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Abstract

Symplectic integrators do not, in general, reproduce all the features of the dynamics

of the Hamiltonian systems which they approximate. For example, energy conservation

is lost, and global features such as separatrices can be destroyed. We study these

effects for a Hamiltonian system with a single degree of freedom and the simplest

possible symplectic integrator. We look at a sequence of Hamiltonian systems of

higher and higher dimension, that interpolate between the original Hamiltonian system

and the symplectic integrator. In these intermediate Hamiltonian systems we can

make concrete statements about energy conservation and separatrix splitting. The

qualitative dynamics of the symplectic integrator seems to be inherited from these

intermediate systems, and in some cases we can even deduce quantitative results for

the symplectic integrator from those of the intermediate systems.
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1 Introduction

Hamiltonian problems are of particular interest to physicists, mathematicians, and numerical

analysts. The computer simulation of such problems, particularly over long times, presents

a special challenge, since it is essential that the discrete methods employed reproduce both

qualitatively and quantitatively the underlying dynamics of the continuous system they are

supposed to approximate. During the last decade, many investigators have adopted sym-

plectic methods. A useful tool, often invoked in the study of symplectic methods, is the

construction by Lie series techniques of a sequence of Hamiltonian systems, whose exact

solutions give higher and higher order approximations to the results of a given symplectic

method—we review this construction below. The existence of this construction has given

rise to the myth, despite copious evidence to the contrary, that using a symplectic integrator

on a Hamiltonian system is equivalent to exactly solving a modified Hamiltonian system, the

putative limit of the sequence of approximants which unfortunately in general does not ex-

ist. In this paper we present a different method to build a sequence of Hamiltonian systems,

of higher and higher dimension, approximating a given symplectic integrator. We will see

that unlike the Hamiltonian approximants from the Lie series method, these approximants

do offer accurate insight into the qualitative behavior of the symplectic integrator. In par-

ticular we study energy conservation and separatrix splitting for the symplectic integrator;

the Hamiltonian approximants from the Lie series method give the false impression that

symplectic integrators do have a conserved energy function and do not break separatrices,

while our new approximants give the correct picture.

As a simple yet easily generalizable prototype, we work with the (unit-mass) Hamiltonian

in the spatial coordinate q and momentum p

H (q, p) =
p2

2
+ V (q) (1)

which yields the 1 degree of freedom Hamiltonian system of autonomous equations

q̇ = p, ṗ = −∂V (q)

∂q
(2)

corresponding to Newton’s second law

q̈ = −∂V (q)

∂q
. (3)

A one–step numerical method for (2)

qn+1 = Q (qn, pn) , pn+1 = P (qn, pn) , (4)
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is symplectic if the map (q, p) → (Q(q, p), P (q, p)) satisfies a set of derivative-based rela-

tionships, known as the “direct conditions,” and has Jacobian 1 [1], i.e. is area preserving.

The direct conditions are local and do not reflect any global conservation laws—the reader

is encouraged to consult Goldstein [1] for a derivation of what is meant by a symplectic

transformation. Thus it can be verified that the first order Euler method [2]

qn+1 = qn + hpn , pn+1 = pn − h
∂V (q)

∂q

∣

∣

∣

∣

∣

q=qn

(5)

is not symplectic, while the method

qn+1 = qn + hpn , pn+1 = pn − h
∂V (q)

∂q

∣

∣

∣

∣

∣

q=qn+1=qn+hpn

(6)

is. This latter method, which is known as the (lowest-order) Forest-Ruth method [3], is

similar to the Euler method except that the updated momentum variable pn+1 is obtained

using the updated position variable qn+1. Using the Euler method, the phase trajectory

around a center with ∂2V/∂q2 > 0, will spiral away in a non-physical manner, while the

Forest-Ruth method produces a trajectory that is neither repelled by nor attracted to the

center. We will study the Forest-Ruth method in the current paper.

The rationale for preferring symplectic maps for the numerical work on a Hamiltonian

system is that the exact time evolution of a Hamiltonian system is symplectic [1, 4]. Hav-

ing chosen to use the method (6) to integrate (2), it is natural to ask whether there is a

different Hamiltonian problem, with a “modified Hamiltonian” Hm, for which (6) is the

exact time evolution map. Wisdom and Holman [5] devised a time-dependent Hamiltonian,

incorporating an infinite number of δ-functions, that can produce the map (6), generalizing

a result due to Lichtenberg and Lieberman [6]. However, since their Hamiltonian is neither

autonomous nor bounded, we will not consider their methodology further. Instead, we will

review the methodology of Dragt and Finn [7], which is otherwise universally employed, for

generating a series representation for Hm.

We begin by noting that for any function η (q, p)

dη

dt
= q̇

∂η

∂q
+ ṗ

∂η

∂p
=

∂Hm

∂p

∂η

∂q
− ∂Hm

∂q

∂η

∂p
≡ − [Hm, η] (7)

where we have employed Hamilton’s equations of motion—for the modified Hamiltonian

Hm, assuming that it exists—and the Poisson bracket notation, defined, for 1 degree of

freedom, by

[A, B] ≡ ∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q
. (8)

For convenience, we introduce an operator Ĥm defined by

Ĥmη ≡ [Hm, η] . (9)
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We can then write a Lie series

qn+1 = qn + h
dq

dt

∣

∣

∣

∣

∣

t=tn

+
h2

2!

d2q

dt2

∣

∣

∣

∣

∣

t=tn

+ ... = qn − hĤm q|t=tn
+

h2

2
Ĥ2

m q|t=tn
∓ ... , (10)

and analogously for pn+1. We want the latter equation, together with its counterpart for

pn+1, to reproduce the mapping (6). This is the criterion we use to determine Hm. We write

Hm as a series

Hm (q, p, h) = H0 (q, p) + hH1 (q, p) + h2H2 (q, p) + ... . (11)

Inserting the latter into (10) and its equivalent for pn+1, keeping only terms of order h, and

requiring equality, up to order h with the RHS of (6) gives

∂H0 (q, p)

∂p
= p ,

∂H0 (q, p)

∂q
=

∂V (q)

∂q
. (12)

Solving the first of these equations yields

H0 (q, p) =
p2

2
+ F (q) , (13)

where F (q) is any function of q, solving the second gives

H0 (q, p) = V (q) + G (p) , (14)

where G (p) is any function of p. Combining the latter two expressions gives

H0 (q, p) =
p2

2
+ V (q) , (15)

up to an unimportant additive constant. Once H0 has been determined in this way, we

return to (10), insert (11) and require equality with the RHS of (6) up to order h2, and

thus obtain expressions for ∂H1(q,p)
∂q

and ∂H1(q,p)
∂p

, which can be solved for H1. Continuing this

procedure a few steps we obtain

H1 (q, p) = 1
2
p
∂V

∂q
, H2 (q, p) = 1
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p2∂2V

∂q2
+

(

∂V

∂q

)2


 , H3 (q, p) = 1
12

p
∂2V

∂q2

∂V

∂q
, . . .

(16)

It rapidly becomes clear that the recursive procedure for computing terms in Hm—which is

intimately related to the Baker-Campbell-Hausdorff (BCH) algorithm—is algebraically in-

tensive, and is best left to a symbolic manipulator such as Maple or Mathematica; the reader

is referred to Sanz-Serna and Calvo [4] for details, as well as a rich discussion of symplectic

integration methods and their properties. The Hm (q, p) terms become systematically more

complicated as m increases.
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The upshoot of the above construction is that we have a sequence of Hamiltonians (ob-

tained by taking an increasing number of terms in the series representation for Hm), that

apparently give better and better approximations to the dynamics of the symplectic inte-

grator. The only problem is that relatively little is known about the convergence properties

of the series (11). Varadarajan [8] is one of the few investigators to develop a theorem

regarding the convergence of Lie series, but here it appears to be applicable only to the

special case of the simple harmonic oscillator, i.e., V (q) ∝ q2 which corresponds to a linear

force law. See Lessnick [9] for a treatment of the summation of the Lie series. On the other

hand, ample evidence is now available showing that the radius of convergence (in h) of the

series (11) is at best small. For nonlinear problems, Sanz-Serna [10] showed that in general

the series does not converge and it is impossible to find an autonomous differential system

so that the computed points exactly lie on trajectories of the system. Iserles et al. [11]

and Newman et al [12], among others, also have confirmed that the modified Hamiltonian

does not, as a rule, exist. Moreover, Lichtenberg and Lieberman’s [6] now classic textbook

on regular and chaotic dynamics contains a dramatic refutation of the existence of a modi-

fied Hamiltonian. They employed (6) applied to the simple pendulum V (q) = 1 − cos q, a

transformation commonly known as the “standard map,” The phase plane representations

that they obtained do not in general show points residing on closed curves or level sets. In-

stead, their Figure 4.3 reveals island chains and global stochasticity. Thus, in summary, we

see there is a wide gap between the qualitative dynamics of the Hamiltonian approximants

computed by the Lie series approach and that of the symplectic integrator.

In this paper, we propose an alternate approach to deriving a sequence of Hamiltonian

systems which approximate (6). Using the first equation in (6) to eliminate the momentum

variable from the second equation, we obtain the recursion

qn+1 − 2qn + qn−1

h2
= −∂V (qn)

∂qn

. (17)

This expression, first proposed by Störmer (1907) [13], is the simplest member of a family

of “multistep methods”—see the textbooks by Henrici [2] and Hairer et al. [14]. This class

of methods has a venerable history in celestial mechanics, beginning with the apparition of

Halley’s comet at the beginning of the previous century, since it makes use of previously de-

termined estimates of the acceleration in order to (implicitly) establish the time-variability

in the forcing term. Its stability and error properties have been explored in depth re-

cently by Goldstein [15], while Grazier et al. [16] recently employed a high order version of

this methodology—structured to minimize computational roundoff error while keeping the

truncation error of the method below machine precision—in applications to the outer solar

system. As a practical matter, symplectic methods—especially those of higher order—tend

5



to be more complex than such non-symplectic methods and, as a result, can be less efficient

and/or accurate than simpler schemes.

Our key observation is the following: if the Störmer method is a good approximation

for equation (3), we would expect it to be an even better approximation for the series of

equations

q̈ +
h2

12

....
q = −∂V (q)

∂q
, (18)

q̈ +
h2

12

....
q +

h4

360

......
q = −∂V (q)

∂q
, (19)

... .

Thus our proposal is to study what wse will now call—for abvious reasons—the Forest-

Ruth-Störmer method by looking at the sequence of continuous systems

r
∑

i=0

2q(2i+2)h2i

(2i + 2)!
= −∂V (q)

∂q
r = 1, 2, . . . , (20)

and in particular to derive useful information about the symplectic scheme (6) from these

systems.

At this stage it is not clear the systems (20) are Hamiltonian. Section 2 is devoted to

their variational and Hamiltonian formulation, thus justifying the title of this paper. The

systems are of higher and higher dimension. From both the variational and Hamiltonian

approaches we deduce that the systems (20) have a conserved quantity, which is critical in

the sequel.

In Section 3 we show how to partially integrate each of the systems (20), reducing each

one to an integro-differential system in a 2-dimensional phase space. This allows immediate

comparison of (20) with (3) in its Hamiltonian form (2). Herein lies the strength of our

approach. By increasing r we can make the system (20) as good an approximation as

we want to the Forest-Ruth-Störmer method. But at the same time it is rather easier to

compare the dynamics of (20) and (3) than to directly compare the dynamics of (17) and

(3).

In Sections 4 and 5 we use our approach to look at some of the more subtle aspects of

the dynamics of symplectic integrators. In Section 4 we reconsider the question of energy

conservation for the map (6). As we have explained at length above, (6) does not admit

a conserved energy function. But in practice symplectic integrators do display remarkably

“good” energy-conservation properties (see [4] section 10.1.2 or [17] section 1.4 for existing

explanations). In our approach, the symplectic scheme (6) arises as the limit of the contin-

uous systems (20), each of which are Hamiltonian and have a conserved energy in a suitable
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higher dimensional phase space. On the reduction to a 2-dimensional phase space the con-

served energy becomes non-local and time-dependent, but is still sufficient to guarantee that

most orbits are highly concentrated around the level set of a suitable function (the function

depending on the orbit, thus allowing for the crossing of orbits). It seems that (6) inherits

precisely these properties.

Section 5 deals with separatrix splitting from our approach. For the case of the simple

pendulum, V (q) = 1− cos q, the Forest-Ruth-Störmer method is equivalent to the standard

map, for which exponentially small separatrix splitting has been observed [18]. In the

setting of (6) this means that the stable manifold of the fixed point (π, 0) and the unstable

manifold of the fixed point (−π, 0) do not coincide, as is the case for the continuum system

(3), but instead intersect transversally at an angle that is exponentially small in h. This

is an example of the crossing of orbits of (6) mentioned above. We show that separatrix

splitting happens in all the systems (20), and provide an easy way to show exponential

smallness.

Section 6 contains some conclusions and suggestions for further work.

2 Variational and Hamiltonian Structure of (20)

In this section we show that the systems (20) can be obtained both from a variational

principle and as Hamilton’s equations for a suitable Hamiltonian. In fact the same is true

for all equations of the form
r
∑

i=0

aiq
(2i+2) = −∂V (q)

∂q
, (21)

where a1, . . . , ar are constants, so we work with this more general system. We assume

ar 6= 0 without loss of generality. For the special case of the Forest-Ruth-Störmer method,

qi = 2 h2i/ (2i + 2)!.

Proposition 1. Equation (21) is the Euler-Lagrange equation for the Lagrangian

L = 1
2

r
∑

i=0

(−1)iai

(

q(i+1)
)2 − V (q) (22)

which makes
∫

dt L
(

q, q̇, ..., q(r+1)
)

dt an extremum.

Proof. A trivial calculation. •

Proposition 2. The system (21) has a conserved quantity

K =
r
∑

i=0

ai





i−1
∑

j=0

(−1)jq(j+1)q(2i+1−j) + (−1)i 1

2

(

q(i+1)
)2



+ V (q) . (23)
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Proof. A trivial calculation. Or, if you want, you can apply Noether’s theorem [19] to the

Lagrangian (22), which is invariant under time translation. •

Proposition 3. Equation (21) is equivalent to Hamilton’s equations for the Hamiltonian

H(q0, . . . , qr, p0, . . . , pr) =
(−1)r

2ar
p2

r +
r−1
∑

i=0

piqi+1 +
1

2

r
∑

i=1

(−1)iai−1q
2
i + V (q0) . (24)

Proof. Hamilton’s equations

q̇i =
∂H

∂pi

, ṗi = −∂H

∂qi

, (25)

yield

q̇i = qi+1 , i = 0, . . . , r − 1 , (26)

q̇r = (−1)r pr

ar
, (27)

ṗ0 = −∂V (q0)

∂q0

, (28)

ṗi = −pi−1 − (−1)iai−1qi , i = 1, . . . , r . (29)

From (26)

qi = q
(i)
0 , i = 1, . . . , r , (30)

and from (27)

pr = (−1)rarq
(r+1)
0 . (31)

Writing (29) in the form

pi−1 = −ṗi − (−1)iai−1qi , i = 1, . . . , r , (32)

we can recursively find pr−1, pr−2, . . . , p0 in terms of q0. The result takes the simple form

pi = (−1)i
r−i
∑

j=0

ai+jq
(i+2j+1)
0 , i = 0, . . . , r . (33)

In particular we have

p0 =
r
∑

j=0

ajq
(2j+1)
0 , (34)

and thus from (28) we see q0 must satisfy (21). Thus from a solution of Hamilton’s equations

for the Hamiltonian (24) we recover a solution of (21), and conversely, given a solution of

(21) we recover a solution of (26)-(29) using (30) and (33). •

Notes: 1. Since

det

(

∂2H

∂pi∂pj

)

= 0 , (35)
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our Hamiltonian is degenerate, in the sense of classical mechanics, and it is not clear in

what way the variational principle for (21) and the Hamiltonian formulation of (21) are

related. The usual proof of equivalence of Lagrangian and Hamiltonian formulations in

classical mechanics requires nondegeneracy.

2. H of course is a conserved quantity. Substituting (30) and (33) in H we recover the

conserved quantity K defined in (23).

3. A useful alternate form of the Hamiltonian H , if a0, . . . , ar−1 are all positive, is

H =
1

2

r
∑

i=0

(−1)i p
2
i

ai
+

1

2

r
∑

i=1

(−1)i

(

√
ai−1qi +

(−1)ipi−1√
ai−1

)2

+ V (q0) . (36)

If ai = (−1)iαi, i = 0, . . . , r, where all the αi are positive, then we can write

H =
1

2

r
∑

i=0

p2
i

αi
− 1

2

r
∑

i=1

(

√
αi−1qi −

pi−1√
αi−1

)2

+ V (q0) . (37)

4. The Hamiltonian (24) is certainly not unique, and we have the freedom to make canonical

changes of coordinates. In light of this, the identification of the qi as positions and the pi

as momenta is, at least for i ≥ 1, arbitrary. Equations (36) and (37) would arguably look

better if for all odd i we were to “switch” qi and pi (by which we mean replace qi by pi and

pi by −qi). This would prevent the need for linear combinations of q’s and p’s in the second

sum, but on the other hand it complicates the first sum. Likewise, this change complicates

the proof of proposition 3. Equations (39), (41) and (42)-(43) below, however, are all made a

little cleaner by switching q1 and p1, and the reader is asked to mentally make this cosmetic

change if he/she finds it helpful.

Examples: 1. Equation (18). r = 1, a0 = 1, a1 = h2/12.

H = − 6

h2
p2

1 + p0q1 −
1

2
q2
1 + V (q0) (38)

=
1

2
p2

0 + V (q0) −
6

h2
p2

1 −
1

2
(p0 − q1)

2 . (39)

Note this has the form of the Hamiltonian for (2) minus a sum of nonnegative terms. It

becomes useful to think of q1 and p1 as “hidden variables.” In particular, we observe that

the trajectory for q0 and p0 lies on an outside a level surface. The rapid oscillations—

to be described below—of the hidden variables renders the orbit “thick” or “fuzzy” and

established a conceptual link to critical ingredients in KAM theory.

2. Equation (19). r = 2, a0 = 1, a1 = h2/12, a2 = h4/360.

H =
180

h4
p2

2 + p0q1 + p1q2 −
1

2
q2
1 +

h2

24
q2
2 + V (q0) (40)

=
1

2
p2

0 + V (q0) −
6

h2
p2

1 −
1

2
(p0 − q1)

2 +
180

h4
p2

2 +
1

2

(

h√
12

q2 +

√
12

h
p1

)2

. (41)
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Note this has the form of the Hamiltonian (39) for (18) plus a sum of nonnegative terms.

The role of hidden variables and of “thickness” or “fuzziness” becomes especially clear.

3 The dynamics of (20) as a perturbation of (3)

The aim in this section is to compare the dynamics of (20) and (3). To do this we show that

(20) can be written in a manner very similar to the Hamiltonian formulation (2) of (3).

The starting point is the q̇0 and ṗ0 equations in the Hamiltonian formulation given for

(20) in Section 2. These are

q̇0 = q1 , ṗ0 = −∂V (q0)

∂q0

, (42)

where now q1 is not quite p0, but instead

p0 = q1 +
h2

12
q̈1 + . . . +

2h2r

(2r + 2)!
q
(2r)
1 . (43)

To write an analog of (2) we need to invert this last equation to write q1 in terms of p0. Let

λ1, . . . , λ2r denote the 2r roots of the equation

1 +
z2

12
+

z4

360
. . . +

2z2r

(2r + 2)!
= 0 . (44)

On the basis of numerical evidence we have, we will assume the roots of this equation to be

distinct, for any r (see the appendix for more information). The roots λi evidently come in

complex–conjugate plus–minus quadruples, except for roots on the imaginary axis, which

come in plus–minus pairs (there are clearly no real roots). Assuming that the roots are

distinct1, we can use the method of variation of constants to obtain the general solution of

(43),

q1 =
2r
∑

i=1

Aie
λit/h +

1

h

∫ t

0

(

2r
∑

i=1

Vie
λi(t−s)/h

)

p0(s)ds , (45)

where the Ai, i = 1, . . . , 2r, are arbitrary constants, and the Vi, i = 1, . . . , 2r, are constants

satisfying
2r
∑

i=1

Vi =
2r
∑

i=1

Viλi =
2r
∑

i=1

Viλ
2
i = . . . =

2r
∑

i=1

Viλ
2r−2
i = 0 , (46)

2r
∑

i=1

Viλ
2r−1
i =

(2r + 2)!

2
. (47)

1If the roots are not distinct—although we believe that they are—then we can employ a simple variant

of the method of variation of constants, simply by altering the relevant basis set. Suppose that a root λ̂ has

multiplicity M . then, tieλ̂t for i = 0, ..., M − 1 are also solutions of (43) an can be employed in lieu of eλit

for M values of i.
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Note that the condition for the existence of a unique solution Vi of equations (46)-(47) is

the nonvanishing of a Vandermonde determinant, which is automatically nonzero if the λi

are distinct [20].

Proposition 4.

(1)
2r
∑

i=1

Viλ
2n
i = 0 , n ∈ Z . (48)

(2)
2r
∑

i=1

Vi

λi
= −1 ,

2r
∑

i=1

Vi

λ3
i

=
1

12
,

2r
∑

i=1

Vi

λ5
i

=

{− 1
144

r = 1

− 1
240

r ≥ 2
. (49)

(3) For r ≥ n , n ∈ N ,
2r
∑

i=1

Vi

λ2n+1
i

is independent of r .

Proof. (1) Without loss of generality we assume λi = −λr+i, i = 1, . . . , r. We then have

Vi = −Vr+i, i = 1, . . . , r and the identity follows trivially.

(2) For each i = 1, . . . , 2r we have

1 +
λ2

i

12
+

λ4
i

360
. . . +

2λ2r
i

(2r + 2)!
= 0 , (50)

and so
1

λi
+

λi

12
+

λ3
i

360
. . . +

2λ2r−1
i

(2r + 2)!
= 0 . (51)

Multiplying by Vi, summing over i and using (46)-(47) we have

2r
∑

i=1

Vi

λi
+ 1 = 0, (52)

proving the first identity. Similarly, starting with

1

λ3
i

+
1

12λi
+

λi

360
. . . +

2λ2r−3
i

(2r + 2)!
= 0 , (53)

multiplying by Vi, summing over i and using (46) and (52) gives

2r
∑

i=1

Vi

λ3
i

− 1

12
= 0, (54)

the second identity. For the third identity, we start with

1

λ5
i

+
1

12λ3
i

+
1

360λi
. . . +

2λ2r−5
i

(2r + 2)!
= 0 , (55)

multiply by Vi, sum over i and use (46) to get

2r
∑

i=1

Vi

λ5
i

+
1

12

2r
∑

i=1

Vi

λ3
i

+
1

360

2r
∑

i=1

Vi

λ1
i

= 0 (56)
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if r ≥ 2, but
2r
∑

i=1

Vi

λ5
i

+
1

12

2r
∑

i=1

Vi

λ3
i

= 0 (57)

if r = 1. The result follows.

(3) follows by an obvious extension of the arguments used to prove (2). •

The first identity in part (2) of the above proposition allows us to integrate (45) by parts

to obtain

q1(t) = p0(t) +
2r
∑

i=1

Bie
λit/h +

∫ t

0

(

2r
∑

i=1

Vi
eλi(t−s)/h

λi

)

ṗ0(s)ds , (58)

where the Bi, i = 1, . . . , 2r, are new arbitrary constants. Thus we have our final result:

Proposition 5. For each r = 1, 2, . . ., (20) can be written as a perturbation of (2) as:

q̇(t) = p(t) +
2r
∑

i=1

Bie
λit/h −

∫ t

0

(

2r
∑

i=1

Vi
eλi(t−s)/h

λi

)

∂V (q(s))

∂q(s)
ds , (59)

ṗ(t) = −∂V (q(t))

∂q(t)
, (60)

where the Bi are arbitrary constants.

Here (and henceforth) we have dropped the suffix on q0, p0, which should cause no confusion.

Example. In the case r = 1, λ1 = −λ2 = i
√

12, V1/λ1 = V2/λ2 = −1/2, and the system

(59)-(60) becomes

q̇(t) = p(t) + A sin

(√
12

h
t

)

+ B cos

(√
12

h
t

)

+
∫ t

0
cos

(√
12

h
(t − s)

)

∂V (q(s))

∂q(s)
ds,(61)

ṗ(t) = −∂V (q(t))

∂q(t)
, (62)

where A, B are constants.

Comparison of (59)-(60) and (2). In the passage from (3) to (20) we see we have added

two terms to the first equation in (2). To understand the first extra term, we start by

supposing that the λi are pure imaginary (which is only actually true in the case r = 1,

but we will describe the necessary modification below). Then the extra first term in (59)

is simply a high frequency oscillatory forcing term. For small Bi the orbit will be a low-

amplitude, high-frequency oscillation around an orbit determined by the other terms in the

equation. The reason the constants Bi are there is because the in passing from (3) to (20)

we have passed from a 2nd order system to a (2r + 2)th order system. Thus instead of

a single orbit through each point in the (q, p) plane there is now 2r-dimensional family of

orbits, all oscillating around some fundamental orbit. In other words, the first extra term

in (59) describes a “thickening” “fuzziness” of the underlying orbit.
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In fact unless r = 1, some of the λi do have nonzero real part (see the appendix), which

for sufficiently large positive or negative times will have a substantial effect. As we will

see later, it seems that in the limit r → ∞ it is the pure imaginary λi that are of greatest

significance. For finite r, though, the effect of the nonzero real parts of some of the λi is

that our picture of a “thickening” of orbits is only valid for finite time intervals.

Moving now to the second extra term in (59), we integrate repeatedly by parts, always

integrating the exponential factors, thus developing an asymptotic expansion in h. A single

integration by parts gives

q̇(t) = p(t) +
2r
∑

i=1

B̃ie
λit/h − h

∫ t

0

2r
∑

i=1

Vi

λ2
i

eλi(t−s)/h ∂2V (q(s))

∂q(s)2
q̇(s)ds , (63)

where

B̃i = Bi − h
Vi

λ2
i

∂V (q(0))

∂q(0)
(64)

are new constants, and we have used (1) in Proposition 4. (63) functions as a bootstrap

equation: if we know q̇ to order hn we can insert on the RHS to find q̇ to order hn+1. Also

we see from (63) that

q̇(t) = p(t) +
2r
∑

i=1

B̃ie
λit/h + O(h) , (65)

telling us how to start the bootstrap procedure. Substituting (65) into (63) and integrating

by parts gives us the result to the next order which is just

q̇(t) = p(t) +
2r
∑

i=1

B̃ie
λit/h − h

2r
∑

i=1

ViB̃i

λ2
i

eλit/h
∫ t

0

∂2V (q(s))

∂q(s)2
ds + O(h2) . (66)

The only correction at this order is addition of a new oscillatory term. At the next order

a large number of new oscillatory terms enter, but so does a single other term. The result

can be written

q̇(t) = p(t) +
2r
∑

i=1

Bi(t)e
λit/h +

h2

12
p(t)

∂2V (q(t))

∂q(t)2
+ O(h3) . (67)

The appearance of a nonoscillatory term at order h2 is no surprise. (20) is an order h2

perturbation of (3), and so in addition to the “thickening the orbits”, we expect to see order

h2 corrections in the passage from (2) to (59)-(60) . Continuing the bootstrap procedure it

is possible to see that the content of the second extra term in (59) is a series of corrections

to the “underlying dynamics” at orders h2, h4, . . ., and a menagerie of oscillatory terms. It

is possible to determine the nonoscillatory terms without calculating the oscillatory terms.

If the nonoscillatory terms in q̇ are of the form
∑∞

n=0 h2nAn(q, p), consistency with (63)

requires

∞
∑

n=0

h2nAn(q, p) = p +
∞
∑

s=1

h2s

(

2r
∑

i=1

Vi

λ2s+1
i

)(

−∂V

∂q

∂

∂p
+

(

∞
∑

m=0

h2mAm

)

∂

∂q

)s
∂V

∂q
. (68)

13



The infinite series here are formal, not convergent. The sums
∑2r

i=1 Vi/λ
2s+1
i can be computed

as in Proposition 4.

Thus we have the full picture of the corrections in the passage from (2) to (59)-(60) .

The orbits undergo O(h2) corrections, and “thickening” due to the arbitrary constants and

the oscillatory forcing terms. In fact this is all standard from regarding (20) as a singular

perturbation of (3). The standard approach of singular perturbation theory (see for example

[21]) would have as solve (20) by first looking for a formal solution in powers of h2, with

leading term a solution of (3), and then adding a rapidly changing correction term to account

for initial or boundary conditions. We are fortunate in having the exact formula (59)-(60)

, and that we do not need to rely on asymptotic, but divergent, pertrubation series in h2.

4 Do Symplectic Integrators Have a Conserved En-

ergy Function?

In this section we wish to look at the question whether there is a function on phase space

conserved under the map (6). We now have an obvious candidate for this. The systems

(20) are closer and closer approximations to (17) which is equivalent to (6). But in Section

2 we have seen that each of the systems (20) has a conserved quantity. However, as noted

earlier, this does not mean that the orbit of q0 and p0 lies on a level surface of the true (i.e.,

original) Hamiltonian. What happens to this as r → ∞?

We need to write the conserved quantity of (20)—which we have in a variety of forms

(23),(24),(36)—in terms of just the q and p variables used in (59)-(60) . This is a rather

arduous procedure, but the answer is simple to check once you have it, so we just state the

result. We start with the case r = 1.

Proposition 6a. The quantity

H̃ =
1

2
p2 + V (q) − 1

2

(

A +
∫ t

0
sin

(√
12s

h

)

∂V (q(s))

∂q(s)
ds

)2

−1

2

(

B +
∫ t

0
cos

(√
12s

h

)

∂V (q(s))

∂q(s)
ds

)2

(69)

is a conserved quantity for the flow (61)-(62).

For the general case, using the fact that the λi come in plus-minus pairs, we assume

without loss of generality that λi = −λr+i, i = 1, . . . , r and thus Vi = −Vr+i, i = 1, . . . , r.

With this choice it is straightforward to verify the following:
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Proposition 6. The quantity

H̃ =
1

2
p2 + V (q)

+
r
∑

i=1

Vi

λi

(

Bi +
∫ t

0
e−λis/h ∂V (q(s))

∂q(s)
ds

)(

Bi+r +
∫ t

0
eλis/h∂V (q(s))

∂q(s)
ds

)

(70)

is a conserved quantity for the flow (59)-(60). This reduces to (69) in the case r = 1.

Not surprisingly, this Hamiltonian is reminiscent of that obtained in canonical perturbation

theory, using the Von Zeipel procedure [22], for transformations of the Hamilton-Jacobi

equation.

Comments on H̃: This is not a conserved quantity in the usual sense. It is nonlocal,

explicitly t-dependent and depends on the constants Bi.

The dependence on the Bi is expected, and reflects the fact that there are multiple

orbits, labelled by the Bi, through each point in the (q, p) plane. Ignoring for a moment the

other complications in H̃ (nonlocality and time-dependence), the existence of a conserved

quantity depending on constants in this manner is an interesting notion, which means that

each individual orbit has the property that it lies on the level set of some function, but

nevertheless orbits can cross, because the constants change from orbit to orbit.

The nonlocality and expicit t-dependence of H̃ can be dealt with as follows. Using the

integration by parts procedure from Section 3 we can compute H̃ to any finite order in h.

The result will be a sum of terms local in q, p and oscillatory terms (as in Section 3 we

ignore the real parts of the λi for our initial discussion). The local terms alone must provide

a conserved quantity of the relevant order (i.e. a quantity whose derivative vanishes modulo

terms of higher order). It is possible to write a formula for the local terms in H̃ in terms of

the local terms An(p, q)) in q̇ (see (68)):

H̄ =
1

2
p2 + V (q) − 1

2

∞
∑

n=0

h2n+2

[

2r
∑

i=1

Vi

λ2n+3
i

] [

2n
∑

s=0

(−1)sDs

(

∂V

∂q

)

· D2n−s

(

∂V

∂q

)]

, (71)

where

D = −∂V

∂q

∂

∂p
+

(

∞
∑

m=0

h2mAm

)

∂

∂q
. (72)

In particular for the first few terms we have

H̄ =
1

2
p2 + V (q) − h2

24

(

∂V

∂q

)2

+
h4

96c



2p2∂V

∂q

∂3V

∂q3
− p2

(

∂2V

∂q2

)2

− 2

(

∂V

∂q

)2
∂2V

∂q2



+ . . . ,

(73)

where c = 3 if r = 1 and c = 5 if r ≥ 2. The reader is invited to check that ˙̄H = O(h6)

using just the equations of motion q̇ = q1, ṗ = −∂V /∂q, where p = q1 + h2q̈1/12 if r = 1
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and p = q1 + h2q̈1/12 + h4 ....
q1 /360 if r ≥ 2. We once again emphasize that the perturbative

conserved quantity H̄ is a formal power series in h, and is asymptotic, but not convergent.

Returning now to the full conserved quantity H̃ : as explained in the last paragraph,

after a sufficient number of integrations by parts H̃ is the sum of some local terms, some

oscillatory terms, and terms of higher order in h. Assuming that the constants Bi are chosen

so the amplitude of the oscillatory terms is not too high, and that we have reached an order

where the “higher order term” can genuinely be neglected, we can conclude that orbits will

be highly concentrated around a level set of the function given by the local terms. This

picture is on the (false) assumption that the λi are pure imaginary. Reintroducing their real

parts means that the picture will change for sufficiently large positive or negative t, when

what we have called the oscillatory terms in fact become large.

The limit r → ∞. We are now ready to discuss the limit r → ∞. In this limit the

equation (20) becomes the Forest-Ruth-Störmer method (17). Our first observation is that

in the perturbative series H̄ defined in (71), the term of order h2n does not change for

r > n. Thus the r → ∞ limit of this series is well-defined, and gives rise to the perturbative

conserved quantity for the Forest-Ruth-Störmer method. We say “gives rise to” as opposed

to “is”, because the usage of p in (71) differs from the usage of p in equations (11), (15),

and (16) in which we gave the first few terms of the perturbative conserved quantity for

the Forest-Ruth-Störmer method. In (71), for large r, p and q satisfy by q̇ = q1, ṗ = −∂V
∂q

,

p = q1 + h2q̈1/12+ h4 ....
q1 /360+ . . . In (11),(15),(16), the relation of p and q is from the first

equation of (6), p = (q(tn + h) − q(tn))/h = q̇ + hq̈/2 + h2
...
q /6 + . . .. A brief calculation

shows that to obtain (11) from (71) it is necessary to replace p in (71) by

p +
h

2

∂V

∂q
+

h2

12
p
∂2V

∂q2
+

h3

24
p
∂V

∂q

∂2V

∂q2
+ . . . . (74)

Our second observation is that since the systems (20) approximate (17) to arbitrary

accuracy, and since for the systems (20) we have seen that orbits are concentrated around

level sets of the perturbative conserved quantity, this should hold true for (17) too, giving

the expected behavior for a symplectic integrator. However, it is difficult to say if this is

the case only for long, finite times, or for all time. In the limit r → ∞ the equation (44)

becomes
cosh z − 1

z2
= 0 , (75)

with double roots at z = 2πin for every nonzero integer n. This suggests that in the limit

r → ∞ the real parts of the λi may not be significant. There are several subtleties here

though, as for fixed r only a fraction of the λi are close to the limit points 2πin, and also
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because in the limit the roots are double, while we have been assuming they are single (see

the appendix describing the behavior of the λi).

We are hopeful that further detailed study of the implications of the conserved quantity

(70) for the systems (20) will yield the r dependence of the time for which orbits remain

close to orbits of the perturbative conserved quantity, which will allow us to take the r → ∞
limit. It is even possible that we might be able to make sense of the explicit expression H̃

in the limit r → ∞. This requires information on the limit of the constants Vi/λi, which we

do not as of yet have. We emphasize that even if it is possible to make sense of H̃ in the

limit r → ∞, it of course will not yield a standard conserved quantity for the symplectic

integrator, this is prohibited by the classic results of Ge and Marsden [23].

To summarize: For the systems (20) we have presented a nonlocal, time-dependent,

constant-dependent conserved quantity, from which we can derive the formal perturbative

conserved quantity, and which keeps orbits close to the level sets of the perturbative con-

served quantity for long finite times. In the r → ∞ limit we recover the perturbative

conserved quantity of the symplectic integrator (6), and see an origin for the known “almost

energy conserving” properties of the symplectic integrator.

5 Separatrix Splitting

In this section we take V (q) = 1− cos q, i.e. we restrict to the case of the simple pendulum,

and our aim is to study separtrix splitting for the systems (20), or equivalently (59)-(60).

We start by looking at the case r = 1, i.e. the system (18) or equivalently (61)-(62).

The system (61)-(62) has fixed points at (q0, p0) = (0, 0), (±π, 0) (take A = B = 0).

Let us look for solutions with (q(t), p(t)) → (π, 0) as t → ∞. Expanding the cosine in the

integral in (61) we have

q̇(t) = p(t) + sin

(√
12

h
t

) [

A +
∫ t

0
sin

(√
12

h
s

)

sin q(s)ds

]

+ cos

(√
12

h
t

) [

B +
∫ t

0
cos

(√
12

h
s

)

sin q(s)ds

]

. (76)

If we want a solution with q̇(t) → 0 as t → ∞ we clearly need to choose

A = −
∫ ∞

0
sin

(√
12

h
s

)

sin q(s)ds , B =
∫ ∞

0
cos

(√
12

h
s

)

sin q(s)ds . (77)

With this choice (76) becomes

q̇(t) = p(t) −
∫ ∞

t
cos

(√
12

h
(t − s)

)

sin q(s)ds , (78)
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and we of course still have

ṗ(t) = − sin q(t) . (79)

Consider the solution of (78)-(79) such that (q(t), p(t)) → (π, 0) as t → ∞, the stable

manifold of the point (π, 0). To fix the time translation invariance let us specify q(0) = 0.

From (79), ṗ(0) = 0, so if we look at this orbit in the (q, p) plane, it has zero gradient when

it crosses q = 0, just like the stable manifold of (π, 0) for the unperturbed pendulum (2).

However p 6= q̇!! Suppose we look at the orbit in the (q, q̇) plane. Then the gradient as it

crosses q = 0 is just q̈(0)/q̇(0). Differentiating (78) and using (79) we have

q̈(t) =

√
12

h

∫ ∞

t
sin

(√
12

h
(t − s)

)

sin (q(s)) ds . (80)

Thus we arrive at

Proposition 7a. The gradient at q = 0 of the stable manifold of (π, 0) in the (q, q̇) plane

is

−
√

12

hq̇(0)

∫ ∞

0
sin

(√
12

h
s

)

sin (q(s)) ds , (81)

where q(t) is the solution of (18) corresponding to the stable manifold.

At first glance this proposition does not look at all useful: If we know q(t) then we can

compute q̈(0)/q̇(0) directly and have no need for (81)! The utility of the proposition lies in

the fact that inserting the perturbative approximation for q(t) in (81) gives a much better

approximation to the true gradient than inserting it in the naive formula q̈(0)/q̇(0) (which

gives 0). In fact a first approximation to the gradient can be obtained by inserting in (81)

the q(t) corresponding to the stable manifold of (π, 0) for the unperturbed pendulum (2),

q(t) = 2arctan(sinht) . (82)

Using this gives an approximation for the gradient of

−
√

12

h

∫ ∞

0
sin

(√
12

h
s

)

sinh s

cosh2 s
ds = −

√
3

hi

∫ ∞

−∞
exp

(

i

√
12

h
s

)

sinh s

cosh2 s
ds . (83)

This last integral is straightforward to find by contour integration techniques. The dominant

contribution is from the double pole of the integrand at s = iπ/2, and evaluating this gives

an approximation for the gradient of

−12π

h2
e−

√
3π/h ≈ −37.7

h2
e−

√
3π/h . (84)

Some careful numerical work gives the correct formula for the gradient to be approximately

−78.2

h2
e−

√
3π/h . (85)
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In the next paragraph we explain how to improve the theoretical prediction by using the

q(t) obtained from perturbation theory, not simply that of the unperturbed pendulum; but

we note that use of the unperturbed q(t) already suffices to give the general form of the

gradient, and particularly that it is exponentially small.

Using a symbolic manipulator it is straightforward to obtain the first few terms in the

perturbation series for the stable manifold of (π, 0) for the perturbed pendulum (18):

q(t) = 2arctan(sinht) +
h2

12

(

− t

cosh t
+ 3

sinh t

cosh2 t

)

+
h4

144

(

13

4

t

cosh t
− 1

4

(t2 + 31) sinh t

cosh2 t

− 3t

cosh3 t
+

41

2

sinh t

cosh4 t

)

+
h6

1728

(

−255t + t3

24 cosh t
+

(1287 + 50t2) sinh t

40 cosh2 t

+
(525t + t3)

12 cosh3 t
− (5502 + 45t2) sinh t

20 cosh4 t
− 41t

cosh5 t
+

2169 sinh t

5 cosh6 t

)

+ . . . . (86)

To all orders in h2 the perturbation series solution is an odd function of t (and thus to all

orders q̈(0) = 0). It follows that we can replace (81) by

−
√

3

ihq̇(0)

∫ ∞

−∞
exp

(

i

√
12

h
s

)

sin(q(s)ds . (87)

The integral can be evaluated by completing the contour in the upper half plane, and is

dominated by contributions from the pole at s = iπ/2. The leading term in the series in h2

for sin q(s) has a double pole at s = iπ/2, the O(h2) term has a fourth order pole, the O(h4)

term a sixth order pole and so on. Thus there will be O(e−
√

3π/h/h2) contributions to the

gradient from every order in the perturbation series of q(t). Table 1 shows the coefficient

multiplying −e−
√

3π/h/h2 as a function of the maximal power of h2 retained. By fitting a

curve of the form a+ b/n+ c/n2 to the last 6 data points (a, b, c are coefficients to be fitted,

n is the power of h2) we find a limit as n → ∞ of the coefficient of 78.2, in agreement with

the numerical result (85).

Before leaving this section, we note that it is also possible to predict exponentially small

separatrix splitting for (18) using the power series methods of [24].

Separatrix splitting for (20) for arbitrary r.

For general r the stable manifold of (π, 0) for the system (59)-(60) is more than one

dimensional. Because some of the λi have nonzero real part, not all the Bi are fixed uniquely

by the requirement that the system admit a solution tending to (π, 0). We focus on a one-

dimensional submanifold of the stable manifold given by the system

q̇(t) = p(t) +
∫ ∞

t

2r
∑

i=1

Vi

λi
eλi(t−s)/h sin q(s)ds , (88)

ṗ(t) = − sin q(t) . (89)
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highest power of h2 used coefficient (exact) coefficient (5 s.f.)

1 18π 56.549

2 41
2
π 64.403

3 2169
100

π 68.141

4 2630051
117600

π 70.260

5 48261629
2116800

π 71.626

6 161396252183
6985440000

π 72.585

7 55087526993651
2361078720000

π 73.298

8 130540216171272433
5553257149440000

π 73.849

9 1897530085396862066083
80244565809408000000

π 74.289

10 24779363408224296282104087
1042858377259066368000000

π 74.647

11 1641975403498497372795022487
68828652899098380288000000

π 74.946

12 1970993209970651460214490749285507
82343423621424420712857600000000

π 75.198

13 51392984861216591921592831818657033
2140929014157034938534297600000000

π 75.414

14 174139057643974823682366897535081855571
7236340067850778092245925888000000000

π 75.601

15 2972047037611085783829962795744388700590655307
123236680440515713605471179354112000000000000

π 75.764

Table 1: The coefficient multiplying −e−
√

3π/h/h2 in (87) as a function of the maximal power

of h2 retained in the perturbative solution q(t).
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The full stable manifold of (π, 0) is obtained by addding terms of the form e−at(C cos bt +

D sin bt) to the RHS in (88), where a+bi is any root with positive real part of (44) and C, D

are constants. As we have explained, we do not expect the roots of (44) with nonzero real

part to play a role in the r → ∞ limit, which is why we ignore such terms. From here on

we refer to the solution of (88)-(89) as “the stable manifold” without further qualification.

Arguing as in the r = 1 case we have:

Proposition 7. The gradient at q = 0 of the stable manifold of (π, 0) in the (q, q̇) plane is

1

hq̇(0)

∫ ∞

0

2r
∑

i=1

Vie
−λis/h sin q(s)ds , (90)

where q(t) is the solution of (88)-(89) corresponding to the stable manifold.

As before we choose the λi so that λi+r = −λi, Vi+r = −Vi, i = 1, . . . , r. Our plan is to

compute the gradient by substituting the perturbative solution for q(s) into (90). Since the

perturbative solution is odd, the gradient formula becomes

− 1

hq̇(0)

∫ ∞

−∞

r
∑

i=1

Vie
λis/h sin q(s)ds . (91)

Without loss of generality we can assume the λi for i = 1, . . . , r have positive imaginary

part. Then the integral can be computed by closing the contour in the upper half plane,

and is clearly dominated by contributions from the pole at s = iπ/2 and (for large r) by

the two of the λi that are close to 2πi (see the appendix). Thus at once we see the gradient

for large r is of order O(e−π2/h/h2), in agreement with the results of [18].

We do not deal here with the computation of the coefficient multiplying e−π2/h/h2.

Computing the perturbative solution of (20) is just as easy as computing the perturbative

solution of (18). However for large r it becomes increasingly difficult to accurately computate

the coefficients Vi. Since for large r pairs of roots of (44) coallesce, the system (46)-(47)

becomes more and more ill-conditioned. We hope to deal with the question of the limit of

the Vi in a later work.

6 Conclusions and Further Directions

We have studied the systems (20) as a “bridge” between the continuum system (3) and its

discretization (17); we have seen in what sense the systems (20) conserve energy and in what

sense not, and that they exhibit separatrix splitting. Although some doubt remains over

the long time behavior, it is fair to say that the critical differences in qualitative dynamics
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between (3) and (17) can be seen when comparing (3) to any of the systems (20). In

particular, the simplest perturbed system (18) can be usefully used to study the qualitative

dynamics of the discrete map (17). We expect such an approach to discrete dynamical

systems (approximating by a continuum system, but retaining the lowest order correction

in h) might be a useful tool in many other problems. It also immediately shows us that we

should think of discretization of a continuum system as a singular perturbation: and thus

we should not be surprised to uncover effects, like separatrix splitting in our problem, that

are not analytic in h.

As explained in section 4 there remains some work to be done to see if any sense can be

made of the full conserved quantity H̃ in the limit r → ∞. This requires rigorous results

on the λi and the Vi (solutions of (44) and (46)-(47)). Even numerical computation of the

Vi for large r is very difficult. We note that once this problem has been overcome, it should

be straightforward to use the methods of section 5 to compute the full asymptotic formula

for separatrix splitting, as given in [18].

It is reasonable to suspect that the symplecticity of (17) is what is responsible for the

smallness of the separatrix splitting, and we are currently looking at this phenomenon for

general symplectic methods, of the form

qn = qn−1 + h
∂S(pn−1, qn, h)

∂pn−1

, pn = pn−1 − h
∂S(pn−1, qn, h)

∂qn

, (92)

as well as for nonsymplectic methods. Of course, it is to be hoped that we will be able to

make statements for systems more general than the simple pendulum.

Finally, we wonder if there may be a physical interpretation of the basic tool we have

used in this paper, that a discrete dynamic system can be viewed as a limit of a sequence

of higher and higher dimensional (but degenerate) continuum systems.

Acknowledgements

J.S. wishes to thank D. Kessler for numerous discussions on separatrix splitting and explain-

ing the methods used in [24], and Z. Rudnick for the references [25]. The research of J.S. is

supported by the Israel National Science Foundation. During the early part of this project,

W.I.N. was the Belkin Visiting Professor in the Department of Computer Science and Ap-

plied Mathematics of the Weizmann Institute of Science, and gratefully acknowledges its

support. W.I.N. also wishes to thank the Institute for Mathematics and its Applications at

the University of Minnesota for its hospitality when this manuscript was written.

22



(a)  r=20

–15

–10

–5

5

10

15

–30 –20 –10 10 20 30

(b)    r=40

–30

–20

–10

10

20

30

–60 –40 –20 20 40 60

Figure 1: Solutions of characteristic polynomial (44) for r = 20 and r = 40

Appendix: The Solutions of (44)

We briefly outline what we know about the roots of (44). We have looked at the roots of

(44) numerically for values of r up to 60. In all these cases we have found (44) has distinct

roots. For large r, a little less than a quarter of these roots lie on, or very close to, the

imaginary axis. More precisely, for each integer n with |n| < r/πe it seems there is a pair

of roots close to 2πin, and if r is odd there are also single roots on the imaginary axis close

to ±2πin, where n is the smallest integer greater than r/πe. In figure 1 we show the roots

when r = 20 and r = 40. The points on the imaginary axis are in fact pairs of roots lying

very close to the axis, one on each side (for r odd the pairs are on the axis). The rest of the

roots lie on 4 arcs well away from the real axis.

One of the implications of the above results is that for any positive integer n, for r <

(nπe) − 1 there is no root of (44) close to 2πin, but for r > nπe there is a pair of nearby

roots, and in fact these roots converge to 2πin exponentially fast as r increases. To illustrate

this we list below the imaginary part of the roots closest to the real axis for small even r:

r 2 4 6 8

imaginary part 4.12150858067 5.23349005117 6.01489826089 6.27265462330

r 10 12 14 16

imaginary part 6.28310259934 6.28318499591 6.28318530653 6.28318530718

By r = 16 the imaginary part is already 2π to 12 figure accuracy.

Results very similar to these for the roots of (44) have been observed for the roots of

Bernoulli polynomials in [25].

In the body of the paper we have assumed that the roots of (44) are indeed distinct, for
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all r, and we have also assumed that the patterns established above are correct in general,

namely that as r increases we have more and more roots closer and closer to the points

2πin, and that the roots with signifcant real part get further from the origin.
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