert(a3,parfrac,x,real);
>
> int(a3,x);
> int(a5,x);