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Abstract

In recent years it has been shown that many, and possibly all, integrable systems can
be obtained by dimensional reduction of self-dual Yang-Mills. I show how the integrable
systems obtained this way naturally inherit bihamiltonian structure. I also present a sim-
ple, gauge-invariant formulation of the self-dual Yang-Mills hierarchy proposed by several
authors, and I discuss the notion of gauge equivalence of integrable systems that arises
from the gauge invariance of the self-duality equations (and their hierarchy); this notion

of gauge equivalence may well be large enough to unify the many diverse existing notions.
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1. Introduction

Early on in the study of the self-dual Yang-Mills (SDYM) equations it was observed that
dimensional reductions of these equations give rise to so-called “integrable systems” [1]. It
was conjectured by Ward [2] that SDYM may be a universal integrable system, i.e. that all
integrable systems might be obtained from it by suitable reductions. A remarkable piece of
evidence for this was produced a few years ago by Mason and Sparling [3], who showed how
to obtain the Korteweg-de Vries (KdV) and nonlinear Schrédinger (NLS) equations from
SDYM, and further wrote down a hierarchy of gauge-invariant equations from which the
KdV and NLS hierarchies could be obtained. This stimulated much activity. Mason and
Sparling just examined SDYM with gauge group SL(2); Bakas and Depireux showed how
to obtain certain flows in the SL(N)-KdV hierarchy from SL(N) SDYM, and also obtained
a apparently new hierarchy from SL(3) SDYM, with a hamiltonian structure given by the
classical limit of the W2 conformal algebra [4]. I showed how the reduction method of
Mason and Sparling could be extended to obtain certain three dimensional versions of the
KdV and NLS equations from SDYM [5]; this was also observed by Strachan, who studied
the resulting equations in some depth [6]. In a recent paper Ablowitz et.al. introduced an
apparently different version of the SDYM hierarchy, and showed, amongst other things,
how the KP hierarchy can be obtained from SDYM with an infinite-dimensional gauge
group [7].

Certain well-known properties of integrable systems are very obviously inherited from
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SDYM. Amongst these are the Lax pair formulation, given for SDYM by Belavin and
Zakharov [8], and the Painlevé property [9], shown for SDYM in [10]. Other properties of
integrable systems have at least natural analogs in SDYM. We might expect the inverse
scattering formalism to be a special case of the twistor formalism for SDYM, and this is
indeed the case [3]; we might expect Bécklund transformations for integrable systems to
originate in those for SDYM [11], or maybe in the loop group action on solutions of SDYM
[12]; finally, for certain integrable systems there exist direct solution methods (“the Hirota
method”), and these presumably arise in cases where we can actually solve the inverse
twistor transform and thereby write down solutions exploiting the action of the loop group
on the twistor data [12] (the “Hirota variables”, which have the property of being entire
[13], are presumably related to the patching matrix G in [12]; I draw the reader’s attention
to a recent work on the relation of the zero-curvature and Hirota formulations of integrable
systems [14], which might be exploited to decide these issues).

None of the above issues will be treated further in this paper. Here I wish to devote
myself to one property of integrable systems which has an obvious analog in the SDYM
equations, and another that does not. There is a notion of “gauge equivalence” between
different integrable systems, two systems being said to be equivalent when there is a map
from the solutions of one to the solutions of the other. The classic example of such a map
is the Miura map between solutions of MKdV and KdV. These maps arise in many diverse
settings. The origin of these maps at the level of SDYM is just gauge freedom in the
SDYM equations; performing the same reduction in different gauges gives rise to different
equations. I will give a detailed analysis of different gauges in which one might consider
reduction of SDYM, and show how the usual notions of gauge equivalence (for instance
that of Drinfeld and Sokolov [15]) emerge.

The property of integrable systems I wish to explain that does not have an immediate
analog in SDYM is that of bihamiltonian structure. It turns out that this has its origins
in the fact that the space of solutions of SDYM has three symplectic structures. These are
usually thought of as gauge invariant, but this assumes certain boundary conditions; for the
types of solution we will be looking at, we will see the symplectic structures have certain
restricted gauge invariances, and they give (on reduction) the bihamiltonian structures of
integrable systems. This is the main result of this paper; understanding different gauge
choices etc. is a necessary tool for this analysis.

The contents of this paper have been given above. While not strictly necessary for the
results on hamiltonian structures, I have included in section 2 what I consider to be the
most natural definition of the SDYM hierarchy, and I show in section 3 that it contains

the hierarchies of [3], [6] and [7]; in section [11] I give a reduction of the hierarchy to the
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KP hierarchy (c.f.[7]).

2. The Self-Dual Yang-Mills Equations and Hierarchy

The SDYM equations on R* with coordinates z, z, w, w and metric ds?> = dwdz — dzdw

are (in standard notation)

Foy=0 (1a)
Fg@ - 0 <1b)
qu—,—ng:O <1C)

These are consistency conditions for the linear system
(D, +ADz)¥ =0

There is a natural generalization of the above equations we might write down. Let

21, ey Zny 215 - Zn be coordinates for R2", n > 2; the consistency conditions for the linear

system
(D.. + AD.)W =0, i=1,..n (3)
are
F.. =0
Ffifj =0 ] E{l,,TL},Z%j (4)
in,?j _FZJ',Z' = 0

If d is the dimension of the gauge group, then there are %dn(n — 1) equations here for
d(2n — 1) unknowns (components of the gauge field modulo gauge transformations); the
equations are therefore overdetermined for n > 2. For n = 4 equations (4) are equations
(3.5)" in [16]. T will take equations (4) with n = oo as my definition of the SDYM hierarchy.
Whereas equations (1) can be modeled on any manifold with a metric, I cannot see how
to write equations (4) on anything more general than the cartesian product of 2n 1-

dimensional manifolds.

3. Gauge Choices

There are two ways to approach solving equations (1) I wish to consider, and these extend
naturally to the SDYM hierarchy. Yang [17] proposed first solving equations (1a) and (1b)

to write .
Az - g_ azg

5a
A, = g_lﬁwg (5a)
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As; =h710:h (5b)
A@ - h_lgwh

where g, h are some gauge group valued functions. Gauge transformations (4 — A"t AA +
A~tdA) act on g,h by g — gA, h — hA. Equation (1c¢) reduces to

0, (J710pJ) — 0y (J710:T) = 0 (6)
where J = hg~! (which is gauge invariant); equation (6) can also be written
0:(J 10y J) — 0p(J10.J) =0 (6)

Equation (6) or (6)’ is known as the J formulation of SDYM. The other approach to SDYM
(which I believe was first given implicitly in [18]) is to solve (1b) to express Az, Ay in terms

of h (equation 5b) and then to solve (1c) to get

A, =h7'0.h+h '0-Nh

7
Ay =h"'0,h+h 105N @)

where N is some gauge-invariant function valued in the Lie algebra of the gauge group.
(1a) then yields
(awag - azag,)N + [a@N, 82N] - 0 (8)

If we write M = O:N then we can write this, at least formally, as
OwM = (0, + [M, 1)07'0sM (9)

I call this the M formulation of SDYM. Treating w as “time”, this has the form of an
evolution equation. There is a clear hint from (9) that if we wish to obtain local evolution
equations by reduction of SDYM, what we need to do is fix the z dependence so that the
07 ! integration symbol can be integrated out. Note that a lagrangian for (8) was given in
[19], and one for (6) was given in [20].

In [18] it was noted that there exists an integrable hierarchy of which (9) is the first

non-trivial member,
0., M =1[(0, + [M, 1oz t0uM i=2,3,... (10)

Let us consider our SDYM hierarchy (4). Solving the second and third sets of equations

we have

Az, =h7'05h

11
A, =h7'0.,h+h710;, Nh 1
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Write M = 0z, N. The j = 1 equations in the first set of equations of (4) give
0. M = (0, + [M, 1)05'0: M i=2,3, ... (12)

Writing 21 = 2,2, = Z,Zo = w it is clear that if we impose the dimensional reductions
Oz, = 0,,_,, 1 =3,4,... on (12), then we recover (10). This latter hierarchy is essentially
a dimensionally reduced version of our hierarchy in Az, = 0 gauge. The hierarchy of [7]
(equation (21)) is a slightly generalized version of this, where the Az,’s are allowed to be
arbitrary commuting constant matrices (though the authors are clearly quite aware that
one can generate more general possibilities via gauge transformation). The Bogomolnyi
hierarchy of [3], which is written in a gauge invariant way, can be obtained from ours
by the dimensional reduction 0z, = 9,, ,, i = 1,2,... (so 0z, = 0). The hierarchy of [6]
is a generalization of this, obtained from ours by the dimensional reduction 0, = 0, ,,
1 =1,2,..., i # m, where m is some integer greater than 1. I have not investigated the
relationship of the hierarchy (4) with that of [21]. Especially for the purpose of discussing
reductions of SDYM, where, as I mentioned in the introduction, reductions in different
gauges give rise to equations related by Miura maps, it is important to have the full
gauge-invariant version of the hierarchy.

Finally in this section, we will need later the version of M formulation where we first

solve (1a) and (1c). Solving (1a) gives us (5a), and solving (1c) gives

As; =g '0:9+9 10, Pg
(13)
Ag =g '0pg + g '0wPyg

Equation (1b) now gives

(000, — 9:00,)P + [0 P, 0. P] = 0 (14)

4. Bihamiltonian Integrable Systems [22]
An evolution equation has (local) bihamiltonian form when it can be written in the form
Ju dH3[ul dHz[u]
U _p D
ow " su > u

where Dy, Dy are (local) coordinated hamiltonian operators and Hz[u], H3[u| are suitable

(15)

functionals of u(x). The recursion operator is defined by R = DoD;'. The conserved
quantities are given recursively by

OH; . 0Hi
P ou =Dz du

(16)



and the associated hierarchy of equations is given by

811 . 5Hi+1 . 57’{1 . i—2 57_(2 .
821- = Dl su = DQ su =R DQ su s 1= 2,3, (17)

The classic example is the KdV equation for which

Dy = 0,
Dy = —02 + u(x)d, + Opu(x)

ng/da: %uz

(18)
Hz = /daz %(ui + u?)

Without going into details we note the existence of “elementary dimensional deformations”
[23] of bihamiltonian integrable systems. For example, the KAV equation can be written
Uy = Rug, and the equation u,, = Ru, describing the evolution in w of a function
u(z,y,w) is also integrable. This equation is non-local, but by the substitution u = =, is
made local; it has bihamiltonian form (1) with the same Dy, D, as for the KdV equation
but with

Ha = / dedy 3727y
(19)
Hs = / dzdy 5 (YeaVey + V2V

SDYM in M formulation is a bihamiltonian integrable system; on the space of Lie
algebra valued functions M (z,Z2), Dy = 0, + [M, | and D; = J; are two coordinated

hamiltonian operators. We clearly have
Hy=1 / dzdzdw Tr(MO; 0y M) (20)

but it is not so easy to write expressions for the higher conserved quantities. Note though
we have 0,, M = (0, + [M, |)0H;/0M. This equation is central in Chern-Simons theory;

using M = —0,JJ ! we deduce we can write
Hp = / dzdw S5, [J] (21)

where S‘(/li,) zw denotes the WZW action on the plane defined by coordinates z, z;. This

satisfies (up to an irrelevant overall factor)
5S%) = / dzdzy, Tr[J~16J0.(J10,,J)] (22)
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(see [24]), from which it is easy to check that H; as given in (21) is independent of all
the times z;, j > 2 (by construction it is independent of z;). It is not clear to me at the

moment whether there are analogs of H; for the more general hierarchy (4).

5. Dimensional Reduction of SDYM
Following [3], let us consider reducing (1) by requiring the potentials to be independent

of z. This is not a gauge invariant statement; to avoid problems we restrict ourselves
to z-independent gauge transformations. Since As transforms homogeneously under such
gauge transformations, A; — A=Y A;A, we can no longer fix the gauge A; = 0. Restricting
ourselves further to the case where Az in some gauge is constant, for SL(2) the equivalence

classes of such A;’s under gauge transformations are represented by

<(1) 8)’ “((1) —01) (23)

where k is an arbitrary constant. These give rise to integrable systems related to KdV
and NLS respectively [3]. For SL(V), the class represented by Az with (Az);; = dindj1
gives rise to the SL(N)-KdV equation, and the class represented by A; = diag(k1, ..., kn),
K1+ ...+ kn = 0, gives rise to the generalized NLS equation of Fordy and Kulish [25]. For
SL(3) the class

4; = (24)

S = O
— o O
o O O

gives rise to the W3 hierarchy of Bakas and Depireux [4], and the remaining class

AEZ

O~ X
o x O
(@)
—
[\
(@)
SN—

has yet to be investigated.
Having done the dimensional reduction and chosen the class of Az, the way I propose
looking at equations (1) is to regard (1la) and (1c) as evolution equations for A,, Az, and

(1b) as a “constraint”, restricting some of the entries of Ag; explicitly we have evolution

equations
(26)
awAZ — 8ZAQT} - aﬁ)Az + [AZ7 AQT}] + [A27 Aw]
where 05 A; = [As, Ag| constrains certain entries of Ay (we assume the class of Az has

been chosen so this has a solution). Note these equations are invariant under the full
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group of (z-independent) gauge transformations. We obtain the restricted notion of gauge
invariance used in Drinfeld-Sokolov [15] and its generalizations [26] when we partially fix
the gauge by going to a gauge where A is constant; there is still a residual gauge invariance
generated by the elements of the gauge algebra that commute with the gauge-fixed As.
While this restricted notion of gauge invariance allows us to understand some Miura maps,

there are others that it cannot explain. For example, NLS arises from (26) with

A, = (’g _OH) Ay =0
0 . _ (27)
A. = < - 77[]) A, = 1 (32 au’)(_?w[”vb) aw@b _ )
? v 0 w2k Ot —9; 10 (1))

where K is a non-zero constant and 1,1 are functions, and the Heisenberg ferromagnet

equation arises from (26) with

AZ:(A u) Aw:( AF ,uF—i-uw/2)\)

v o—A vE —vg /2 —\F (28)

where \, u1, v are functions satisfying A2+puv = 2 and F is defined by 4x?F, = p(A"1vg).—
v(A ug).. (In fact (27) and (28) give dimensional deformations of the NLS and ferro-
magnet equations; the usual equations are recovered by the further dimensional reduction
0, = 0g.) The gauge equivalence between NLS and the Heisenberg ferromagnet, as given

in [27], emerges from the full gauge freedom of (26)*.

* For an analysis of many of the equations in the NLS gauge equivalence class see [28].
There I defined the “Ur-NLS” equation
25,T.
Sp="722 13528,
T, HEaE
T,=T,.+2T.5,

A solution of the k = 1 ferromagnet equation (equation (52)) is obtained from this by

setting
A=14+T8S, /T,

p=-T(1+TS,/T,)
v==_S,/T,

In [29] Hirota showed the gauge equivalence of NLS and the ferromagnet equation to a
third equation (the equation in the abstract of [29]); this is obtained from Ur-NLS, modulo

some minor rescalings, via ¢ = —Te®, ¢ = S,e™ /T,.

8



There is a refinement of equations (26) we can make. We can solve the first of equations

(26) via equation (5a), and thus replace (26) with the system

6wg = gAw

29
DAz = 0. Ag — 0g(97'0.9) + [971 0.9, Aa] + [Az, Au] 29

These equations have standard gauge invariance, i.e. invariance under Ay — A71AZA +
A t0gzA, A — A"TAA, g — gA, but they also have an extra invariance under g — tg
where t is a element of the gauge group™*. Solutions of (29) related by g — tg clearly
give the same solution of (26). But instead of passing directly from the variable g to
the variable A, which is invariant under the whole group of ¢ transformations, we could
pass first to some set of variables invariant under just a subgroup of t transformations;
(29) will imply some evolution for these intermediate variables. Using ¢ symmetry alone,
from an integrable system obtained from (29) we will obtain a whole series of integrable
systems, by “modding out” by any subgroup of the gauge group. This explanation of the
relationship of the the various equations related to KdV, which all stem from an equation
called Ur-KdV with a SL(2) invariance was first found by Wilson [30]. We will derive
Ur-KdV from (29) shortly; equations (29) can also be used to derive the Ur-NLS equation
of [28] (see the footnote to the preceding paragraph).

While the general scheme outlined for reductions in the previous two paragraphs seems
to be correct, there is one subtlety; in explicitly relating equations (26) or (29) to known
integrable systems by writing everything in components and simplifying, the need arises
to fix certain integration constants. It seems that the choice of integration constants can
be regarded as the fixing of certain gauge invariant quantity, but I am not aware at the
moment of a method of picking out the relevant quantitiesi. To see that in spite of this

the general scheme we have explained is correct, an example is now in order.

6. FExample: KdV

To illustrate the relation of equations (26) and (29), and the issue of integration constants

** Throughout this paper I have used the term “gauge group” in the sense of physicists,
as the structure group of the theory; mathematicians use the term “gauge group” to refer
to what I have called the “group of gauge transformations”. I point this out here so that it

should be clear that ¢ is a constant, unlike A above, which is dependent on the coordinates.
1 The problem here seems to arise because SDYM typically contains many copies of any

particular integrable system; for example, the parameter £ in (23), is a gauge invariant

quantity, and each value of k gives a reduction of SDYM to NLS.
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raised above, let us look at (26) and (29) in the KdV case, with the partial gauge fixing

4. = (i’ 8) (30)

The second equations of both (26) and (29) become constraints. The most general solution

of the constraints for (26) yields

d e dj + 3 (fo — Jj- ej — dg 00
Az = (f —d) Aw = ( il L1, —fw)) Au = (j 0)
(31)
where ¢, d, e, f, j are some functions of z, w, w, with e = 0. This last condition is where the
integration constant becomes necessary; we will take e to be an arbitrary constant. A gauge
invariant way of saying this is that we will fix Tr[4;(A, — h=10,h)] = Tr[0:hh~10;N],
but this is not very illuminating. Residual gauge transformations act via

d—d+eu
) (32)
f— f+u,—2du—eu
where the function u is the parameter of gauge transformations. Fixing the gauge to d = 0,
the first equation of (26) now reduces to the dimensional deformation of KdV mentioned

in section 4:
fo=35(=507 + f + 0.0 ") fa (33)
Let us look at the corresponding reduction of (29). Writing

_(a B
=(2 1) 3
where ad — By = 1, we have

—1 _ 5az - 67z 662’ - ﬁaz
g azg B (a/'Vz — Yay a/dz - ’)’ﬁz (35)

and it is no surprise that in the reduction we find we have to fix an integration constant,

which we do by setting 34, — §3, = e. Residual gauge transformations act via
a— a+uf
(36)
vy — v+ ud
with 3,0 invariant. We find that under gauge transformation da, — 3v, — da, — By, +eu

so the natural gauge choice is to set da, — v, = 0. Solving all these constraints on g we
0t +e g, g
9= -1
e "0, 0

g_lazg = (?c 8)

10

eventually find
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where § = (eq;1)? and f = —+{a; 2} ({g; 2} denotes the Schwarzian derivative of ¢).
With this choice of g and

10 f Led 10 f ) ( 0 o)
A, = 1% 2¢0: Ju Ap={ 1. 38
(%fazlawf—ﬁ(?z@wf ~To,f Lo toar 0) B

we obtain from (29) the dimensional deformation of the Ur-KdV equation

Lo
qQu = _Eq,zaz aﬂ/{Qa Z} (39)
It is easy to check directly that if ¢ solves (39) f = —5-{q; 2} solves (33).

7. Some Formal Manipulations with Formulae of Drinfeld and Sokolov

Having discussed issues of choice of gauge in reductions of SDYM in section 5, we are almost
ready to explain the origin of bihamiltonian structure, but one more piece of groundwork
is necessary. Even if it is known how to obtain a certain integrable system from a larger
one, and the larger one has a known hamiltonian structure, if the hamiltonian structure
is presented as in section 4, via a hamiltonian operator D, or equivalently by a set of
Poisson brackets, it is an arduous procedure to reduce the hamiltonian structure, via
“Dirac reduction”. As discussed in [30], an alternative to writing a hamiltonian operator
is to write a symplectic form on the space of fields. If the hamiltonian operator is D, and the
fields are arranged in a column vector u, then the associated form can be formally written
i dzéu” A D716u. If a form can be written then it is simple to perform a reduction by
pulling back the form to the reduced space of fields. Problems arise though due to the need
to invert the operator D, which can not always be done (there are systems for which the
reverse is true, that the operator D~! is well-defined, and cannot be sensibly inverted). In
the context of bihamiltonian systems, as presented in section 4, there are an infinite number
of hamiltonian operators we can formally construct, namely R"D; = (D2Dy 1)"2)1, where
n can be any integer and we might hope that certain ones of these are “inverse local”, so
the associated form can be written down.

As mentioned before, to obtain the SL(NN) Drinfeld-Sokolov [15] system from SDYM
we reduce by imposing 0z = 0 and take (Az);; = d;n0;1; we find from the second equation of
(26) that we need to choose integration constants, which we can do by setting ([A.]+):; =
di+1,j, where [M], denotes the strictly upper triangular part of the matrix M. The
Drinfeld-Sokolov systems describe evolution of such a matrix A,, modulo certain gauge
transformations. Looking at the formulae for the hamiltonian structures in section 3 of

[15], we find that appropriate formal expressions for the symplectic forms associated with
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the first, second and third hamiltonian structures of the Drinfeld-Sokolov systems are
wy = /dz Tr(6A. A D;Y5A,)
wo = /dz Tr(6A, AN D;5A,) (40)

w3 = /dz Tr(6A, AND;'D:D;'6A.,)

Here D, = 0, + [A., ], D: = [A;, ]; D! is at first glance much more problematic to
define than D!, but in the above formulae it fortunately only acts on lower triangular
matrices. Remarkably, there is a simple way to make two of the above forms well-defined; if
we write A, = ¢g710.g then §A, = D.(g~10.9g), so if we use the variable g as fundamental

we have

Wy = —/dz Tr(g~'6g A D.(g7'6g))
(41)

w3 = /dz Tr(g_lég A Dg(g_lég))

While the manipulations in this section have been questionable, the result, equation (41),
is perfectly reasonable; it suggests that in terms of the variables g the Drinfeld-Sokolov sys-
tems have a well-defined inverse-local bihamiltonian structure. The above manipulations

for wy were discussed by Wilson [30].

8. The Bihamiltonian Structure Induced on Reductions of SDYM

On the space of solutions of SDYM there are three natural closed two forms we can write
down
Q= / Tr(6ANSA) Ao i=1,2,3 (42)

where o', i = 1,2, 3 are three closed two-forms on R*

al = dz A dw
o = dz A dw (43)
a =dz Ndw — dw A dz

These are natural, because assuming we are dealing with gauge fields that behave well at
infinity, the self-duality equations (1), which can be written F Ao’ =0, i = 1,2, 3, emerge
as moment maps for the gauge invariance of Q' [31]. We will consider these forms under
the circumstances that the fields are well-behaved in the z, Z, w directions, but possibly not

in the w direction (we could choose to compactify in the z, Z, w directions). The criterion
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for gauge invariance of * on a region V of R* under an infinitesimal gauge transformation
A— A+ Ddis
/ Tr(®5A)Aa' =0 (44)
ov

So for us, with the behavior of the fields as specified, Q! is invariant, and the criteria for

0?2 and Q2 to be invariant are, respectively:

/ dzdzdwTr(PoA,) — / dzdzdwTr(P6A,) =0

e (45)
/ dzdzdwTr(PoAz) — / dzdzdwTr(®6Az) =0

So in particular Q2 will be invariant if we restrict to a set of solutions with fixed A,, and
Q2 will be invariant if we restrict to a set of solutions with fixed As.
Using the representation of self-dual gauge fields given at the end of section 3 (equa-

tions (ba) and (13)), we can write

6A, = Dy(g7d9)
0A. = D.(g”"dg)
6Ag = Dg(g~6g) + Dy (g 10 Pg)
0Az = Dz(9”'6g) + D~(g~'0Pg)

Substituting these expressions into the formulae for 22 and Q3, it can be seen that the
integrands are total derivatives, and thus 22 and 23 naturally define two symplectic forms

on the space of w-independent functions

02 = /dzdzdwTr(g_ldg AD.(g70g))
- (47)
Q3 = /dzdzdwTr(g_ldg A[Dz(g7*8g) + 2D, (g '6Pg)]

If we restrict to a subspace of fields where A: is constant, then we can use the equation
§As = 0 to eliminate the §P term in ©3, and (up to overall normalizations) we obtain the
we, ws of section 7, equation (41), the Drinfeld-Sokolov symplectic forms.
Note the following;:
1. The above derivation of the Drinfeld-Sokolov forms from 92, Q3 is free of any “formal”
manipulations.
2. I have taken care to use the representation of the potentials in terms of g and P,

as opposed to the other representations of section 3, because if we wish to consider

13



reductions setting 0s to zero, the representation in terms of g and P is still good,
while the others are not.

3. It is straightforward to check directly the gauge invariance properties of Q2,Q3; we
find their invariance requires [ dzdzdwTr(®5A,) = 0 and [ dzdzdwTr(®5Az) = 0
respectively, as we would expect. Clearly the restricted gauge transformations of the
Drinfeld-Sokolov systems [15] satisfy these conditions.

We would also like to obtain hamiltonian structures for equations (26) in an A, =0
gauge. For this we use the standard M formulation of section 3, i.e. equations (5b) and

(7). In light of note 2 above we should be cautious. We have

6Ag = Dg(h™16h)
§A; = Dz (h™'6h)
6Ay = Dy(h™'6h) + Dg(h™'0Nh)
§A, = D,(h™'6h) + Dz(h"'6Nh)

These expressions allow us to write the integrands of Q', Q3 as total derivatives, so we can
write the associated forms Q.03 (the latter should presumably agree with that above),

and then restricting to the subspace dA, = 0 we get

Ol = / dzdzdwTr(h™'6h A Dz(h™'5h))
(49)
Q3 = / dzdzdwTr(h™*6h A D.(h™'5h))

This is as far as we can go without formal manipulations; but by analog with the successful
manipulations of the previous section it is natural to guess that for reductions of SDYM
in A, = 0 gauge, hamiltonian structures arise from the following symplectic forms on the

space of potentials Ax:

1 :/dzTr(éA ANDJ16AZ)
@9 :/dz Tr(6A; AN D75 A) (50)
@3 :/dzTr(aA AD;'D.D;'5A)

wo and w3 give Ql and Qg above, and @; is motivated by the usual recursion formalism. In
equation (50) D, = 0, and D; = [A5, ]. In at least the simplest example, the Heisenberg

ferromagnet, it seems these formulae have some meaning.
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9. Example: The Heisenberg Ferromagnet

In equation (28) the method of reduction of SDYM to the Heisenberg ferromagnet was
given. It is straightforward to see that Wy corresponds to the standard Poisson brackets
of [27]. Here I wish to look at @;. Since A\? + uv = k2, we can eliminate 6\ from @; and

write it (up to an overall normalization)

vy-lv 2071+ Lo EN (1§

The ferromagnet equations are

262y = 02 (A2 — pA2)
—2K%1y = 0.(A\v, — V)

The above symplectic form gives a hamiltonian structure since we can write:
B ) (A ) <2 (o
20 + Xaz by Xa BY —az()\Vz + V)\Z) A Mz

_ 5,2 (6/0p Vs — JVs
= 2K (5/51/ dZi)\—f—FL
(53)

The hamiltonian in the above equation was given in [27]; I am uncertain whether the

>«I

“group theoretic origin” of this hamiltonian structure for the ferromagnet equation has

been realised before.

10. The KP Hierarchy from the SDYM Hierarchy 1t

Let us choose a gauge algebra G such that a) G can be identified with its universal envelop-
ing algebra, i.e. we can “multiply” two elements of G to get another element of G, and b)
G “splits”, i.e. we can write G = G, & G_, where the commutator of two elements of G
is in G4, and the commutator of two elements of G_ is in G_. For M € G define M, M_
as the projections of M onto G, and G_ respectively.

Suppose L € G and consider the following evolution equations for L:

OL

95 = (LY, L] i=1,2,... (54)

17 The results in this section were obtained in collaboration with Didier Depireux. Sim-

liar results have been obtained by I.A.B.Strachan.
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These imply (see section 4 of [32])

3o =1
(9(5;)4— B a(al;)+ = (L)), (L7)4] (55)
L) AL
8z 0z =), (L) -]

It is straightforward to check, using these results, that equations (54) for L are equivalent
to the equations of the SDYM hierarchy (4) with a dimensional reduction 0s;, = 9., ,,

i=1,2,... (so 0z, =0) and an ansatz

Agl — L
Az, = (LY _, i>1 (56)

The KP hierarchy is just this with G, the algebra of finite order differential operators
in one variable z, G_ the algebra of psuedodifferential operators in x (with no “constant
term”), and

L =0, +ux(x)0; " +us(x)0;* + ... (57)

The gauge choice here is one in which A,, = 0,; in the Sato theory (see for example [32])
an object W is defined such that L = Wa,W !, and this defines a gauge transformation

to a gauge where Az, = 0,.

11. Conclusions and Further Directions

That the bihamiltonian structures of integrable systems arise naturally from structures on
the space of solutions of SDYM is a most pleasing result, and lends much support to the
idea that the interesting properties of integrable systems all stem from SDYM. But there
is a long way to go before the theory of integrable systems can be rewritten from this
viewpoint. Many interesting questions remain, of which I will just pose three here:

1) It is interesting that we recover most standard integrable equations and their hier-
archies by a reduction of SDYM and its hierarchy by essentially half the number of
coordinates. One the other hand, there are interesting approaches in the theory of
integrable systems which involve adding extra coordinates; examples are the mysteri-
ous Hirota bilinear operators [29], and the unified approach to integrable systems of

Fokas and Santini [33]. It would be very interesting if a link could be made between
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the auxiliary coordinates in these methods, and the coordinates we have reduced by
from SDYM.

2) The fact that we now have a simple reduction of SDYM to KP opens a lot of pos-
sibilities. First, using the methods of this paper, we should be able to extract the
bihamiltonian structure of KP [34], and understand hierarchies related to KP via
gauge transformations, such as the modified KP. These issues are currently under
investigation in collaboration with D.Depireux. More importantly, we need to un-
derstand how the twistor formalism gives inverse scattering formalism (and hopefully
the Hirota method of direct solution) for KP and its relatives (Davey-Stewartson,
multi-component KPs etc.).

3) Quantized integrable systems have been extensively studied, and arise as deformations
of conformal field theories. It would be interesting too see if there exists a quantization
of SDYM that unifies quantized integrable systems in some sense. Quantization of
SDYM using the lagrangians of [19] and [20] is problematic, as there seem to be
renormalization problems, but it seems the N = 2 string can be regarded in some

sense as a quantization of SDYM [35], and this might give positive results.
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