
Dec 19, 2001

Enkay Pairs: Solutions of an Inequality
Arising in a Comparison of Graphs

Gideon Ehrlich and Jeremy Schiff

Department of Mathematics and Computer Science

Bar-Ilan University

Ramat Gan 52900, Israel

{ehrlich,schiff}@macs.biu.ac.il

Abstract

We define an enkay pair to be a pair of positive integers (n, k) such that (n −

1)(n − 1)! < 2k < n! . This inequality arises when comparing a hypercube with

the smallest larger star graph. We list the 15 enkay pairs with n ≤ 106, and

speculate on whether the number of enkay pairs is finite or infinite.

An ancient, and apparently everlasting, pursuit of mathematicians is the definition of

special kinds of numbers (such as pefect numbers or Mersenne primes), or maybe small sets

of numbers (such as amicable pairs or Pythagorean triples), and the subsequent investigation

of their properties. In this paper we introduce what we call — for want of a better name

— enkay pairs, and present the little we know about them. We are not currently aware of

any possible interest in enkay pairs beyond mathemtical curiosity, but since we originally

arrived at the notion in a (subsequently aborted) comparison of two kinds of communication

networks, we present them in this context.

The star graph [1] and the hypercube are two popular, frequently compared [2], models

for communication or processor interconnection networks. The star graph Sn is the graph

whose nodes are permutations of the first n naturals; two nodes are joined by an edge if

they differ in their action, as permutations, on just two of the first n naturals, one of which

is 1 (thus Sn has n! nodes, each with n − 1 nearest neighbors). The hypercube Hk is the

graph whose nodes are points of (Z2)
k, i.e. k−tuples of zeros and ones; two nodes are joined
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by an edge if, as k−tuples, they differ in just one place (thus Hk has 2k nodes, each with k

nearest neighbors).

Let a hypercube Hk be given, and suppose a certain task can be accomplished either

using the smallest star graph Sn with more nodes than Hk, or using the hypercube Hk and

the star graph Sn−1. Which involves less nodes? Evidently, using the star graph Sn will be

preferable if n! < 2k + (n− 1)! , or, equivalently, (n− 1)(n− 1)! < 2k. These considerations

motivate the following definition:

Definition. An enkay pair is a pair of positive integers (n, k) such that

(n − 1)(n − 1)! < 2k < n! . (1)

Proposition 1. (a) For any positive integer n there exists at most one positive integer k

such that (n, k) is an enkay pair. (b) For any positive integer k there exists at most one

positive integer n such that (n, k) is an enkay pair.

Proof. (a) Without loss of generality we can assume n ≥ 2, as (1, k) is not an enkay pair

for any positive integer k. For n ≥ 2 let k be the smallest positive integer such that (n, k)

is an enkay pair, if any exist. Then for all integers k′ > k

2k′

≥ 2.2k > 2(n − 1)(n − 1)! > n! ,

so (n, k′) is not an enkay pair. That is, for a given n, if a k exists such that (n, k) is an

enkay pair, then it is unique. (b) Similarly, given a positive integer k, let n be the smallest

positive integer such that (n, k) is an enkay pair, if any exist. Then for all integers n′ > n

(n′ − 1)(n′ − 1)! ≥ n! > 2k ,

so (n′, k) is not an enkay pair. •

Proposition 2. Given a hypercube Hk, let Sn be the smallest star graph with more nodes

than Hk. Sn has less nodes than the union of Hk and Sn−1 if and only if (n, k) is an enkay

pair.

Proof. The star graph Sn has more nodes than the hypercube Hk if and only if 2k < n! . Sn

has less nodes than the union of Hk and Sn−1 if and only if (n−1)(n−1)! < 2k, as explained

before. It remains to show that if (n, k) is an enkay pair then Sn is the smallest star graph

larger than Hk. Suppose Sn−1 is also larger than Hk. Then (n− 1)! > 2k > (n− 1)(n− 1)!,

so n = 1, a contradiction. •

Note. The same problem with the roles of the hypercube and the star graph reversed is

trivial. Given a star graph Sn, let Hk be the smallest hypercube with more nodes than Sn.
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If n = 1, 2 then Hk has the same number of nodes as the union of Sn and Hk−1. Otherwise,

Hk always has less nodes (as Sn has more nodes than Hk−1, which has half as many nodes

as Hk).

Examples. The following is a list of all the enkay pairs we know:

n k

24 79

62 284

65 302

146 844

176 1064

254 1668

257 1692

841 6964

959 8122

5707 62989

10710 127928

11370 136792

95868 1448198

235928 3870478

837752 15275136

We believe this is a comprehensive list of all enkay pairs (n, k) with n ≤ 106.

The next two propositions, which are a little technical, will be used in the subsequent

discussion to formulate a conjecture about the number of enkay pairs. The basic idea is

that we would like to replace the inequality (1) for 2k by an inequality for k, which will be

easier to interpret.

Proposition 3. There exists a positive, decreasing function h, with limN→∞ h(N) = 0,

such that if (n, k) is an enkay pair with n ≥ N (N a positive integer), then

(n+ 1

2
) log n−n+ 1

2
log 2π−

11 + h(N)

12n
< k log 2 < (n+ 1

2
) log n−n+ 1

2
log 2π +

1

12n
. (2)

Proof. Stirling’s series for log Γ(x) gives

(n+ 1

2
) log n−n+ 1

2
log 2π +

1

12n
−

1

360n3
< log n! < (n+ 1

2
) log n−n+ 1

2
log 2π +

1

12n
(3)

for all positive integer n [3]. The right hand inequality in the proposition can be obtained

by taking the logarithm of the right hand side of (1) and applying the right hand inequality
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in (3). To obtain the left hand inequality in the proposition we take the logarithm of the

left hand side of of (1), apply the left hand inequality in (3) with n replaced by (n − 1)

(as explained above, we can assume n ≥ 2), and after some elementary manipulations the

resulting inequality can be written in the form

k log 2 > (n + 1

2
) log n − n + 1

2
log 2π −

11 + h(n)

12n
, (4)

where h(n) = −12n(n + 1

2
)
(

log(1 − 1

n
) +

1

n
+

1

2n2

)

+
2n − 3

n(n − 1)
+

1

30n2(1 − 1

n
)3

.

It is straightforward to check that each of the three terms of h(n) is a positive, decreasing

function of n for n ≥ 3 (we can assume this, as there are no enkay pairs with n = 2).

Furthermore each one tends to zero as n → ∞. Thus for n ≥ N we obtain the LHS

inequality in the proposition. •

Note. In fact h(n) as defined in the above proof has a Taylor series in powers of 1/n

convergent for 1/n < 1. Explicitly h(n) = 6

n
+ 121

30n2 + 3

n3 + . . .. h(n) is already small for

moderate n, and in particular h(100) < 0.1. We used the above proposition with N = 100

and h(N) replaced by 0.1 to search for candidate enkay pairs.

Proposition 4. Suppose that n ≥ N (N a positive integer) and

(n + 1

2
) log n− n + 1

2
log 2π −

11

12n
< k log 2 < (n + 1

2
) log n− n + 1

2
log 2π +

1 − 1

30N2

12n
. (5)

Then (n, k) is an enkay pair.

Proof. The LHS of (3) implies

(n + 1

2
) log n − n + 1

2
log 2π < log n! −

1

12n
+

1

360n3
.

Using this and the RHS of the inequality in the proposition gives

k log 2 < log n! −
1

360n

(

1

N2
−

1

n2

)

< log n! , since n ≥ N . (6)

Taking the RHS of (3) with n replaced by (n − 1), adding log(n − 1) to both sides and

rearranging gives the inequality

(n + 1

2
) log n− n + 1

2
log 2π > log(n− 1)! + log(n− 1)− 1−

1

12(n − 1)
− (n + 1

2
) log(1− 1

n
) .

Using this and the LHS of the inequality in the proposition gives

k log 2 > log(n − 1)! + log(n − 1) +
g(n)

12n
, (7)

where g(n) = −12n(n + 1

2
)
(

log(1 − 1

n
) +

1

n
+

2

n2

)

+
2n − 3

n(n − 1)
.
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For n > 1 both terms in g(n) are positive. Combining (6) and (7) we have

log(n − 1)! + log(n − 1) < k log 2 < log n! ,

implying (n, k) is an enkay pair. •

Discussion. The meaning of Propositions 3 and 4 is as follows. It would be nice if we could

show that (n, k) is an enkay pair if and only if k log 2 lies in the interval (s(n)−11/12n, s(n)+

1/12n) where s(n) = (n + 1

2
) log n − n + 1

2
log 2π. Unfortunately we cannot prove this, but

Proposition 3 states that if (n, k) is an enkay pair then k log 2 must lie in an interval just

slightly larger than (s(n) − 11/12n, s(n) + 1/12n), and Proposition 4 states that if k log 2

lies in an interval just slightly smaller than (s(n)− 11/12n, s(n) + 1/12n), then (n, k) is an

enkay pair. The modifications necessary to the interval (s(n)−11/12n, s(n)+1/12n) become

smaller as we restrict to larger n, so we can think of being an enkay pair as being “equivalent

in the limit of large n” to k log 2 lying in the interval (s(n) − 11/12n, s(n) + 1/12n).

This has ramifications for the statistics of enkay pairs. If we assume that for large n

the fractional parts of the numbers s(n) are independent and uniformly distributed on the

interval [0, 1), then the probability of n having an associated enkay pair must behave as

1/n log 2. Thus for large N the expectation of the number of enkay pairs with N ≤ n ≤ 2N

is approximately 1, or equivalently there should be about log
2
N enkay pairs with n < N .

This is certainly consistent with the list of enkay pairs given above. In addition, we expect

there to exist an infinite number of enkay pairs. A proof of this would be interesting.

The notion of enkay pairs arose from considering when Sn, the smallest star graph with

more nodes than a given hypercube Hk, has less nodes than the union of Hk with Sn−1. If

(n, k) is an enkay pair we can ask if Sn also has less nodes than the union of Hk and Sn−2,

i.e. whether n!−(n−2)! < 2k < n! . We have yet to find a pair of positive integers satisfying

this inequality. Considerations similar to those given for enkay pairs imply we expect only

a finite number of such pairs, and it would be interesting to know if there are any at all.
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