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Hamiltonian Systems as Machines Over the Reals

Jeremy Schiff

Abstract. I explain how to associate computations with physical systems
such as finite degree of freedom hamiltonian systems, and thus show why
we should consider such systems as real number machines. I make a few
comparisons between these real number machines of those and Blum, Shub
and Smale (the question of equivalence is still open), and also make some
general comments on complexity in physics.

1. Introduction

Two main motivations have been given to date for studying real number ma-
chines à la Blum, Shub and Smale [BSS]. First, this is the relevant framework for
studying the complexity of most numerical algorithms. Second, as the first exam-
ple given in [BSS] shows, this gives a framework for discussing the complexity of
fractal sets and their relatives, a challenge originally posed by Penrose [P].

I wish here to motivate the idea that finite dimensional Hamiltonian systems
(such as the classical three body problem), and for that matter other simple, ide-
alized physical systems, can be regarded as real number machines. This gives an
added motivation for studying the BSS model and its relatives: this is an appro-
priate framework for discussing the complexity of physical systems, another issue
discussed by Penrose [P]. The work presented here was developed in collaboration
with Hava Siegelmann of the Technion [SS1].

Let us step back to review existing work on the complexity of physical systems.
There are three main directions that have been explored:

1. Fredkin and Toffoli [FT] have shown that it is possible to construct a simple
physical system (a “billiard ball computer”) that can do the job of any
Turing machine. Others have followed in this track, including more recently
Moore [M], constructing different physical systems that do the tasks of
digital computers. This has led to the moral that physical systems are
computationally equivalent to Turing machines; at least noone has yet built
a physical system that can solve the halting problem. (See, however, [SS2],
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where we show that “external advice” can be built into physical systems,
through for example coupling constants, to give physical systems super-
Turing capabilities.)

2. Pour-El and Richards [PR] have shown — as explained by Marian Pour-
El in her lecture in this workshop — that unbounded operators need not
preserve computability, implying that even if the inital state of a physical
system is precisely known, its state after a finite time need not be even
computable. This is usually cited as evidence that suitably physical systems
can do things which digital computers cannot. Similar results have been
obtained in the context of information base complexity theory [W].

3. Finally, many authors have explored “quantum computers”. As is well
known, the uncertainty principle of quantum mechanics implies that physi-
cal processes need not have a unique outcome. Thus a quantum computer
might be somewhat “fuzzy”, possibly endowing it with super-Turing capa-
bilities. Penrose [P] has already pointed out that the scales on which such
effects are visible are not typically attained outside the laboratory, so it is
doubtful whether they are of practical importance.

Having already criticized the third of these lines of investigation, permit me to
make some observations about the other two as well. The Pour-El and Richards
results, while interesting in their own right, can also have no physical relevance,
because the effects of uncomputability are only visible assuming we can observe
the state of a continuum physical system to infinite accuracy — this is of course
impossible. So we should certainly not jump from the Pour-El and Richards results
to the conclusion that we should be able to build super-Turing analog machines. On
the other hand, Fredkin and Toffoli’s approach has the deficiency that while they
find physical systems that can do the job of digital computers, the physical systems
that arise this way are somewhat simpler than realistic ones (specifically, one does
not need to numerically solve differential equations to compute their motion).

The conclusion we have reached is that realistic physical systems, like the clas-
sical three body problem, should be considered as a kind of real number machine,
possibly equivalent to the BSS model, thought this remains to be seen. To persuade
you of this I will proceed in the opposite direction from that of Fredkin and Toffoli:
instead of finding physical systems that perform the function of digital computers,
I will discuss — in broad terms — how to associate certain computations with real-
istic physical systems (systems of point particles). This is the content of section 2.
We will study the planar isosceles three body problem as an example. In section 3,
I will explain why — given the kinds of computations they can perform — physical
systems should be viewed as real number machines, and discuss differences and
similarities with the BSS model. And in conclusion, in section 4, I will make some
comments on Penrose’s problem of the complexity of physical systems.

2. The Computations Performed by Systems of Point Particles

Consider a system of a finite number of point particles, whose motion is gov-
erned by some hamiltonian. The motion of the system is described by an orbit on
a constant energy surface of an appropriate phase space1. The Pour-El-Richards

1If there are other conserved quantities, then we restrict to level sets of these too.
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approach to computability in physics assumes that from observation of the physical
system we can determine this orbit precisely, and therefore focuses on the com-
putability of points on the orbit. In practice, this goal is too optimistic. The best
we can do in measurement terms, is to divide the energy surface up into a countable
number of open sets, and observe, at specified time intervals, in which open set (or
sets) the orbit lies (since we are dealing with open sets, the precise determination
of the time will be conveniently unimportant).

The use of open sets in the previous paragraph is critical. To determine whether
an orbit is in a particular closed set (for example, at a specific point) in a certain
time interval, cannot necessarilly be done without precise knowledge of the orbit,
which I have explained is unattainable. There is one exception to this rule that I
wish to make, essentially to compensate for a flaw that exists in the assumption
of “point particles”. I will say that collision — of two or more particles — is

a measurable phenomenon. For perfect point particles, determining collision is
determining membership of a closed set; in practice though, internal structure of
whatever physical model of particles we are using, makes collision a determinable
event. We assume, of course, that the internal degrees of freedom are irrelevant for
the rest of our analysis of the motion.

Let us assign symbols A, B, C, ... to the different kinds of available collision (a
finite number). In addition, assign symbols 1, 2, 3, ... to the open sets (a countable
number) we have used to carve up the relevant energy surface. A typical com-
putation we can say such a physical system performs is that starting from some
initial set of coordinates in phase space, it computes of a list corresponding to the
configuration of the system at regular intervals: each element of the list is either a
collision symbol, or a set of symbols denoting the open sets in which the system is
to be found at the relevant time. Many variations on this theme can be thought of;
we will see one shortly. Of course, we have in this way associated a large number
of machines to our physical system, depending on how coarsely we carve up the
constant energy surface; there is a natural partial ordering on the set of machines
we obtain this way. The limit, in which the division of the energy surfaces becomes
infinitely fine, is a singular one; this is just the limit where we consider the physical
system as computing its orbit exactly, and the noncomputability results of Pour-El
and Richards are relevant. As I have explained, this is a limit we should avoid on
physical grounds.

Prior to giving an explicit example of a computation associated with a realistic
physical system, let me just mention another kind of computation which we cannot

say physical systems perform, like the computation of the exact coordinates of
their orbits. Frequently in multiparticle systems, it is possible to categorize orbits
by their “final motion”, i.e. some simple facts about what happens to the orbit as
time goes to infinity. For example, in in the three body problem one can discuss
bounded orbits, in which all the particles never get more than some finite distance
from each other for large enough times, hyperbolic orbits, in which for large enough
times the distance between any particle and the origin grows (with the particles’
speeds not tending to zero) and so on [AKN]. Often it is possible, from finite time
observation of an orbit, to draw conclusions about its final motion. But generically,
this is not so. We thus should avoid saying a system computes its final motion.
Indeed we shall suggest later that the question of determining the final motion of a
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system is of a level of complexity greater than the halting problem for real number
machines.

We now move to the promised example of the planar isoscles three body problem
(PI3BP). In the PI3BP, we consider the motion under the effect of gravity of 3
bodies in a plane, two having equal mass M , and the other with mass m. If at
some instant the positions and momenta of the two masses M are mirror images
of each other in the line along which the mass m is moving, then it is apparent
that the system is in an isosceles triangle configuration, and that it will stay in
an isosceles triangle configuration forever. The configuration is described by two
coordinates, x, half the base of the isosceles triangle, and y, its height (see Figure
1), and the hamiltonian is

H =
1

4
p2 +

m + 2M

4m
q2 −

M

2x
−

2m
√

x2 + y2
,

where p is the canonical momentum associated to x and q that associated to y.
For negative energies, it is straightforward to check that x is bounded, i.e. the two
masses M can never escape from each other. It turns out furthermore that the two
masses M are guaranteed to collide with each other in a finite time. Provided the
collisions do not involve also the third mass m, it is straightforward to continue the
flow through such a collision (a “binary collision”) — the two masses M just bounce
off each other. The motion of the mass m is however much less predictable. There
are orbits in which y remains bounded, and there are others in which the mass m

escapes (|y| → ∞). Triple collision is possible. There is a very nice computation we
can associate with a negative energy orbit. Between each binary collision, the mass
m will cross the line joining the two masses M a number of times (possibly zero,
always finite). We record, for a given set of initial conditions, these numbers. Thus
we get a sequence of nonnegative integers. But it might happen that triple collision
is reached; in that case we record an “A” at the end of our computed sequence
of integers, and terminate the computation. So, finally, we have a computation
associated with the system that computes a sequence — possibly finite, possibly
infinite — of nonnegative integers, with an “A” at the end if the sequence is finite.

The sequences that emerge this way, known as the “symbolic dynamics” of the
orbit under study, have been exhaustively studied some 15 years ago, and we refer
the reader to the article [D]. It has been proven that all possible finite or infinite
sequences can arise this way. The ones that terminate in an infinite string of 0’s
are particularly interesting, because these correspond precisely to “escape orbits”,
where after a certain time the mass m never returns to cross the line joining the
two masses M . We will return to these sequences later. The computation of the
symbolic dynamics associated with some orbit clearly is a type of computation we
“permit”: apart from the need to recognize collisions, there is never any need to
make an exact determination of the configuration to compute a finite number of
terms in the symbolic dynamics.

3. Hamiltonian Systems are Real Number Machines

To recap: we have seen that in various ways we can regard physical systems
as machines, that compute, from some given initial coordinates in phase space, a
list of elements in a countable alphabet. The reason to regard these as real number
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Figure 1. The Planar Isosceles Three Body Problem

machines is very simple — the input consists of (a finite set of) real numbers, and
the system/machine, since it has a continuum of possibilities for output2, must be
processing the entirity of the information in the input — or at least not just a
countable number of bits of its input — to reach its output.

I feel this point requires some further motivation, and I will go about this as
follows. It should be clear that a machine of the kind we have been discussing (not
hamiltonian, though, I admit) can do the job of the first example of a machine given
in [BSS]. Suppose g : C → C is a polynomial map. Consider a particle moving on
the complex plane, governed by the law of motion that if the particle is at position
z at time t = n, where n is an integer, then between t = n and t = n + 1, the
particle moves, with speed |g(z) − z| along a line from z to g(z). At t = n, for all
integers n, we record a “1” if the particle is in |z| > Cg and a “2” if the particle is
in |z| < 2Cg, where, as in [BSS], Cg is such that if |z| > Cg then |gk(z)| → ∞ as
k → ∞. Our system will output a list of elements of the set {{1}, {2}, {1, 2}}, and
— identifying {1} as a “halting state” — we see the halting set of this machine is
exactly the halting set of the first example in [BSS].

This machine we have just described is actually not obviously a real number
machine in the sense of the first paragraph of this section (that it takes real number
input, and uses “real number encoded information” in its processing). If g(z) = z2,
and the input z is given by supplying its modulus and argument, the processing of
this machine is especially simple, and only requires a finite amount of information
from the input. This is of course not the case for more general g(z). All I am saying
here is that a real number machine should not be called such if it takes real input,

2This is of course true for systems like the PI3BP.
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but then doesn’t actually use it. On the other hand, the criterion of real input is
surely the minimal criterion we should impose on a real number machine.

So now we have to raise the question of whether the machines defined here are
equivalent to BSS machines. BSS machines are imparted with the capability of real
number output when they halt, but this would be a harmless feature to add to our
machines (we would modify the dynamics of the system under consideration such
that on meeting certain conditions the dynamics becomes trivial, allowing us po-
tentially infinite observational capabilities from then on). In general, it seems that
the machines discussed in this paper can certainly do the job of BSS machines. The
converse, however, is far less obvious. At each step of a BSS machine, the relevant
real number computation is calculation of a polynomial map, or possibly a rational
map. This restriction was imposed in [BSS] to be able to formulate complexity
theory in an algebraic framework. During each time step, hamiltonian systems typ-
ically integrate certain differential equations (without, of course, revealing to us the
exact answers); the mapping associated with a time step will almost certainly not
be polynomial, but on the other hand, unless there are singularities in the hamil-
tonian, it will be smooth, allowing polynomial or rational approximation. This is
an interesting problem for further study.

4. The Complexity of Physical Systems

The aim of all this work is to provide a framework for discussing the complexity
of physical systems. While the phrase “the complexity of physical systems” is used
widely in the literature, correctly speaking, and as already noted by Penrose [P],
there is no such thing, and one must discuss the complexity of different questions

about physical systems separately.
A typical question for a physical system is the identification of a set of orbits

satisfying a certain property. In the PI3BP, there are two obvious questions of
interest, that of identifying all triple collision orbits, and that of identifying escape
orbits. For the corresponding machine that we have defined, triple collision orbits
correspond to inputs for which the output is finite, that is, ends in “A”. Identifying
the set of inputs which are finite, or the set of inputs which at some (unspecified)
time have a particular symbol in their output string, is in an obvious way similar to
identifying the set of halting inputs for a Turing machine, and thus it is natural to
define R.E. sets for physical systems as sets of orbits which correspond, in the way
we have just seen, to halting sets for some machine associated with the system.

We believe, but as of yet cannot prove, that the set of escape orbits is not an
R.E. set. For the particular machine we have defined associated with the PI3BP,
escape orbits correspond to inputs which lead to outputs terminating in an infinite
string of zeros (the mass m, after some finite time, never returns to cross the line
joining the two masses M). The problem of identifying inputs which reach and
forever stay in a particular “state” is qualitatively harder than that of identifying
inputs which simply, at some unspecified time, reach that state. This is an un-
familiar result, mainly because for standard Turing machines, it is not true. For
standard Turing machines, because the input tape is finite, and throughout the
computation we can keep track of the length of the tape, once the machine reaches
a certain state, we just have to check that it stays in that state for a certain finite

time to be sure that it will stay in that state forever. For the machine we have
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associated with the PI3BP, Devaney’s theorem suggests3 that this is not the case:
the mass m can continue to head away from the masses M for any length of time
before returning, so to confirm escape, we really need to follow the mass m for an
indefinite time.

Assuming the correctness of the analysis in the previous paragraph (and there
is much to check), we arrive at the conclusion that there is a qualitative difference

in complexity between the questions of identifying the set of triple collision orbits
and identifying the set of escape orbits in the PI3BP. The former is an R.E. set, the
latter is not. Physically, this is no surprise at all — it just restates the obvious, that
triple collision is a finite time effect, but escape is not. The mathematical detail
lacking is the proof that there exist orbits in the PI3BP that cannot be recognized
as escape orbits in any finite time (there certainly exist some escape orbits that can

be recognized in finite time); there is some good evidence for this, though.
Furthermore, despite the fact that the set of escape orbits is, we believe, not

R.E., it does arise as the set of inputs to a real number machine which produce
an output which gets “stuck” in one particular state. It is natural, therefore, to
propose that just as standard non R.E. sets can be classified further into a hierarchy
of complexity classes, so non R.E. sets for real number machines fall into a hierarchy,
and the set of escape orbits in the PI3BP is just an instance of the lowest class in
this hierarchy, which comprises the sets that are non R.E., but that are the sets of
inputs to real number machines which give outputs that get “stuck” in some state.

Apparently there is much more work to do here, both in the area of reassesment
of the PI3BP, and in the area of formalising the rather loose notions of “machines
associated with physical systems” and so on that we have introduced. The overall
consistency of our picture, however, persuades us that our basic identification of
simple, realistic physical systems as a kind of, or possibly even a paradigm of, real
number machine, is correct, and central in the discussion of complexity in physics.
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