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Abstract. We obtain two main results for the Cauchy problem

y′(x) +
1

r(x)
y2 = q(x), y(x)

∣

∣

x=x0

= y0 (1)

where x0, y0 ∈ R, r > 0, q ≥ 0, 1

r
∈ Lloc

1
(R), q ∈ Lloc

1
(R) and

∫ x

−∞

1

r(t)

∫ x

t

q(ξ)dξdt =

∫

∞

x

1

r(t)

∫ t

x

q(ξ)dξdt = ∞, ∀x ∈ R .

1) For given initial data x0, y0 and functions r and q, we give a condition that can be
used to determine whether the solution of (1) can be continued to the whole of R.

2) When the solution of (1) is defined on an infinite interval, we study its asymptotic
properties as the argument tends to infinity.

1. Introduction

In the present paper, we consider the Cauchy problem for the Riccati equation

y′(x) +
1

r(x)
y2 = q(x), (1.1)

y(x)
∣

∣

x=x0
= y0 (1.2)

where x0, y0 ∈ R and r and q satisfy the conditions

r > 0, q ≥ 0,
1

r
∈ Lloc

1 (R), q ∈ Lloc
1 (R), (1.3)

∫ x

−∞

q(t)dt > 0,

∫

∞

x

q(t)dt > 0 ∀x ∈ R. (1.4)

Our general goal is to develop further the investigation started in [1]. In [1] we studied
the problem of continuation of the solution of (1.1)–(1.2) to R in the case r ≡ 1. It arises
because for every point (x0, y0) ∈ R

2, the problem (1.1)–(1.2) has a unique solution in a
neighborhood of this point, but in general this cannot be continued to the whole real axis.
In [1], in the case r ≡ 1, we found unbounded domains P and Q such that

• the solution of (1.1)–(1.2) can be continued to R if (x0, y0) ∈ P ;
• the solution of (1.1)–(1.2) cannot be continued to R if (x0, y0) ∈ Q.

The main goal of the current paper is to find domains P,Q ⊂ R
2 with similar properties

in the case r 6≡ 1. The logic proceeds as follows (see §3 for precise statements): We show
that (1.1) has two well-defined solutions y1 < 0 and y2 > 0 defined over all of R, and that a
solution y of the problem (1.1)–(1.2) can be continued to R if and only if

y1(x0) ≤ y0 ≤ y2(x0). (1.5)
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To make the implicit condition (1.5) more concrete, we introduce some requirements comple-
mentary to (1.3)–(1.4). Then certain sharp-by-order two-sided estimates are shown to hold
for the solutions y1, y2. These estimates, together with (1.5), allow one to define domains
P,Q with the desired properties.

From (1.5) it follows that the solution (1.1)–(1.2) for all x satisfies the inequalities

y1(x) ≤ y(x) ≤ y2(x). (1.6)

Inequalities (1.6) lead to the question on the relationship between y1(x), y2(x) and y(x) as
|x| → ∞. We show that

• If for some x0 ∈ R the solution y(x) of (1.1) is defined on [x0,∞) and y 6= y1, then
y(x) is equivalent to y2(x) as x→ ∞.

• If for some x0 ∈ R the solution y(x) of (1.1) is defined on (−∞, x0] and y 6= y2, then
y(x) is equivalent to y1(x) as x→ −∞.

Thus asymptotic integration of (1.1) (as |x| → ∞) reduces to asymptotic integration of y1(x)
and y2(x) (in the case r ≡ 1 see [1],[2]).

Finally, we note that the proposed analysis of the Cauchy problem (1.1)–(1.2) is not
complete because it does not include points (x0, y0) ∈ R

2 \ (P ∪ Q). This problem arises
because in condition (1.5) we replace the exact values y1(x0), y2(x0), x0 ∈ R., with a priori
estimates. According to Liouville’s Theorem, one cannot in general find the exact values
of y1(x0), y2(x0). This problem can, however be studied numerically. We make some initial
observations on this subject in the final section of this paper.

2. Preliminaries

Theorem 2.1. [3] Under conditions (1.3)–(1.4), the equation

(r(x)z′(x))′ = q(x)z(x), x ∈ R (2.1)

has a fundamental system of solutions (FSS) {u, v} with the following properties:

v(x) > 0, u(x) > 0, v′(x) ≥ 0, u′(x) ≤ 0, x ∈ R, (2.2)

r(x) (v′(x)u(x) − u′(x)v(x)) = 1, x ∈ R, (2.3)

lim
x→−∞

v(x)

u(x)
= lim

x→∞

u(x)

v(x)
= 0, (2.4)

∫ 0

−∞

dt

r(t)u2(t)
<∞,

∫

∞

0

dt

r(t)v2(t)
<∞,

∫ 0

−∞

dt

r(t)v2(t)
=

∫

∞

0

dt

r(t)u2(t)
= ∞. (2.5)

Properties (2.2)–(2.5) determine the FSS {u, v} up to constant positive factors inverse one
to another.

Remark 2.2. The inequalities for u′, v′ in (2.2) can be strengthened, namely:

v′(x) > 0, u′(x) < 0 for x ∈ R. (2.6)

Indeed
∫ x

x1
q(t)dt > 0 for some x1 < x by (1.4). So from Theorem 2.1 it follows that

r(x)v′(x) = r(x1)v
′(x1) +

∫ x

x1

q(t)v(t)dt ≥ v(x1)

∫ x

x1

q(t)dt > 0.



ANALYSIS OF INITIAL DATA FOR THE RICATTI EQUATION 3

The second inequality in (2.6) can be checked in a similar way. From (2.2)–(2.5) it follows
that

v(x) = u(x)

∫ x

−∞

dt

r(t)u2(t)
, u(x) = v(x)

∫

∞

x

dt

r(t)v2(t)
, x ∈ R. (2.7)

By Theorem 2.1 and (2.7), we conclude that the function

ρ(x)
def
= u(x)v(x) = v2(x)

∫

∞

x

dt

r(t)v2(t)
= u2(x)

∫ x

−∞

dt

r(t)u2(t)
, x ∈ R (2.8)

does not depend on the choice of a FSS of (2.1) and is uniquely determined by (2.1), i.e., by
r and q.

Theorem 2.3. [6] For all x ∈ R we have the relations

r(x)u′(x)

u(x)
= −

1 − r(x)ρ′(x)

2ρ(x)
,

r(x)v′(x)

v(x)
=

1 + r(x)ρ′(x)

2ρ(x)
, r(x)|ρ′(x)| < 1 . (2.9)

Theorem 2.4. [5, Ch. III, §40] The general solution of (1.1) is of the form

y(x) =
c1r(x)u

′(x) + c2r(x)v
′(x)

c1u(x) + c2v(x)
. (2.10)

Here {u, v} is a FSS of (2.1) and c1, c2 are arbitrary constants with |c1| + |c2| 6= 0.

Remark 2.5. Theorem 2.4 is given in [5] for r ≡ 1. It can be extended to the case (1.3)–(1.4)
without any difficulties using Theorem 2.1.

3. Statement of results

The proofs of the assertions below are given in §4.

Theorem 3.1. Under condition (1.3)–(1.4), equation (1.1) has solutions y1 and y2 where

y1(x) =
r(x)u′(x)

u(x)
, y2(x) =

r(x)v′(x)

v(x)
, x ∈ R , {u, v} is a FSS of (2.1). (3.1)

The solutions y1(x), y2(x) are defined for all x ∈ R and

y1(x) < 0, y2(x) > 0, x ∈ R. (3.2)

A solution y of problem (1.1)–(1.2) can be continued to R if and only if (1.5) holds.

In the sequel (until Theorem 3.8), we assume that, together with (1.3), the following
condition also holds:

∫ x

−∞

1

r(t)

∫ x

t

q(ξ)dξdt =

∫

∞

x

1

r(t)

∫ t

x

q(ξ)dξdt = ∞, ∀x ∈ R. (3.3)

Clearly (1.4) follows from (1.3) and (3.3). Such a strengthening of the requirements on r
and q will be used for a more detailed study of (3.1).

The following lemma is useful in that it often simplifies checking (3.3).

Lemma 3.2. Suppose (1.3)–(1.4) hold and, in addition,
∫ 0

−∞

dt

r(t)
=

∫

∞

0

dt

r(t)
= ∞. (3.4)

Then (3.3) holds.
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Lemma 3.3. Suppose (1.3) and (3.3) hold. Then for every x ∈ R, each of the following
equations in d

∫ x

x−d

1

r(t)

∫ x

t

q(ξ)dξdt = 1,

∫ x+d

x

1

r(t)

∫ t

x

q(ξ)dξdt = 1 (3.5)

has a unique finite positive solution.

Denote the solutions of (3.5) by d1(x), d2(x), respectively. For x ∈ R let us introduce the
functions

ϕ(x) =

∫ x

x−d1(x)

dt

r(t)
, ψ(x) =

∫ x+d2(x)

x

dt

r(t)
, h(x) =

ϕ(x)ψ(x)

ϕ(x) + ψ(x)
, (3.6)

θ1(x) = y2(x)ϕ(x) =
r(x)v′(x)

v(x)
ϕ(x), (3.7)

θ2(x) = y1(x)ψ(x) =
r(x)|u′(x)|

u(x)
ψ(x). (3.8)

Theorem 3.4. Suppose (1.3) and (3.3) hold. Then the functions θ1, θ2 are solutions to the
following integral equations:

θ1(x) = 1 +

∫ x

∆−(x)

1

r(t)

∫ x

t

q(ξ)K1(x, ξ, θ1)dξdt, x ∈ R, (3.9)

θ2(x) = 1 +

∫ ∆+(x)

x

1

r(t)

∫ t

x

q(ξ)K1(x, ξ, θ1)dξdt, x ∈ R. (3.10)

Here ∆−(x) = x− d1(x), ∆+(x) = x+ d2(x),

K1(x, ξ, θ1) = exp

(

−

∫ x

ξ

θ1(s)ds

r(s)ϕ(s)

)

− exp

(

−

∫ x

∆−(x)

θ1(s)ds

r(s)ϕ(s)

)

, (3.11)

K2(x, ξ, θ2) = exp

(

−

∫ ξ

x

θ2(s)ds

r(s)ψ(s)

)

− exp

(

−

∫ ∆+(x)

x

θ2(s)ds

r(s)ψ(s)

)

. (3.12)

Corollary 3.5. Under conditions (1.3) and (3.3), we have the inequalities

1 ≤ θ1(x), θ2(x) ≤ 2, x ∈ R, (3.13)

1 ≤ y1(x)ψ(x), y2(x)ϕ(x) ≤ 2, x ∈ R, (3.14)

2−1h(x) ≤ ρ(x) ≤ h(x), x ∈ R. (3.15)

Note that inequalities of the form (3.15) are called Otelbaev inequalities, see [2].

Corollary 3.6. Suppose (1.3) and (3.3) hold. If a solution y(x) of problem (1.1) is defined
for all x ∈ R, then

−2 ≤ y(x)h(x) ≤ 2, x ∈ R. (3.16)

We introduce domains P and Q on the plane R
2 as follows:

P = {(x, y) : yϕ(x) ≤ 1} ∩ {(x, y) : yψ(x) ≥ −1}, (3.17)

Q = {(x, y) : yϕ(x) ≥ 2} ∪ {(x, y) : yψ(x) ≤ −2}. (3.18)

Theorem 3.7. Under conditions (1.3) and (3.3), a solution y of problem (1.1)–(1.2) can be
continued to R if (x0, y0) ∈ P, and cannot be continued to R if (x0, y0) ∈ Q.
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In the next assertion we establish a precise standard for the behavior of solutions of
equation (1.1) at infinity.

Theorem 3.8. Suppose (1.3) holds and, in addition,

A ·B
def
=

∫

∞

0

dt

r(t)
·

∫

∞

0

q(t)dt = ∞, A1 · B1
def
=

∫ 0

−∞

dt

r(t)
·

∫ 0

−∞

q(t)dt = ∞. (3.19)

Then the following assertions hold:

A) If for some x0 a solution y of equation (1.1) is defined on [x0,∞) and does not
coincide with y1, then

lim
x→∞

y(x)

y2(x)
= 1. (3.20)

B) If for some x0 a solution y of equation (1.1) is defined on (−∞, x0] and does not
coincide with y2, then

lim
x→−∞

y(x)

y1(x)
= 1. (3.21)

C) If (1.3) and (3.3) hold, then (3.19) holds, too.

4. Proofs

Proof of Theorem 3.1. From Theorem 2.1 it follows that the functions y1(x), y2(x) are de-
fined for all x ∈ R and satisfy (1.1), and that (3.2) is a consequence of (2.6). Furthermore,
suppose that y can be continued to R. Clearly, the cases y0 = y1(x0) and y0 = y2(x0) are in
one-to-one correspondence with the choice of c2 = 0 and c1 = 0 in (2.10). Therefore below
we assume c1 · c2 6= 0. Then only one of the following 3 possibilities holds:

1) y0 > y2(x0); 2) y1(x0) < y0 < y2(x0); 3) y0 < y1(x0).

Let us show that c = c1 ·c
−1
2 < 0 in cases 1) and 3). In case 1) Theorems 2.1 and 2.4 imply

0 < y0−y2(x0) =
r(x0)v

′(x0) + cr(x0)u
′(x0)

v(x0) + cu(x0)
−
r(x0)v

′(x0)

v(x0)
= −

c

v(x0)(v(x0) + cu(x0))
. (4.1)

The assumption c > 0 contradicts (4.1) and Theorem 2.1. Similarly, in case 3) we get

0 < y1(x0) − y0 =
r(x0)u

′(x0)

u(x0)
−
r(x0)v

′(x0) + cr(x0)u
′(x0)

v(x0) + cu(x0)
= −

1

u(x0)(v(x0) + cu(x0))

implying c < −v(x0)/u(x0) < 0. Thus c < 0 in cases 1) and 3). Then there exists a point
x1 ∈ R such that

v(x1) + cu(x1) = 0. (4.2)

Indeed, by Theorem 2.1 the function f(x) = −v(x)/u(x), x ∈ R, is continuous, negative for
all x ∈ R, and

f ′(x) = −
1

r(x)u2(x)
< 0, x ∈ R, f(x) →

{

0 as x → −∞
−∞ as x → +∞

.

Therefore, the equation f(x) = c has a unique finite root x1 which leads to (4.2). Then the
solution y has a vertical asymptote at the point x1, and it cannot be continued to R. Hence
we are in case 2), i.e., (1.5) holds. Conversely, suppose (1.5) holds. Then by Theorems 2.1
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and 2.4, in some neighborhood of x0 there exists a unique solution of (1.1)–(1.2), and it is
of the form (2.10) with some c1 6= 0, c2 6= 0 (see above). By Theorem 2.1, this implies

0 <
r(x0)v

′(x0) + cr(x0)u
′(x0)

v(x0) + cu(x0)
−
r(x0)u

′(x0)

u(x0)
=

1

u(x0)(v(x0) + cu(x0))
,

0 <
r(x0)v

′(x0)

v(x0)
−
r(x0)v

′(x0) + cr(x0)u
′(x0)

v(x0) + cu(x0)
=

c

v(x0)(v(x0) + cu(x0))
.

Hence c > 0. Then by Theorems 2.1 and 2.4, the solution y(x) is defined for all x ∈ R as
required. �

Proof of Lemma 3.2. By (1.4), for a given x ∈ R there exists a < x and b > x such that

∫ x

a

q(t)dt > 0,

∫ b

x

q(t)dt > 0. (4.3)

Then the statement of the lemma follows from (3.4) and (4.3):

∫ x

−∞

1

r(t)
·

∫ x

t

q(ξ)dξdt >

∫ a

−∞

1

r(t)

∫ x

t

q(ξ)dξdt >

∫ a

−∞

dt

r(t)
·

∫ x

a

q(ξ)dξ = ∞,

∫

∞

x

1

r(t)
·

∫ t

x

q(ξ)dξdt >

∫

∞

b

dt

r(t)

∫ t

x

q(ξ)dξdt >

∫

∞

b

dt

r(t)
·

∫ b

x

q(ξ)dξ = ∞.

�

Proof of Lemma 3.3. Consider the second equation in (3.5) (the first one can be treated
similarly). For a given x ∈ R, let us introduce the function Φ(d) :

Φ(d) =

∫ x+d

x

1

r(t)
·

∫ t

x

q(ξ)dξdt, d ≥ 0.

By (1.3) and (3.3), the function Φ(d) is continuous, non-negative, and does not decrease on
[0,∞). In addition, Φ(0) = 0, Φ(d) → ∞ as d→ ∞,

Φ′(d) =
1

r(x+ d)

∫ x+d

x

q(ξ)dξ > 0 if Φ(d) > 0.

These properties immediately imply the statement of the lemma. �

Proof of Theorem 3.4. Let us prove (3.9). As preparation note that since (r(ξ)v′(ξ))′ =
q(ξ)v(ξ) for all ξ ∈ R, we have

r(x)v′(x) − r(t)v′(t) =

∫ x

t

q(ξ)v(ξ)dξ, x ≥ t . (4.4)
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Thus:

r(x)v′(x)ϕ(x) = r(x)v′(x)

∫ x

∆−(x)

dt

r(t)
(using (3.6))

= v(x) − v(∆−(x)) +

∫ x

∆−(x)

1

r(t)

∫ x

t

q(ξ)v(ξ)dξdt (using (4.4))

= v(x) +

∫ x

∆−(x)

1

r(t)

∫ x

t

q(ξ)[v(ξ)− v(∆−(x))]dξdt (using (3.5))

= v(x) +

∫ x

∆−

1

r(t)

∫ x

t

q(ξ)

∫ ξ

∆−(x)

v′(ν)dνdξdt . (4.5)

Now using (3.7) and (3.11) we have:

θ1(x) = 1 +

∫ x

∆−(x)

1

r(t)

∫ x

t

q(ξ)

∫ x

∆−(x)

v′(ν)

v(x)
dνdξdt

= 1 +

∫ x

∆−(x)

1

r(t)

∫ x

t

q(ξ)

∫ ξ

∆−(x)

r(ν)v′(ν)

v(ν)
ϕ(ν) ·

1

r(ν)ϕ(ν)
·
v(ν)

v(x)
dνdξdt

= 1 +

∫ x

∆−(x)

1

r(t)

∫ x

t

q(ξ)

∫ ξ

∆−(x)

θ1(ν)

r(ν)ϕ(ν)
exp

(

−

∫ x

ν

θ1(s)

r(s)ϕ(s)
ds

)

dνdξdt

= 1 +

∫ x

∆−(x)

1

r(t)

∫ x

t

q(ξ)K1(x, ξ, θ1)dξdt, x ∈ R.

The proof of (3.10) is similar. �

Proof of Corollary 3.5. Inequalities (3.13) for θ1 and θ2 are checked in the same way. For
example, since

0 ≤ K1(x, ξ, θ1) ≤ 1, ξ ∈ [∆−(x), x], θ1 > 0,

we obtain from (3.9):

θ1(x) = 1 +

∫ x

∆−(x)

1

r(t)

∫ x

t

q(ξ)K1(x, ξ, θ1)dξdt ≥ 1 + 0 = 1,

θ1(x) = 1 +

∫ x

∆−(x)

1

r(t)

∫ x

t

q(ξ)K1(x), ξ, θ1)dξdt ≤ 1 +

∫

∆−(x)

1

r(t)

∫ x

t

q(ξ)dξdt = 1 + 1 = 2.

Furthermore, inequalities (3.13) and (3.14) are equivalent. To prove (3.15), we use the
definitions of h, ρ and (2.3):

h(x)

ρ(x)
=

ϕ(x)ψ(x)

ϕ(x) + ψ(x)

[

r(x)v′(x)

v(x)
+
r(x)|u′(x)|

u(x)

]

=

r(x)v′(x)
v(x)

+ r(x)(u′(x)
u(x)

1
ϕ(x)

+ 1
ψ(x)

, x ∈ R

to obtain

h(x)

ρ(x)
≥ min

{

r(x)v′(x)

v(x)
ϕ(x),

r(x)|u′(x)|

u(x)
ψ(x)

}

≥ 1,

h(x)

ρ(x)
≤ max

{

r(x)v′(x)

v(x)
ϕ(x),

r(x)|u′(x)|

u(x)
ψ(x)

}

≤ 2.

�
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Proof of Corollary 3.6. Since the solution (2.10) is defined for all x ∈ R, we have c1 · c2 > 0
(see the proof of Theorem 3.1). Below we use (2.10), (2.9) and (3.15):

|y(x)| ≤
|c1| r(x) |u

′(x)| + |c2| r(x) v
′(x)

|c1|u(x) + |c2|v(x)
≤ max

{

r(x)|u′(x)|

u(x)
,
r(x)v′(x)

v(x)

}

= max

{

1 − r(x)ρ′(x)

2ρ(x)
,
1 + r(x)ρ′(x)

2ρ(x)

}

≤
1

ρ(x)
≤

2

h(x)
.

�

Proof of Theorem 3.7. Let (x0, y0) ∈ P. Below we use (3.1), (3.14) and (3.17):

y1(x0) =
r(x0)u

′(x0)

u(x0)
≤ −

1

ψ(x0)
≤ y0 ≤

1

ϕ(x0)
≤
r(x0)v

′(x0)

v(x0)
= y2(x0).

The statement of the theorem follows now from Theorem 3.1. The case (x0, y0) ∈ Q is
treated similarly. �

Proof of Theorem 3.8. Below we use the following assertion:

Lemma 4.1. Under conditions (1.3)–(1.4), the equality

lim
x→+∞

r(x)v′(x)v(x) = ∞

(

lim
x→−∞

r(x)|u′(x)|u(x) = ∞

)

(4.6)

holds if and only if A · B = ∞ (A1 · B1 = ∞).

Proof of Lemma 4.1. Necessity.
The two equalities in (4.6) are checked in a similar way. Let us check the first one. Suppose

(4.6) holds but A ·B <∞. Denote τ1 = r(0)v′(0), τ2 = v(0). For x ≥ 0 by Theorem 2.1, we
have

r(x)v′(x) = τ1 +

∫ x

0

q(t)v(t)dt ≤ τ1 + v(x)

∫ x

0

q(t)dt ≤ τ1 +B · v(x) ⇒

v′(x)

v(x)
≤

τ1
r(x)v(x)

+
B

r(x)
≤

(

τ1
τ2

+ B

)

1

r(x)
, x ≥ 0 ⇒

v(x) ≤ τ2 exp

(

A

(

τ1
τ2

+B

))

:= τ3 <∞, x ≥ 0 ⇒

r(x)v′(x) ≤ τ1 +Bv(x) ≤ τ1 + τ3B := τ4 <∞, x ≥ 0 ⇒

r(x)v′(x)v(x) ≤ τ3 · τ4 <∞, x ≥ 0.

This provides a contradiction.

Proof of Lemma 4.1. Sufficiency. Denote β(x) = r(x)v′(x)v(x), x ∈ R, τ = min{τ 2
1 , τ

2
2 }

(τ > 0, see (2.2), (2.6)). Then by Theorem 2.1 we have for

β ′(x) = (r(x)v′(x))′v(x) + r(x)v′2(x) = q(x)v2(x) +
(r(x)v′(x))2

r(x)

≥ q(x)v(0)2 +
(r(0)v′(0))2

r(x)
≥ τ

{

q(x) +
1

r(x)

}

⇒

β(x) = β(0) +

∫ x

0

β ′(t)dt ≥ τ

∫ x

0

(

q(t) +
1

r(t)

)

dt→ ∞ as x→ ∞.
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Returning now to the proof of Theorem 3.8, let us check assertion A). (Assertion B) is
checked in a similar way.) Since y 6= y1, we have c2 6= 0 in (2.10). Below we use (2.10), (2.4),
(2.3) and Lemma 4.1:

lim
x→∞

y(x)

y2(x)
= lim

x→∞

1 + θ1
θ2

u′(x)
v′(x)

1 + θ1
θ2

u(x)
v(x)

= lim
x→∞

[

1 +
θ1
θ2

r(x)u′(x)v(x)

r(x)v′(x)v(x)

]

= 1.

Assertion C) follows from the following relations:

∞ =

∫ x

−∞

1

r(t)

∫ x

t

q(ξ)dξdt ≤

∫ x

−∞

dt

r(t)
·

∫ x

−∞

q(ξ)dξ ≤ ∞, x ∈ R,

∞ =

∫

∞

x

1

r(t)

∫ x

t

q(ξ)dξdt ≤

∫

∞

x

dt

r(t)
·

∫

∞

x

q(ξ)dξ ≤ ∞, x ∈ R.

5. Numerical Studies

We briefly consider a numerical approach to approximating y1(x0), y2(x0), x0 ∈ R. Stan-
dard methods for numerical integration of ODEs experience problems dealing with singular-
ities, but specifically for the case of the Riccati equation there exists a class of methods, the
Möbius schemes [7], that permit accurate integration near and through poles of the solution.
Introduce a grid with spacing h > 0 on R and grid points xn = x0 + nh, n ∈ Z. We seek
approximations yn to the exact values y(xn) of the solution to the Cauchy problem (1) at
the grid points. In the simplest Möbius scheme these are determined via the recursion

yn+1 =
yn + hq

(

xn + h
2

)

1 + hyn/r
(

xn + h
2

) , n ∈ Z .

Under suitable smoothness assumptions on the functions q(x), r(x) it can be shown that this
method is second order, i.e., that errors in the method, defined in an appropriate sense, scale
(approximately) as h2 as h decreases to 0.

Figure 1 shows results of the Möbius scheme above for q(x) = cos2 x and r(x) = (1+x2)−1.
Numerical solutions, obtained using h = 0.01, are shown for the Cauchy problem with x0 = 0
and y0 taking a range of values between −1.25 and 1.25. The regions P and Q are also
displayed on the plot. We see, as expected, that solutions that pass through P do not
develop singularities (at least on the range shown) and all solutions that pass through Q do.

Using the Möbius scheme for fixed h we can find approximations to y2(0), the unique
positive number such that if y0 > y2(0), then the solution develops a singularity and if
0 ≤ y0 ≤ y2(0), the solution is defined on the whole axis. For the above choice of q(x), r(x),
the analytic bounds in this paper give 1/ϕ(0) ≤ y2(0) < 2/ϕ(0) where ϕ(0) ≈ 1.83. In
the table below we give the approximate values of y2(0) found using the Möbius scheme for
various values of h, and their errors (based on an “exact” value obtained with a very small
value of h). The h2 scaling is evident.

h 0.04 0.02 0.01 0.005 0.0025 0.00125
y2(0) 0.6972904 0.6972039 0.6971823 0.6971769 0.6971756 0.6971752
abs. error 1153 × 10−7 288 × 10−7 72 × 10−7 18 × 10−7 5 × 10−7 1 × 10−7

We hope in a future publication to return to the subject of using such numerical schemes
to obtain rigorous bounds for y1(x0), y2(x0), x0 ∈ R.
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Figure 1. Numerical solutions of the Cauchy problem (1) with q(x) = cos2 x,
r(x) = (1+x2)−1, x0 = 0 and values of y0 between −1.25 and 1.25. The dashed
lines bound the region Q (initial conditions for which the solution does not
extend to the whole real axis). The dot-and-dashed lines bound the region P
(initial conditions for which the solution does extend to the whole real axis).
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