
Symmetries of KdV and Loop GroupsJeremy Schi�Department of Mathematics and Computer ScienceBar Ilan UniversityRamat Gan 52900, Israele-mail: schi�@math.biu.ac.ilMay 1996AbstractA simple version of the Segal-Wilson map from the SL(2;C) loop groupto a class of solutions of the KdV hierarchy is given, clarifying certain as-pects of this map. It is explained how the known symmetries, includingB�acklund transformations, of KdV arise from simple, �eld independent, ac-tions on the loop group. A variety of issues in understanding the algebraicstructure of B�acklund transformations are thus resolved.1 Prelude: Symmetries of KdVThis section contains a list, which I believe is exhaustive, of known notions of\symmetry" of the KdV hierarchy. One of the aims of this paper is to obtain auni�ed, simple understanding of them.1.1 Translation InvarianceThe KdV hierarchy is a system of autonomous di�erential equations on an in�-nite dimensional a�ne space, and hence an in�nite dimensional abelian group,associated with translation invariance, acts on the space of solutions.1.2 Scaling and Galilean InvarianceTwo further one parameter groups are known to act on the space of solutions,the C� action associated with scaling invariance (see, for example, [4], for thecase of the KdV equation), and the C action associated with Galilean invariance(see, again, [4], for the case of the KdV equation). The full group generated bytransformations of these types and translations is easy to identify.1



1.3 Wahlquist-Estabrook B�acklund TransformationsAnother well known, but less well understood, symmetry is the one parameterfamily of Backlund transformation (BTs) of Wahlquist and Estabrook [21] (see[4] sections 5.4.2 and 5.4.3 for a typical exposition). To implement a BT is in twoways harder than the simple transformations listed above: �rst, implementing aBT involves solving a di�erential equation, and second, the form of this di�eren-tial equation depends on the solution being transformed, i.e. the transformationis �eld dependent. Note that together, these two problems mean it is not clearwhen BTs can be implemented: it is necessary to check that the solution beingtransformed has the properties that guarantee global solvability of the requireddi�erential equation.When BTs can be applied, several remarkable algebraic properties emerge.Because of an integration constant that appears in each application of a BT, BTsdo not map single solutions to single solutions, but rather the image of a singlesolution is a set of solutions. Thus a BT is an operator mapping the space of setsof solutions of KdV to itself; if the parameter in the BT is � 2 C, let us denotethis operator as O�. The known algebraic properties (assuming applicability ofthe BTs) are (1) commutativity [21], (2) that the image of any set of solutionsunder the square of a BT (of a given parameter value) includes the original set(this is evident from the equations de�ning the BT), and (3) the product of twoBTs is not itself another BT. That is,8 �1; �2 O�1O�2 = O�2O�18 � I � O2� (1)6 9 �1; �2; �3 s:t: O�1O�2 6= O�3 :(In the second of these relations, I use the notation that for operators A;B onsets, A � B implies the image of any set under A is a subset of the image of thatset under B, and I denotes the identity operator on sets.)In addition to the problem of determining to which sets of solutions BTs canbe applied, there is a need to understand the origins of this strange notion of sym-metry, and how it interacts with the other symmetries listed in this section. Theresults of this paper go some way towards resolving these last two questions; inparticular I will give in Sec. 5.3 what I consider to be the correct algebraic frame-work within which to consider BTs, and the results of Sec. 5 give a �eld indepen-dent realization of all the symmetries of KdV listed in this section, making theirinterrelationships straightforward. With regard to the question of applicabilityof BTs, the paper [7] studies when the BT O0 can be implemented on a solutionsatisfying \reasonable" analyticity conditions while retaining such conditions. Asu�cient condition for this is found: that the spectrum of the Schr�odinger op-erator associated with the starting solution have no negative eigenvalues. Thesolutions of KdV studied here (which include certain singular solutions) all ad-mit the BT O0, and also BTs of other su�ciently low parameter values, while2



staying in the class of solutions under study. It seems, however, that the classonly includes single soliton solutions that are su�ciently broad, shallow and slow(recall that all these properties are determined by a single parameter), and thusthe class of solutions is not su�ciently large to make the question of when a BTcan or cannot be applied, while staying within the class, of real interest.1.4 Galas B�acklund TransformationsIn a relatively unknown recent work [6], Galas found a novel B�acklund transfor-mation for KdV. Since this is not well known, and presented only very brie
y in[6], I give some details. Combining Eqs. (4) to (7) in [6], it emerges that the KdVequation ut + uxxx + 6uux = 0 (2)is invariant under u 7! u+2(ln �)xx, where � (which Galas calls 4+�p3) is relatedto u by u = � � 12  �xxx�x � � 2xx2� 2x ! = � � (p�x)xxp�x (3)and �t�x = �6� �  �xxx�x � 3� 2xx2� 2x ! : (4)For contrast, the standard BT is u 7! u+ 2(ln �)xx, where � is related to u byu = � � �xx� (5)and �t�x = �6� � ��xxx�x � 3�xx� � : (6)Galas �nds the in�nitesimal version of his BT as well, and shows that it generatesone soliton solutions from the trivial solution u = 0. In fact it can generate otherinteresting solutions from u = 0; it is straightforward to check that� = (x� 12k2t) + sinh(2k(x� 4k2t))2k (7)solves Eqs. (3) and (4) with u = 0 and � = k2. This gives an interestingsingular solution of KdV, which should presumably be regarded as a nonlinearsuperposition of the rational solution u = 2(ln �)xx, � = x, with the \singularsoliton" solution u = 2(ln �)xx, � = sinh(2k(x � 16k2t)) (at least up to Galileantransformations). Note, however, that like both these solutions, for any real valueof t the new solution is only singular for one real value of x (and has a doublepole there); is this sense the notion of \superposition" is inappropriate. Suchmixed rational-solitonic solutions have been studied in the literature [1].3



Algebraic properties of this BT have not as of yet been given; in Sec. 5.4 I willprove commutativity, at least within a limited class of solutions. The possiblelimitations on applicability, the fact that one BT creates a family of solutions outof a single one, and the fact that this transformation is �eld dependent, all applyto this BT as they do to the standard one.1.5 The Hierarchy of In�nitesimal Symmetries General-izing Scaling and Galilean InvarianceIt is of course possible to write generators of translation, scaling and Galileantransformations. The generators of the translation transformations form a hier-archy; they are related to each other by application of an operator, with veryspecial properties, known as the recursion operator (see, for example [16]). The\lowest order" translation is generated by the recursion operator out of the gen-erator of the trivial symmetry, i.e. the symmetry that leaves a solution invariant.The generators commute, re
ecting the abelian nature of the translation group.It turns out that the generator of scaling transformations can be obtainedfrom the generator of Galilean transformations by application of the recursionoperator. And, furthermore, a hierarchy of symmetry generators can be producedby repeated application of the recursion operator to the generator of Galileantransformations. Let us denote the generators of the translation symmetries byln, n = 0; 1; 2; : : :, (where it is understood that ln+1 is obtained by the action ofthe recursion operator on ln, and l0 is the lowest order translation generator),and the generators in the new hierarchy by mn, n = �1; 0; 1; : : : (where again itis understood that mn+1 is obtained by the action of the recursion operator onmn, and m�1 is the generator of Galilean transformations). The algebra obeyedby these in�nitesimal transformations is then found to be[lr; ls] = 0[mr; ms] = (s� r)mr+s (8)[mr; ls] = (s+ 12)lr+s(where in the last relation it is understood that l�1 = 0). It is not currentlyknown how to exponentiate the generators mn, n > 0; of particular interest isthe generator m1, since m�1; m0; m1 form a closed sl(2) subalgebra.The history of the mn symmetries is a little unclear to me. The earliestreference I am aware of is [11]. They are exploited in [15], and a reference isgiven to a preprint by the authors of [3]; in [3] these in�nitesimal symmetrieswere discovered for the KP hierarchy (although all solutions of KdV are solutionsof KP, it does not follow that symmetries of KP can be restricted to symmetries ofKdV; in this case they can, as has also been illustrated in [2]). The symmetries arediscussed further in [12]. In addition, there has been some discussion [8] of howthe mn hierarchy can be extended to de�ne symmetry generators m�2; m�3; : : :4



by application of the inverse of the recursion operator. These results will bereproduced later in the paper (and also results of [9] showing the existence offurther in�nitesimal symmetries that leave the KdV solution invariant but act oncertain \prepotentials" associated with the solution).1.6 Zakharov-Shabat Dressing TransformationsSomewhat remote from all the above results, but, in a sense that will emerge,inclusive of all of them, are the \dressing transformations" of Zakharov and Sha-bat (see [22] for a concise explanation in the case of the modi�ed KdV equation).The KdV hierarchy can be interpreted as the consistency condition for a certainhomogeneous linear di�erential system. A solution of this linear system gives riseto a solution of the hierarchy, but there are many solutions of the linear systemcorresponding to any solution of the hierarchy. Dressing transformations shouldbe thought of as an action of the SL(2;C) loop group on solutions of the linearsystem. Unfortunately, taking two solutions of the linear system correspondingto the same solution of the hierarchy, and acting on them with the same dressingtransformation, gives, in general, two solutions of the linear system correspondingto di�erent solutions of the hierarchy. Thus there is no guarantee that dressingtransformations give rise to a sensible notion of symmetry on the hierarchy itself.It turns out that there is a dense subset in the loop group for which dressingtransformations can be interpreted as B�acklund transformations (i.e. as mapsthat take a single solution to a family of solutions of �nite dimensionality); theGalas BTs arise precisely this way. The standard BT, however, can only beexpressed as a �eld dependent dressing transformation.2 Aims and MethodsThis paper has two main aims. One, as stated above, is to obtain a uni�ed andsimpli�ed understanding of symmetries of KdV. I will do this by exploiting acornerstone of KdV theory, the Segal-Wilson correspondence. The other aim ofthis paper is to give a simpli�ed reformulation of this correspondence, clarifyingseveral issues, both conceptual and technical.In [19], Segal and Wilson gave a construction associating a solution of theKdV hierarchy with each point in a certain in�nite dimensional grassmanian.The grassmanian is a homogeneous space of the SL(2;C) loop group, which Idenote G, a quotient of G by the subgroup of loops which are boundary valuesof analytic loops on the unit disc; I denote this subgroup G+. Throughout thispaper I regard G as the set of 2� 2 matrices, with unit determinant, and entriesLaurent series in a parameter �, convergent for j�j = 1, and de�ning a smoothmap from the circle j�j = 1 to SL(2;C); thus G+ is the subgroup for whichentries are power series, which, since they are convergent for j�j = 1, de�ne5



analytic functions in j�j < 1. The main paper of Segal and Wilson [19] does notreally exploit the description of the grassmanian as the quotient G=G+; howeverin other papers, Wilson [22] (actually for the case of the modi�ed KdV hierarchy)gives an explicit map from elements of G to solutions of the hierarchy, exploitingthe Birkho� factorization of G. (Writing G� for the subgroup of loops that areboundary values of loops analytic in j�j > 1 and which reduce to the identityat � = 1, the Birkho� factorization theorem states that for elements g in adense, open subset of G, there exists a unique factorization g = g�1� � g+, whereg� 2 G�, g+ 2 G+. The product map G��G+ ! G de�ned by (g�; g+) 7! g�1� g+is a di�eomorphism from G� � G+ to its image. See [17].) The solution of thehierarchy obtained by Wilson's map from an element g 2 G is unchanged byright multiplication g 7! g �h, h 2 G+; thus the map actually de�nes a map fromG=G+ to solutions of the hierarchy.The reformulation of this map that I will give is inspired by Mulase's resultsfor the KP hierarchy [14] (which I had the good fortune to hear Mulase lecture onin 1989). Mulase emphasizes that integrable systems are really linear systems indisguise. Of course, for KdV this is well-known: the invertible scattering trans-form converts the nonlinear 
ow for the function satisfying the KdV hierarchyto a linear 
ow for associated scattering data. I will consider a simple linear
ow on the loop group G, whose solution is determined uniquely by an initialvalue, i.e. some element of G. A 
ow on G induces, via Birkho� factorization,and assuming the 
ow does not leave the relevant dense open subset of G, 
owson G+ and G�, and there is no reason why these 
ows should be linear. Thecorresponding 
ow on G� turns out to be, more or less, the KdV hierarchy! Theorbit on G� is una�ected by right multiplication of the initial value of the 
owon G by an element of G+ and thus Wilson's map from G=G+ to solutions ofKdV is recovered.The reader may be itching to know what I meant by the phrase \more or less"in the above paragraph. In fact the G� 
ow contains somewhat more than theKdV hierarchy. In particular I will identify a further in�nite dimensional abeliansubgroup H of G, that, acting in an appropriate way on the initial value of theG 
ow, leaves the associated KdV solution invariant, even though the G� 
ow isnot invariant. It thus turns out that the Wilson map is a map from the doublecoset space HnG=G+ to solutions of KdV; a study of the geometry of this spacewould be very interesting.Returning for a moment from technical to conceptual issues, the approach Ipresent \explains" the role of the loop group in KdV theory: the loop group isthe space of initial value data for the simple linear 
ow that KdV conceals.Another technical issue that emerges is that there are two ways to pass fromthe G 
ow to the associated KdV solution, using either the G+ or the G� 
ows asintermediaries. These both have an advantage and a disadvantage: the G+ 
ow isnot invariant under the G+ action that leaves the KdV solution invariant, but isunder the H action, and vice-versa for the G� 
ow. For di�erent computational6



purposes, di�erent approaches are preferable. Note theG+ 
ow is also determinedby a set of linear equations; this is the linear system referred to in the discussionof dressing transformations in section 1.6. In Wilson's works [22] only the G+
ow is used; on the other hand, in the work of Drinfeld and Sokolov [5], theG� 
ow is used. The results presented here show the rather simple way theseapproaches are related.Armed with a �rm grasp of the Segal-Wilson correspondence, the symmetriesof KdV can be understood. The natural origin of symmetries of KdV should bewhat will be loosely called \symmetry actions" on the loop group. These includeright and left multiplication by elements of G, other automorphisms of G, and theinduced action on (subgroups of) G of reparametrizations of �. Unfortunatelymost of these actions do not descend to the double coset space. It turns outthat there are some actions that do (these give rise to genuine symmetries ofKdV), and others that have the property that they map individual cosets toa �nite dimensional set of cosets. These latter actions are precisely B�acklundtransformations! In this way �eld independent symmetry actions on G give riseto all the symmetries of KdV I have listed in section 1. Field independence is animportant point here; all of the symmetry actions onG that will be considered canbe rewritten as, say, right multiplications, but not necessarily �eld independentones.The contents of the remainder of this paper are as follows. In section 3, Idiscuss the zero curvature formulation of the KdV hierarchy, and particularlya nonstandard gauge choice that will be important. In section 4 I present thereformulation of the Segal-Wilson correspondence, and, in section 5 I use it toshow how �eld independent symmetry actions on G induce all the symmetries ofKdV presented in section 1. Finally, in section 6, I present a few open problems.Two more comments are in order before concluding this introductory section.First, the reader will have noticed that I am studying the KdV hierarchy withoutexploiting its embedding in the KP hierarchy. The reason for this is quite simple| although many of the known properties of KdV are inherited from those of KP,it is not the case that this must be so for all interesting properties of KdV, and inparticular, I am not certain whether the Galas BT has an analog for KP. Second,the reader will �nd another presentation of a more \group-theoretic" approach tothe Segal-Wilson correspondence in [10], which has some overlap with the ideasbeing presented here, and shows that the ideas being presented here can be setin a very general framework. The work of Mulase [14] is actually an example ofthe constructions of [10].
7



3 A Nonstandard Gauge for the Zero CurvatureFormulation of KdVThe KdV hierarchy is de�ned as follows. The sequence Pn, n = 0; 1; 2; : : : ofdi�erential polynomials in u(x) is de�ned by the recursion relation@xPn+1 = (14@3x � u@x � @xu)Pn n = 0; 1; 2; : : : (9)with the initial condition P0 = 1, supplemented by the condition that Pn ishomogeneous of weight 2n, where the n-th x-derivative of u is assigned weightn+ 2. The KdV hierarchy is then the set of di�erential equationsutn = �@xPn+1 n = 1; 2; : : : : (10)Here u is regarded as a function of x and the in�nite number of \times" tn,n = 1; 2; : : :. I use a non-standard numbering of these times to underscore thefact that I am considering KdV without using its embedding in KP. The choicen = 1 is the original KdV equation; P2 = �14uxx + 32u2 (note the conventionsused from here on in this paper di�er from those used in Sec. 1.4 where I followedthe conventions of [6]). Partial derivatives are denoted by su�ces, as usual. Theproofs that the recursion relation (9) has a unique solution, when supplementedwith the homogeneity condition given, and that the 
ows (10) commute, are bynow standard (see, for example, [16]).The hierarchy can be presented as a set of zero-curvature conditionsAtn = B(n)x � [A;B(n)] n = 1; 2; : : : (11)where A = � 0 12u+ � 0� (12)B(n) = � �12b(n)x b(n)(2u+ �)b(n) � 12b(n)xx 12b(n)x � (13)b(n) = nXr=0Pn�r�r: (14)Drinfeld and Sokolov [5] introduced a generalization of this scheme. The zerocurvature equations (11) are invariant under gauge transformationsA ! hAh�1 + hxh�1 (15)B(n) ! hB(n)h�1 + htnh�1; (16)where h is an SL(2) matrix (which is allowed to be x; tn and even � dependent).Taking h = � 1 0�j 1� ; (17)8



where j is dependent on x; tn but not �, gives a zero curvature system withA = � j 12u� jx � j2 + � �j � : (18)Choosing j to be a solution of jx + j2 = 2u gives a zero curvature formulationfor the modi�ed KdV hierarchy. However, I will be more interested in a lesscommonly studied gauge (despite the fact it is actually mentioned in [5]). Takej to be a solution of u = jx in the above; to implement the gauge transformationon the matrices B(n) it is necessary to know jtn , and the obvious choice isjtn = �Pn+1; (19)which is clearly consistent with the assignment u = jx. This gives a zero cur-vature formulation for the potential KdV hierarchy (i.e. the coupled system ofEqs (10) and (19) with the relation u = jx). I call such a gauge choice \PKdVgauge". Amongst the family of zero curvature equations related by gauge trans-formations in the way described above, it turns out that PKdV gauge has a usefulcharacterization:Lemma. Up to translation of j by a function of x, independent of tn, PKdVgauge is the unique gauge choice such that B(n+1) � �B(n) is independent of �.Proof. From Eq. (14), b(n+1) � �b(n) is independent of �. After the gaugetransformation given by Eq. (16) with h given by Eq. (17),B(n) = � �12b(n)x + jb(n) b(n)(2u+ �)b(n) � 12b(n)xx + jb(n)x � j2b(n) � jtn 12b(n)x � jb(n) � : (20)Thus B(n+1)��B(n) is independent of � if and only if (�b(n+1)� jtn+1)��(�b(n)�jtn) is independent of �, which, since the O(�0) term in b(n+1) is Pn+1, is true ifand only if jtn = �Pn+1. This is the case in PKdV gauge. It also implies thatu� jx is independent of tn, giving u = jx + f(x) where f(x) does not depend onthe tn, thus specifying PKdV gauge, up to translation of j by a function of x. 2It will be useful to have a theorem stating clearly the existence and charac-terization of the zero curvature formulation in PKdV gauge. To this end, let usde�ne M to be the a�ne space with coordinates t�1; t0; t1; t2; : : :, and A to bethe Lie algebra of traceless 2� 2 matrices whose entries are formal power seriesin �. I also need the following notion:De�nition. A change of coordinates ti ! t0i on M is admissible if it is given byti = 1Xj=0 ajt0i+j i = �1; 0; 1; : : : (21)where a0 = 1, and for j > 0, the aj are arbitrary constants, only a �nite numberof which are nonzero. 9



I will need the e�ect of admissible changes of coordinates on the components ofa one-form on M . If � = P1n=�1 �ndtn = P1n=�1 �0ndt0n is a one-form on M , thenby a simple substitution, �0n = nXm=�1 an�m�m: (22)With these preparations I can now state the followingTheorem. Let Z be anA valued one form onM , i.e. Z = P1n=�1 Zndtn, Zn 2 A.Suppose (1) that Z0 has the formZ0 = � j 1� + u� j2 �j � ;with j; u functions on M , (2) that Zn � �Zn�1 is independent of �, n = 0; 1; : : :,and (3) that dZ = Z ^ Z. Then, possibly after a sequence of admissible changesof coordinates, (1) u = jt0 , (2) j; u solve the potential KdV hierarchy, with xidenti�ed as t0, and (3) jt�1 = �1ut�1 = 0:Proof. As a preliminary, note that it is straightforward to show that an admissi-ble changes of coordinates does not a�ect assumption (2), and since assumption(3) is written in terms of di�erential forms, it evidently is not a�ected either.Furthermore, assumptions (1) and (2) implyZ�1 = � 0 01 0� ; (23)and under an admissible change of coordinates Z0 ! Z0 + a1Z�1, so assumption(1) is also not a�ected: the function u is just translated. Thus the assumptionsin the theorem allow us to perform admissible changes of coordinates. The KdV
ows, however, are not left invariant under such changes of coordinates; ratherthe 
ows pick up certain linear combinations of the lower 
ows. This accountsfor the need to allow for an admissible change of coordinates in the conclusion ofthe theorem. Fortunately, this cumbersome but harmless detail will not play anyrole in the rest of this paper.The equation dZ = Z ^ Z is equivalent to the system@Zm@tn � @Zn@tm + [Zm; Zn] = 0 m;n = �1; 0; 1; : : : (24)Conclusion (3) in the theorem follows immediately from taking m = 0, n = �1.To obtain conclusion (1), let us take m = 0, n � 1. Then@Z0@tn = @Zn@t0 � [Z0; Zn] 10



= @(Zn � �Zn�1)@t0 � [Z0; (Zn � �Zn�1)] + � @Zn�1@t0 � [Z0; Zn�1]!= @(Zn � �Zn�1)@t0 � [Z0; (Zn � �Zn�1)] + � @Z0@tn�1 : (25)Write �n = Zn � �Zn�1, n = 0; 1; 2; : : :, which by hypothesis is independent of�. The LHS of Eq. (25) is independent of �, and the RHS is linear. Setting thecoe�cient of � on the RHS to zero,@Z0@tn�1 = �� 0 01 0� ;�n� ; (26)which implies (�n)11 = 12 @@tn�1 (u� j2)(�n)12 = � @j@tn�1 : (27)The terms independent of � in Eq. (25) give@Z0@tn = @�n@t0 � �� j 1u� j2 �j � ;�n� : (28)The 1,2 entry of this gives@(�n)12@t0 � 2(j(�n)12 � (�n)11) = 0: (29)Substituting from Eq. (27), @@tn�1 (u� jt0) = 0; (30)which implies, since it is true for all n � 1, that u = jt0 + c where c is a functionof t�1 alone. From the t�1 evolution equations as already established, c must infact be constant. Having shown this, c can be removed via an admissible changeof coordinates (with only a1 nonzero), which as explained above translates u bya constant, thus proving conclusion(1).To establish conclusion (2) requires looking at the 1,1 and 2,1 entries ofEq. (28). Using Eq. (27) and the relation u = jt0 these give@j@tn = �(�n)21 + 12 @2@t20 @j@tn�1 � j @@t0 @j@tn�1 + (j2 � 2u) @j@tn�1 (31)@u@tn = @(�n)21@t0 + j @2@t20 @j@tn�1 � (u+ j2) @@t0 @j@tn�1 � 2ju @j@tn�1 : (32)11



Eliminating (�n)21 by di�erentiating the �rst of these equations with respect tot0 and adding to the second, gives, after some algebra:@u@tn = (14@3t0 � u@t0 � @t0u) @j@tn�1 : (33)This is almost the required result. It is clear that given the correct tn�1 
ow for j,viz. jtn�1 = �Pn, then Eq. (33) implies the correct tn evolution for u, viz. utn =�@t0Pn+1. Integrating this with respect to t0 gives jtn = �Pn+1+cn(t�1; t1; t2; : : :).To complete an inductive step requires showing cn can be set to zero. Thisinvolves three stages. First, t�1 independence follows of cn follows immediatelyfrom the t�1 
ow equations for u; j that have already been established. Thesecond stage is showing there is no t1; t2; : : : dependence. This involves use ofEqs. (24) for m;n � 1, and is unfortunately intricate, and is therefore relegatedto an appendix. Once it has been established that cn is constant, the third stage isto observe that it can be eliminated by an admissible change of coordinates withonly an+1 nonzero (from Eq. (31), the addition of a constant to jtn is equivalentto addition of a constant to (�n)21, i.e. addition of a constant multiple of Z�1to Zn). In this manner it emerges that Eq. (33) is the crucial ingredient in aninductive step, obtaining the correct tn 
ow for j from the correct tn�1 
ow. Theinduction is started from the relation jt0 = u, which has already been proven. 24 A Map from the SL(2;C) Loop Group to So-lutions of KdVOn M , de�ne the following one-form valued in the Lie algebra of G:
 = 1Xn=�1� 0 1� 0�2n+1 dtn = 1Xn=�1� 0 1� 0��ndtn: (34)Consider on M the linear di�erential systemdU(t) = 
U(t); (35)where U(t) is a G valued function on M . Since d
 + 
 ^ 
 = 0 (in fact d
 =
^
 = 0) this system is completely integrable in the sense of Frobenius, and itsgeneral solution is U(t) = exp0@ 1Xn=�1� 0 1� 0��ntn1AU0; (36)where U0 = U(0) is an arbitrary element of G. Since the big cell of G, where theBirkho� decomposition can be applied, is an open dense subset of G, it comes as12



no surprise that the 
ow on G de�ned by (36) only leaves the big cell for discretevalues of t [22]. Let us consider therefore the Birkho� decomposition of U , in aninterval of values of t for which it is de�ned. WritingU(t) = S�1(t) � Y (t); (37)where Y (t) 2 G+, S(t) 2 G�, and substituting in (35), gives�dS � S�1 + dY � Y �1 = S
S�1: (38)The �rst term on the LHS lies in the Lie algebra of G�, whereas the secondterm lies in the Lie algebra of G+. Therefore, using the obvious notation for theprojections of an element in the Lie algebra of G to those of G+ and G�,dS � S�1 = �(S
S�1)� (39)dY � Y �1 = (S
S�1)+: (40)Write Z = (S
S�1)+; Z is an A valued one form on M . Using Eq. (40), dZ =Z ^ Z. But using the de�nition of 
, Eq. (34),Z = 1Xn=�1Zndtn; Zn = �S � 0 1� 0�S�1�n�+ : (41)Now S = I + 1� �� �
 ��� +O� 1�2� (42)for some functions �; �; 
 on M . A simple computation now givesZ0 = � � 1�� 2� �� � : (43)From the de�nition of the Zn, Eq. (41), it is apparent that Zn � �Zn�1 is inde-pendent of �. Thus all three of the conditions for the theorem of Sec. 3 hold, andit follows that, up to an admissible change of coordinates, the functions j = �,u = �2� 2� satisfy the potential KdV hierarchy. In other words, given any solu-tion of Eq. (35) (a solution of which is speci�ed by the choice of U0, an elementof the loop group), there is an associated solution of the potential KdV hierarchy.The replacement U0 ! U0 � g+, where g+ 2 G+, has the e�ect U ! U � g+ andY ! Y � g+, but S and Z and therefore the associated KdV solution are leftunchanged. Equally easy to see is that the replacementU0 ! h � U0; h = exp 1Xm=2 t�m�m � 0 1� 0�! ; (44)where t�2; t�3; : : : are parameters, causes U ! h � U , S ! S � h�1, but Y and Zare left invariant. Thus the map is actually from the double coset space HnG=G+13



to solutions of KdV, where H is the in�nite dimensional abelian subgroup of Ggenerated by the commuting matrices1�n � 0 1� 0� n = 2; 3; : : : (45)in the Lie algebra of G. The solutions of KdV obtained this way can havesingularities at points where the Birkho� decomposition is not possible.Let us pause to reiterate the important points mentioned in Sec. 2. Theloop group element U0 arises as the initial value data for the simple linear 
owEq. (35), which is the linear system \behind" KdV. There are two formulae forZ, Z = (S
S�1)+ and Z = dY � Y �1, meaning that given a solution of Eq. (35)the associated KdV solution can be constructed either going through the 
ow onG+ given by Y , or through the 
ow on G� given by S. Finally, in addition to theG+ action, there is an H action on U0 that leaves the KdV solution invariant.One way of thinking about this extra invariance is as follows: I have chosento work on the a�ne space with coordinates t�1; t0; : : :, but I could have decidedto work on the a�ne space with coordinates : : : ; t�2; t�1; t0; t1; t2; : : :, taking thesum in the de�nition of 
, Eq. (34), to be from �1 to 1 rather than from �1to 1. The new 
ows would all leave Y and Z invariant, but not S. It followsthat there must be degrees of freedom in S that do not \contribute" to Z, thatare acted upon by the new 
ows. This is indeed the case; the simplest example ofsuch a degree of freedom is 
 in Eq. (42) above. Since these new 
ows evidentlycommute, when working on the a�ne space with coordinates t�1; t0; : : :, theremust be an in�nite dimensional abelian group action on U0 leaving Z, but not S,invariant; this is just the H action introduced above.For later reference I give a number of formulae. First, I give the relation ofthe �rst few terms in Y and the solution functions j; u. WritingY = 1Xn=0Yn�n; (46)where the matrices Yn are independent of �,Z0 = @Y@t0Y �1=  @Y0@t0 + @Y1@t0 �!�Y �10 � Y �10 Y1Y �10 ��+O(�2)= @Y0@t0 Y �10 + Y0@(Y �10 Y1)@t0 Y �10 �+O(�2): (47)Writing Y0 = � a1 a2a3 a4 � Y �10 Y1 = � b1 b2b3 �b1 � ; (48)14



the following relationships emerge (in addition to the determinant constrainta1a4 � a2a3 = 1): a3 = a1t0 � ja1 a1t0t0 = 2ua1a4 = a2t0 � ja2 a2t0t0 = 2ua2b1t0 = �a1a2 (49)b2t0 = �a22b3t0 = a21:Evolutions for components of Y can easily be determined using the higher com-ponents of Z = dY � Y �1; in particular, from Z1 = (@Y=@t1) � Y �1,a1t1 = 12ut0a1 � ua1t0a2t1 = 12ut0a2 � ua2t0b1t1 = a1t0a2t0 � ua1a2 (50)b2t1 = a22t0 � ua22b3t1 = �a21t0 + ua21Next, consider the problem of to what extent S can be reconstructed from Z.Looking at Eq. (41), and recalling from Sec. 3 that �n = Zn��Zn�1, n = 0; 1; : : :,we see at once that �n is the coe�cient of ��n in S � 0 1� 0�S�1. That is,S � 0 1� 0�S�1 = � 0 0� 0�+ 1Xn=0 �n�n = 1Xn=�1 �n�n (51)where ��1 � � 0 01 0�. Finally, it will be useful to an abbreviation for the matrixappearing in Eq. (36), so de�neM = exp0@ 1Xn=�1� 0 1� 0��ntn1A = cosh(zp�)I + sinh(zp�)p� � 0 1� 0� ; (52)where z = P1n=�1 tn�n, so that Eq. (36) now reads U = MU0.Two more notes are in order before concluding this section. First, I mustmention again that the above construction is modeled on Mulase's similar con-struction for KP [14]; I have followed Mulase's notation throughout. Second,the PKdV gauge of the zero curvature formulation evidently plays a pivotal rolein the construction; I expect though that a similar formulation for KdV in itsstandard gauge could be found using a nonstandard Birkho� decomposition of G(c.f. the di�erent projections used in [5], Sec.3).15



5 Symmetry Actions on the Loop Group andSymmetries of KdVIn this section I give the symmetry actions on G that give rise to the symmetriesof KdV listed in Sec. 1. The order of subsections di�ers from that of Sec. 1 inthat I deal with in�nitesimal symmetries �rst.5.1 In�nitesimal symmetriesConsider in�nitesimal left multiplications on U0, i.e. transformationsU0 7! (I + �P )U0; (53)where � is an in�nitesimal parameter and P is in the Lie algebra of G. If P isindependent of U0 this de�nes a map from G=G+ to G=G+, but it is not clearwhether this descends to the double coset space HnG=G+. Under the transfor-mation (53), U 7! M (I + �P )U0= �I + �MPM�1�U; (54)which gives Y 7! �I + �(SMPM�1S�1)+�Y (55)S 7! �I � �(SMPM�1S�1)��S: (56)(These are easily computed: an in�nitesimal variation �U in U gives rise toin�nitesimal variations �Y in Y and �S in S where �U = �S�1�SS�1Y + S�Y ,i.e. S�UY �1 = ��SS�1 + �Y Y �1. Thus �SS�1 = �(S�UY �1)� and �Y Y �1 =(S�UY �1)+.) Using now the de�nition of Z0 from Eq. (41), a straightforwardcalculation gives Z0 7! Z0 + � �� 0 01 0� ; res(SMPM�1S�1)� ; (57)where res(T ), for T in the Lie algebra of G, denotes the O(��1) term in T .Consider two special cases. First, takeP = Pn � �n � 0 1� 0� = � 0 1� 0�2n+1 n = : : : ;�1; 0; 1; : : : (58)Evidently MPnM�1 = Pn. For n < �1 these transformations have no e�ect onZ0; they are just in�nitesimal H transformations. For n � �1, using Eq. (51),Z0 7! Z0 + � �� 0 01 0� ;�n+1�= Z0 + �@Z0@tn ; (59)16



where in the last equality I have used Eq. (26). Thus the choice P = Pn gen-erates translations in tn, for n � �1. Since all the matrices Pn commute, thesetransformation clearly descend to the double coset space. I denote the generatorof these transformations on U0 by ln, in accordance with the notation of Sec. 1.5.The generator of the in�nitesimal transformation U0 7! (1 + �P )U0 is de�ned asthe operator whose action on U0 gives PU0; so ln is just multiplication by Pn.Note that here ln is de�ned in a wider sense than in Sec. 1.5; there ln denotedthe generator of translations acting on the solutions of KdV, whereas here it de-notes the generator of the transformations acting on the loop group that inducetranslations on solutions of KdV. In particular ln here is not zero for negative n.Now let us takeP = Qn � �n  �dU0d� U�10 + 14 � 1 00 �1�! n = : : : ;�1; 0; 1; : : : (60)These look like �eld dependent transformations, since U0 appears in P ! But infact this is just the choice of P for the �eld independent in�nitesimal transfor-mation which is a linear combination of a reparametrization of U0 and a multi-plication by a �xed algebra element:U0(�) 7! U0(�(1 + ��n)) + 14��n � 1 00 �1�U0(�): (61)The associated generators aremn = �n  � dd� + 14 � 1 00 �1�! n = : : : ;�1; 0; 1; : : : (62)In Sec. 5.2 I will give the �nite action which these generate; below I will ex-plain why I am looking at these particular transformations. But �rst let megive the action on the KdV solution. To use Eq. (57) it is necessary to com-pute SMQnM�1S�1 with Qn given by Eq. (60). Substituting U0 = M�1U =M�1S�1Y in Qn gives, after some algebra,SMQnM�1S�1 = �n+1(Y 0Y �1 � S 0S�1)+ �nS �14M � 1 00 �1�M�1 � �M 0M�1�S�1; (63)where a prime denotes di�erentiation with respect to �. Using Eq. (52)14M � 1 00 �1�M�1��M 0M�1 = 14 � 1 00 �1�� 1Xm=�1(m+ 12)tm�m � 0 1� 0� : (64)The last two equations and Eq. (51) give the �nal resultSMQnM�1S�1 = �n+1(Y 0Y �1 � S 0S�1) + �n4 S � 1 00 �1�S�1� �n0@ 1Xm=�1(m + 12)tm�m1A0@ 1Xp=�1�p��p1A : (65)17



The residue of this must be computed. Of the four terms, the simplest to discussis the last, despite its apparent complexity. For all n, it contributes an in�niteseries of terms to the residue� 1Xm=max(�1;�2�n)(m+ 12)tm�m+n+1: (66)Because this term is given purely in terms of j and u, via the �p's, it descendsto the double coset space. For the other terms this is not true in general. The�rst term in (65) will contribute to the residue if n � �2, since Y 0Y �1 is a powerseries in �; the terms it contributes descend to HnG, but not necessarily to thedouble coset space. The second term will contribute to the residue if n � 0 andthird term if n � �1; their contributions descend to G=G+ but not necessarily tothe double coset space. So it is not clear that there is ever a genuine symmetry ofKdV here! In practice, however, it turns out that for n = �1; 0 only H-invariantdegrees of freedom from S contribute to the variation of Z0. A little furthercalculation gives the resultsn = �1 Z0 7! Z0 + � � 0 012 0�� 1Xm=0(m + 12)tm @Z0@tm�1!j 7! j � � 1Xm=0(m+ 12)tm @j@tm�1 (67)u 7! u+ �2 � � 1Xm=1(m + 12)tm @u@tm�1n = 0 Z0 7! Z0 + �0@���=2 02� �=2�� 1Xm=�1(m+ 12)tm@Z0@tm1Aj 7! j � �j2 � � 1Xm=�1(m+ 12)tm @j@tm (68)u 7! u� �u� � 1Xm=0(m + 12)tm @u@tm :The n = �1 and n = 0 cases correspond to Galilean transformations and scalingrespectively. For n = 1, a detailed calculation givesu 7! u+ �0@12jut0 + 2u2 � 12ut0t0 � 1Xm=�1(m + 12)tm @u@tm+11A (69)= u+ � �12(j + t�1)ut0 + (2u2 � 12ut0t0)� 12 t0ut1 � 32t1ut2 � : : :� :In the second line here I have emphasized the cancellation between terms thatensures that even though j appears in this transformation law, u develops no t�1dependence. The n = 1 transformation law for j involves the non H-invariant18



quantity 
 de�ned in Eq. (42); and for higher n other non H-invariant termsappear in the transformation laws for both u and j. This is perfectly in accordwith existing knowledge about the higher symmetries in the hierarchy of Galileanand scaling symmetries; each time the recursion operator is applied to obtain ahigher symmetry, a new integration constant appears. It is straightforward tocheck that while the symmetriesmn, n � 1 cannot be considered to descend to thedouble coset space HnG=G+, they do descend to spaces of the form HnnG=G+,where, for every n, Hn is a subgroup of H of �nite codimension.Turning now brie
y to the n = �2;�3; : : : cases, none of these symmetriesdescend to G=G+. Since it is straightforward to compute using Eq. (65), I givethe explicit form of the n = �2 symmetry:u ! u+ � 2b1(a1a2)t0 � b2(a21)t0 + b3(a22)t0 � 1Xm=2(m + 12)tm @u@tm�2!j ! j + � 2b1a1a2 � b2a21 + b3a22 � 1Xm=1(m + 12)tm @j@tm�2! ; (70)where here I am using the notation set up in Eq. (48) (c.f. [8]).As a �nal comment on the mn symmetries, I note that the operators de�nedon the loop group, viz.ln = �n � 0 1� 0� mn = �n  � dd� + 14 � 1 00 �1�! (71)satisfy the commutation relations of Eq. (9), where now all indices are allowedto run over all the integers. They are related by recursion formulae ln+1 = �ln,and mn+1 = �mn; � is playing the role of the recursion operator.To conclude this section, I need to answer the question of why I have notlooked at other in�nitesimal symmetries on G. It is easy to check that a genericchoice of �eld independent in�nitesimal transformation of the form of Eq. (53)simply does not descend to the double coset space. These are the messy sym-metries discussed in [9]. On the other hand, it is currently not at all clear thatI have identi�ed the full set of symmetries that do descend to the double cosetspace. This is the problem in understanding the (local) geometry of the doublecoset space HnG=G+; particularly it is of interest to identify a basis for vector�elds on this space.5.2 Translations, Galilean and scaling symmetriesConsider now the �nite transformations generated by the in�nitesimal transfor-mations of Sec. 5.1. Finite translations correspond to transformationsU0 7! exp���n � 0 1� 0��U0 (72)19



on G. This is evidently equivalent to a translation of tn by �, for n � �1; forn < �1 it does not act on KdV solutions. To exponentiate the symmetries in thehierarchy of Galilean and scaling symmetries, observe thatmn = �n+1  �� 14 00 � 14 ! dd�  � 14 00 �� 14 ! ; (73)so a �nite transformation generated by this takes the formU0(�) 7!  (1 + ��n) 14 00 (1 + ��n)� 14 !U0 (�(1 + ��n)) : (74)The quantity on the RHS here will not be in G for arbitrary U0 and �, butI assume the necessary restrictions are imposed so that it is. When do thesetransformations descend to HnG=G+? To descend to the coset space HnG, thee�ect of an H transformation on U0 followed by a transformation of the abovetype must be equivalent to the e�ect of �rst applying the transformation of theabove type followed by a (possibly di�erent) H transformation. That is, for allchoices of t�2; t�3; : : : it must be possible to �nd s�2; s�3; : : : such that (1 + ��n) 14 00 (1 + ��n)� 14 ! exp 1Xm=2 t�m(�(1 + ��n))m � 0 1�(1 + ��n) 0�!= exp 1Xm=2 s�m�m � 0 1� 0�! (1 + ��n) 14 00 (1 + ��n)� 14 ! (75)Multiplying this out, various cancellations take place, and it turns out that thisis equivalent to the simple requirement1Xm=2 s�m�m = 1Xm=2 t�m�m (1 + ��n)�m+ 12 (76)For n � 0 this can be satis�ed, taking j�j < 1 and expanding in negative powersof � for j�j > j�j. However, it is obvious that symmetries of the form of Eq. (74)only descend to G=G+ if for all g+(�) 2 G+, g+(�(1 + ��n)) 2 G+. This requiresn � �1. Thus, as expected from the analysis in the in�nitesimal case, the onlysymmetries that descend to the double coset space are the cases n = �1; 0, thecases of Galilean and scaling symmetries respectively. In particular, these resultsshow that the so-called hidden symmetries of KdV cannot be exponentiated.It remains to give formulae for �nite Galilean and scaling transformations.For n = 0 (scaling transformations)U0(�) 7!  p 12 00 p� 12 !U0(p2�); (77)20



where p = (1 + �) 12 . A simple calculation givesU(�; t) 7!  p 12 00 p� 12 !U(p2�; s); (78)where sm = 1p2m+1 tm m = �1; 0; : : : (79)In turn this givesS(�; t) 7!  p 12 00 p� 12 !S �p2�; s� p� 12 00 p 12 ! (80)Y (�; t) 7!  p 12 00 p� 12 !Y �p2�; s� ;where I have assumed that p is such that the matrices on the RHS of theseexpressions are genuinely in G�; G+ respectively. Finally from the O(��1) termof the S transformation law, emerge the standard scaling transformationsj(t) 7! 1pj(s); u(t) 7! 1p2u(s): (81)For n = �1 (Galilean transformations) things are marginally more di�cult.The starting point isU0(�) 7!  (1 + �=�) 14 00 (1 + �=�)� 14 !U0(�+ �): (82)This gives, after some e�ort:U(�; t) 7!  (1 + �=�) 14 00 (1 + �=�)� 14 ! exp 1Xm=2 s�m(�+ �)m � 0 1� + � 0�!U ((�+ �); s) (83)where the \times" : : : ; s�2; s�1; s0; : : : are related to the \times" t�1; t0; : : : by1Xm=�1 tm�m+ 12 = 1Xm=�1 sm (�+ �)m+ 12 ; (84)This in turn givesS(�; t) 7! S (�+ �; s) exp � 1Xm=2 s�m(�+ �)m � 0 1�+ � 0�! (1 + �=�)� 14 00 (1 + �=�) 14 ! (85)Y (�; t) 7! Y (�+ �; s) ; 21



where, again, certain assumptions on � have been made; �nally, the Galileaninvariance formulae emerge:j(t) 7! j(s) u(t) 7! u(s) + �2 (86)sm = 1Xn=m� n + 12n�m� (��)n�mtn m = �1; 0; : : :The reader may wish to try deriving these from both the transformation law forY and that for S; the latter is much simpler to use. The expressions in Eq. (86)for �nite Galilean transformations are consistent with the in�nitesimal transfor-mation law Eq. (67), and indeed it can be checked directly that Eq. (86) does givea symmetry of the whole KdV hierarchy. For future reference, I call this Galileantransformation A(�). The range of values of � for which the transformation A(�)is de�ned on G is limited, and is di�erent for di�erent elements of G. For theaction of A(�) on u; j there is also a limitation, of convergence of the series inEq. (86), but these limitations do not correspond. This is just the �rst symptomto appear of the fact that the class of KdV solutions being studied in this paperis limited. The restrictions on applicability of A(�) will be important in the nextsection.5.3 Wahlquist-Estabrook B�acklund TransformationsLet B : G! G be the involution on G de�ned byU0 7! � 0 1� 0�U0 � 0 ��11 0 � (87)This descends to an involution on the coset space HnG, since U0 is multiplied onthe left by a matrix that commutes with all elements of H. It does not descendto HnG=G+ though, becauseU0 � a bc d�� 0 ��11 0 � = U0 � 0 ��11 0 �� d c��1�b a � ; (88)so right multiplication of U0 by an element of G+ followed by application of B isnot equivalent to application of B followed by right multiplication by a (possiblydi�erent) element of G+. The above identity shows, however, that B does descendto the double coset space HnG=J , where J is the subgroup of G+ consisting ofmatrices � a bc d� 2 G+ such that c has no constant term in its power seriesexpansion in �. J is a codimension 1 subgroup of G+, so B should give rise toa map that generates a one parameter family of solutions of KdV from a givenone.De�ningG+(1) to be the subgroup of elements ofG+ that reduce to the identityat � = 0, G+(1) � J � G+, and G+(1) is normal in G+. G+=G+(1) is naturally22



identi�ed as the subgroup of constant elements in G. It follows that if I de�nethe map O0, mapping G to the space of subsets of G, byU0 7! � 0 1� 0�U0 � p qr s�� 0 ��11 0 � ; (89)where � p qr s� is an arbitrary SL(2;C) matrix, then this map will descend to thedouble coset space HnG=G+. It seems at �rst glance that this map should givea three parameter family of solutions from a single one. But the full informationin the matrix � p qr s� is not actually relevant; it can be multiplied on the rightby any upper triangular matrix without e�ect. The map (89) givesU 7! � 0 1� 0�U � p qr s�� 0 ��11 0 �= � 0 1� 0�S�1 � Y � p qr s�� 0 ��11 0 �= � 0 1� 0�S�1  �� 1�1 + T�� T� ! � (90)� �T 1�+ T� �� �Y � p qr s�� 0 ��11 0 �where in the last line I have inserted a certain matrix and its inverse, andT = pa3 + ra4pa1 + ra2 = �t0� � j; � = pa1 + ra2: (91)(Throughout, I use the notation of Sec. 4 for the components of S and Y needed.In particular � is de�ned in Eq. (42), and a1; : : : ; a4 in Eq. (48).) The reason forthe insertion in the last equation is that | as can be checked by a straightforwardcalculation | the RHS is now written in Birkho� factorized form, that isS 7!  T� � 1��1� T�� �� !S � 0 �1�� 0 � (92)Y 7! � �T 1�+ T� �� �Y � p qr s�� 0 ��11 0 � :Computing the O(��1) terms of the new S gives the transformationu 7! ��t0� �2 � u = u� ��t0� �t0 (93)j 7! j � �t0� ;where in the �rst of these equations I have used the result �t0t0 = 2u� which isevident from the de�nition of � , Eq. (91), and Eq. (49). Using Eq. (50), it is easyto compute �t1 = 12ut0� � u�t0 = 14(�t0t0t0 � 3�t0t0�t0=�). (Compare Eqs. (5)-(6).)23



Having de�ned and discussed the involution B : G! G, and the mapO0 fromG to the space subsets of G, the extension of B which descends to HnG=G+, Inow de�ne one parameter generalizations of these maps, B(�) : G! G, and O�,mapping G to the space of subsets of G, viaB(�) = A(��) B A(�) (94)B(�)U0 = s�� �� � 0 1� 0�U0 � 0 (�� �)�11 0 �O� = A(��) O0 A(�) (95)O�U0 = s�� �� � 0 1� 0�U0 � p qr s�� 0 (�� �)�11 0 � :Almost everything I have said about B and O0 is true of B(�) and O�, in particu-lar B(�) is an involution, which does not descend to HnG=G+, but does descendto HnG=J�, where J� is a codimension 1 subgroup of G+, consisting of the ma-trices � a bc d� in G+ such that c has a zero at � = �. O� is an extension ofB(�) that does descend to HnG=G+. There is one signi�cant di�erence, however,between O0 and O� for � 6= 0: this is that because A(�) is not de�ned on all ofG, nor is B(�). I will not study in detail the domains of the maps O�, but forj�j < 1 they are large enough for the maps to be interesting.Before I compute the e�ect of O� on u; j, let us discuss some algebraic prop-erties of these maps. First, a simple computation showsB(�1)B(�2)U0 = U00@q���1���2 00 q���2���1 1A : (96)In particular, B(�1); B(�2) do not commute, for �1 6= �2. On the other hand,O�1O�2U0 = q(�� �1)(�� �2)U0 (97)� p2 q2r2 s2 �� 0 (�� �2)�11 0 �� p1 q1r1 s1 �� 0 (�� �1)�11 0 � ;where � p1 q1r1 s1 � ;� p2 q2r2 s2 � are arbitrary SL(2;C) matrices. Using the identity� p2 q2r2 s2 �� 0 (�� �2)�11 0 �� p1 q1r1 s1 �� 0 (�� �1)�11 0 � = (98)� p2 � zq2 q2r2 � zs2 s2 �� 0 (�� �1)�11 0 �� p1 q1r1 s1 �� 0 (�� �2)�11 0 �� 1 0z 1� ;where z = (�2 � �1)s1=r1 it emerges that, when interpreted as maps on the cosetspace G=G+, O�1 ;O�2 do commute 1.1The identity (98) is only good for r1 6= 0. For r1 = 0 use� p2 q2r2 s2�� 0 (� � �2)�11 0 �� p1 q10 s1�� 0 (�� �1)�11 0 � =24



The commutativity property of the O� operators (on G=G+) is the only oneof the properties of Eq. (1) that there is any di�culty establishing; the secondproperty follows from the involutiveness of B(�). It remains to check that theoperator O� does indeed act as a Backlund transformation; this is a simple gen-eralization for the calculation for O0. Assuming Y is analytic in a neighborhoodof � = �, Y = 1Xn=1Y �n (�� �)n; (99)where the matrices Y �n are independent of �. WritingY �0 = � a�1 a�2a�3 a�4 � (100)gives, from Eq. (47), the structure relationsa�3 = a�1t0 � ja�1 a�1t0t0 = (2u+ �)a�1a�4 = a�2t0 � ja�2 a�2t0t0 = (2u+ �)a�2: (101)Starting from the transformation Eq.(95),U 7! s�� �� � 0 1� 0�U � p qr s�� 0 (�� �)�11 0 �= s�� �� � 0 1� 0�S�1  ���� 1���1 + T ����� T ���� ! � (102)� �T � 1�� � + T �� �� �Y � p qr s�� 0 (�� �)�11 0 �where in the last line I have indicated the Birkho� factorization (assuming j�j <1), and T � = pa�3 + ra�4pa�1 + ra�2 = � �t0� � � j; � � = pa�1 + ra�2: (103)Computing the O(��1) terms in the transformed S gives the B�acklund transfor-mation j 7! j � � �t0� � u 7! u�  � �t0� � !t0 ; (104)where � � satis�es � �t0t0 = (2u+ �)� �, and (after a little further calculation)� �t1� �t0 = 3�2 + 14  � �t0t0t0� �t0 � 3� �t0t0� � ! : (105)i� q2 p2s2 r2 �� 0 (�� �1)�11 0 �� 0 (�� �2)�11 0 � (�i)� q1(� � �1) p1s1 0 � :25



It is worth reiterating the algebraic framework that has been hereby describedfor B�acklund transformations. There is a map between cosets of a certain groupand solutions of KdV. The action of certain automorphisms of the group doesnot descend to a well-de�ned action on the relevant coset space; rather, a singlecoset �nds itself mapped to a family of cosets. This \explains" the appearance ofconstants of integration in the implementation of BTs. I expect this underlyingalgebraic idea to be behind many, if not all, other BTs that involve the solutionof di�erential equations.These comments are relevant to the discussion of BTs of a single parametervalue. Another issue to consider is the following: applying BTs of two di�erentparameter values �1; �2 to a solution gives two families of solutions. Is there amap between the families? The natural guess for such a map would be the mapB(�1)B(�2)�1 on G, if it descended to the double coset space, which it does notThis map has already been given explicitly in Eq. (96) (since B(�)�1 = B(�));it is the right multiplication of G by a certain element of G, and I will considersuch transformations, including this one, in Sec.5.5.Finally in this section, since I have now identi�ed BTs at the level of the loopgroup, I can write down the loop group elements corresponding to single solitonsolutions. Applying the BT O� to the identity in the loop group gives the loopgroup elements U0 = 0@ sq���� rp�(���)qq�(�� �) pq ���� 1A : (106)These are loop group elements only for j�j < 1; they give the standard solitonsolutions j = �t�1 �p� tanh(zp� + A) (107)u = �� sech2(zp� + A);where z = 1Xn=0 tn�n eA = vuutpp� + rpp� � r : (108)I have assumed that pp� 6= �r; if pp� = �r the trivial solutions j = �t�1�p�,u = 0 emerge. Note that only soliton solutions with j�j < 1 arise. This is inaccord with the results of [19].5.4 Galas B�acklund TransformationsGalas BTs are, in their algebraic structure, very similar to standard BTs. Thestarting point is the map C : G! G de�ned byU0 7! U0 � 1 0�=� 1� (109)26



where � is a nonzero parameter. This descends to HnG but not to the doublecoset space, since for � a bc d� 2 G+,U0 � a bc d�� 1 0�=� 1� = U0 � 1 0�=� 1� a+ b�� bc+ (d�a)�� � b�2�2 d� b�� ! : (110)It emerges, though, from this, that C does descend to HnG=K, where K is thecodimension two subgroup of G+ consisting of matrices � a bc d� with b having azero at � = 0, and the constant term in the power series expansion of d�a� b=�also vanishing (a simple calculation is required to check these properties indeedde�ne a group). Furthermore, G+(2) � K � G+, where G+(2) is the normalsubgroup of G+ consisting of matrices which have constant term the identity,and no linear term. Thus, de�ning the map P0 viaU0 7! U0 � p qr s� 1q1� �2(P 2 +QR) �I + ��P QR �P ��� 1 0�=� 1� ; (111)where here � p qr s� is an arbitrary SL(2;C) matrix and �P QR �P � is an arbi-trary sl(2;C) matrix, gives a map that will descend to the double coset space: Ihave inserted after U0 a group element from each class in G+=G+(2). It should benoted that there is no natural isomorphism between G+=G+(2) and a subgroupof G+.Note that � 1 0�=� 1� =  �� 12 00 � 12 !� 1 01=� 1� � 12 00 �� 12 ! : (112)Since the �rst and third of the matrices on the RHS are both constant, and rightmultiplication of G by any constant matrix descends to the identity on G=G+, itfollows that, without any loss of generality I can set � = 1, which I do from hereon.Before computing the e�ect of P0 on a KdV solution, I enlarge to a oneparameter family of maps in the same way as in Sec. 5.3, de�ningC(�) = A(��) B A(�) (113)C(�)U0 = U0 � 1 01��� 1� ;P� = A(��) P0 A(�) (114)P�U0 = U0 � p qr s� 1q1� (�� �)2(P 2 +QR)�I + (�� �)�P QR �P ��� 1 01��� 1� :27



Note that C(�1)C(�2) = C(�2)C(�1), i.e. here the relevant maps on G are com-mutative. It is not immediately obvious that this implies P�1P�2 = P�2P�1 ; thesimplest way to be satis�ed that this is indeed the case is to check that if thematrixM is de�ned by� a1 b1c1 d1 �� 1 01���1 1�� a2 b2c2 d2 �� 1 01���2 1� = (115)M � 1 01���2 1�� a1 b1c1 d1 �� 1 01���1 1� ;with � a1 b1c1 d1 � ;� a2 b2c2 d2 � 2 G+, then M2 G+.To obtain the e�ect of P� on a KdV solution, observe that under P�U 7! U � p qr s� 1q1� (�� �)2(P 2 +QR) �I + (�� �)�P QR �P ��� 1 01��� 1�= S�1 �I � N�� ���I + N�� ��Y � p qr s� (116)1q1� (�� �)2(P 2 +QR) �I + (�� �)�P QR �P ��� 1 01��� 1� ;where in the last line I have inserted a certain factor and its inverse, N being anonzero matrix independent of � with N2 = 0. A tedious calculation shows thatit is possible to choose such a matrix N so that the above is written in Birkho�factorized form. To write it requires a little more notation. Referring back toEqs. (99)-(100), I write (Y �0 )�1Y �1 = � b�1 b�2b�3 �b�1 � : (117)Then correct choice of N is given byN = 11 +Q+ 2sqb�1 + s2b�2 � q2b�3 (118)��(qa�1 + sa�2)(qa�3 + sa�4) (qa�1 + sa�2)2�(qa�3 + sa�4)2 (qa�1 + sa�2)(qa�3 + sa�4)� :Using S 7! �1 + N�� ��S (119)and formulae for the t0 and t1 derivatives of the b�i which are easily computed,produces, after some labor, the Galas BTu 7! u� ��t0� �t0 j 7! j � �t0� (120)28



where � = 1 + Q + 2sqb�1 + s2b�2 � q2b�3 is related to u by (2u + �) = (p�t0)t0t0=p�t0 , and �t1�t0 = 3�2 + 14  �t0t0t0�t0 � 3� 2t0t02� 2t0 ! (121)(c.f. Eqs. (3)-(4) above). This is, of course, a BT of the entire hierarchy; furtherti derivatives of � can be computed as desired.One di�erence between the Galas BT and standard BTs is that since� 1 01=(�� �) 1� = exp� 0 01=(�� �) 0� ; (122)an in�nitesimal generator can be written for Galas BTs, as discovered by Galas[6]. Galas BTs do not, on the other hand, have the involutiveness property ofstandard BTs.It just remains to make some further comments about soliton solutions. Asmentioned in Sec. 1.4, Galas BTs can be used to obtain standard soliton solutions,as well as more general solutions. Thus, as in Sec. 5.3, the results of this sectiongive a way to �nd matrices U0 corresponding to soliton solutions. Followingthrough the necessary calculations, it emerges that the matrixU0 =  p qpp� � 1q qp� !� 1 (�� �)Q0 1 �� 1 01��� 1� q 6= 0 (123)gives the soliton solutionj = �t�1 �p� �1 + tanh(zp� + A)� (124)u = �� sech2(zp� + A);(c.f. Eq. (107)), with z de�ned as in Eq. (108) and A determined bye�2A = 1 + 2(1 +Q)q2 : (125)I have not, as of yet, succeeded in determining whether this matrix U0 is (upto a translation in t�1) a representative of the same double coset as the matrixU0 given in Eq.(106) (after appropriate adjustment of parameters). This begsthe general question of whether the map from HnG=G+ to solutions of KdV is1-1, which is also not considered here. The matrix U0 given in Eq. (123) is inG for all � with j�j 6= 1, and for j�j > 1 it is in G+; in performing the Birkho�decomposition to obtain the soliton solution I have assumed j�j < 1.5.5 Zakharov-Shabat Dressing TransformationsI now consider general right multiplications on G, i.e. transformations of theform U0 7! U0 � g g 2 G: (126)29



Galas BTs are of this form, and indeed all \symmetry actions" can be rewrit-ten in this form (e.g. a left multiplication U0 7! g � U0 can be rewritten U0 7!U0�(U�10 gU0)), but here I only want to consider �eld independent transformations,i.e. the case where the matrix g is not dependent on U0. Now, such transforma-tions evidently descend to HnG, but in general will not descend to the doublecoset space. But let us for the moment ignore this. Under such a transforma-tion U 7! U � g = S�1 � Y � g = S�1 � (Y gY �1) � Y , so writing the Birkho�decomposition for Y gY �1 in the form Y gY �1 = (Y gY �1)�1� (Y gY �1)+ gives theresult Y 7! (Y gY �1)+Y = (Y gY �1)�Y g. This is almost exactly the formula fordressing transformations given by Wilson [22]; Wilson's formula actually readsY 7! (Y gY �1)�1� Y , and di�ers from the one given here by right multiplication bya factor of g, which does not contribute to dY � Y �1. Thus the transformationsbeing considered in this section are Zakharov-Shabat dressing transformations.As explained in Sec. 1.6, these transformations are only well-de�ned on Y ; givena solution of the KdV hierarchy, there are many ways to construct an appropri-ate Y , and dressing transformations do not preserve equivalence classes of Y 's.This is precisely the issue that right multiplications do not in general descend toHnG=G+.In the case of Galas BTs I have shown how to use a right multiplication thatdoes not descend to HnG=G+ to obtain a BT of the hierarchy, a map that takessingle solutions to a �nite dimensional family of solutions. It is clear that theprocedure followed can be replicated whenever the right multiplication descendsto a double coset space HnG=K where now K is any subgroup of �nite codimen-sion in G+; in particular this can be done whenever g is a rational element of G,i.e. has entries which are rational functions of �, with no singularities on j�j = 1.It would be interesting to �nd a set of generators for the group of rational loopsand to determine the associated BTs; though BTs can, of course, also arise fromtransformations other than right multiplications.The problem that dressing transformations su�er from, viz. the fact that theycannot be really considered as transformations on the space of solutions of thehierarchy, can be resolved by specifying a choice of Y or U0 corresponding to asolution of the hierarchy. For the case of the trivial solution of the hierarchy itis natural to choose U0 to be the identity matrix, giving (at least for t�1 = 0)Y = M . This choice was made by Wilson [22], and it allowed him to de�ne theorbit of the trivial solution of KdV under dressing transformations.An important context in which dressing transformations arise is understand-ing the relationship between modi�ed KdV (MKdV) 
ows and Liouville andsine-Gordon 
ows. So far I have not constructed MKdV 
ows in this paper. Infact, associated with any solution of Eq. (35), the fundamental linear equationunderlying the KdV system, there are two MKdV �elds, given, in the notationof Eq. (48), by v1 = a1t0a1 and v2 = a2t0a2 : (127)30



From Eq. (49), these are related to the KdV �eld u by the so-called Miura map2u = v1t0 + v21 = v2t0 + v22; (128)and, from Eq. (50), they satisfy the MKdV equationv1t1 = 14v1t0t0t0 � 32v21v1t0v2t1 = 14v2t0t0t0 � 32v22v2t0 : (129)Indeed v1; v2 satisfy the full MKdV hierarchy. Let us now introduce two new
ows for U , given by @s1U = U � 0 10 0� (130)@s2U = U � 0 0��1 0� : (131)The �rst of these 
ows corresponds to an in�nitesimal dressing transformationby a constant matrix, and hence leaves the KdV �eld u invariant. It is alsostraightforward to check that this 
ow leaves the �eld a1 invariant, and hencealso v1, but induces a nontrivial 
ow on v2 given byv2s1 = � 1a22 : (132)Since v2 = a2t0=a2, by introducing h = log a2, this takes the form of the Liouvilleequation ht0s1 = �e�2h. The 
ow in Eq. (131), is an in�nitesimal Galas transfor-mation, and does not leave u invariant. The e�ect on a1; a2 can be computed |with some e�ort | from the Birkho� decomposition Eq. (116), and the relevantfact for the current discussion is thatv2s2 = a22; (133)also a Liouville equation. A suitable linear combination of the s1 and s2 
owsgives the sine-Gordon (or, more properly, the sinh-Gordon) equation. Both thes1 and s2 evolutions for v2 commute with all the MKdV 
ows; this is obviousbecause the MKdV 
ows are implemented by left multiplications on U0, and thes1 and s2 
ows by right multiplication. However, the s1 and s2 
ows do notcommute with each other.The MKdV equations, and Liouville and sine-Gordon 
ows will not be dis-cussed in full detail here, but a few more notes are in order. First, that both s1and s2 
ows for v2 commute with the MKdV 
ow is a symptom of the symmetryof the MKdV hierarchy under the involution v2 7! �v2, which can be shown to bean e�ect of the involution B used in the discussion of Wahlquist-Estabrook BTs.Second, the fact that the MKdV �elds v1; v2 are really \derived" quantities, and31



the centrality of the �elds a1; a2 has been stressed in [23] (see also [13]). Finally,a detailed studied of BTs of the sine-Gordon system has been given in [20], andthere is much in common between the results of [20] and the current work.Finally in this section, I reconsider brie
y the dressing transformation intro-duced in Sec. 5.3 as the product of two Wahlquist-Estabrook BTs, Eq. (96). Theremarkable fact about this dressing transformation is that despite the fact that itis not multiplication by a rational element of G, it still has an interpretation as aBT. For completeness I write down here the in�nitesimal version of this transfor-mation (taking �2 = 0 and �1 = 2�, where � is an in�nitesimal parameter). Thisis then the dressing transformationU0 7! U0 � 1 + �=� 00 1� �=�� : (134)Following through the necessary calculations, it an be shown that this inducesthe in�nitesimal BTj 7! j � 2�(pa1 + ra2)(qa1 + sa2) (135)u 7! u� 2� ((pa1 + ra2)(qa1 + sa2))t0 ; (136)where, as usual, � p qr s� is an arbitrary SL(2;C) matrix, and a1; a2 are as above.Since the variation of j and the determinant condition ps� rq = 1 are invariantunder the rescalings p 7! fp; r 7! fr; q 7! f�1q; s 7! f�1s, f 2 C�, thisin�nitesimal map generates a two parameter family of solutions from a givenone, which is consistent with its origins in Sec. 5.3. Looking at this formulaalone, there is little reason to suspect that this in�nitesimal symmetry can beexponentiated to a �nite BT.6 Open ProblemsSome open problems have already been mentioned in the text, and will not berepeated. The central open issue that I perceive is that although in this papera reasonable uni�ed framework has been built for understanding symmetries ofKdV, this has been in the context of a restricted set of solutions. It is quitepossible that there is a simple modi�cation of the formalism presented here thatwill allow consideration of much more general spaces of solutions (c.f. [14]).Another issue that has not been tackled in this paper is that I have notdiscussed the Hamiltonian structures or the conserved quantities of the KdV hi-erarchy. There is, of course, in general, a connection between symmetries andconserved quantities, and it is of considerable interest to understand what theconserved quantities (or appropriate generalizations thereof) associated to BTsare. For that matter, while the conserved quantities associated with the trans-lation symmetries of KdV are of course well known, I am unaware of whether32



the conserved quantities associated to Galilean or scaling symmetries have beendiscussed.It is to be hoped that the work presented here will be continued in severaldirections. The study of KdV presented here is based on two hypotheses, Mulase'sbelief that beneath each integrable system lies a genuinely simple linear system,like Eq. (35), and the idea that the most logically satisfactory explanation ofBTs is that they arise from simple actions on the space of initial data of therelevant simple linear system. These ideas need to be explored for other integrablesystems. Initial studies for both the KP and Principal Chiral Model hierarchies[18] con�rm this general picture. Far from being an esoteric study of the structureof integrable systems, this program holds promise of the discovery of new BTs ofintegrable systems, and, through this, an expansion of the repertoire of knownsolutions. Indeed, I originally found the Galas BT for � = 0 via the considerationsof Sec. 5.4, before �nding Galas' paper [6], and there seems no reason why theGalas BT should not occupy just as signi�cant a place in the textbooks on solitonequations as the Wahlquist-Estabrook BT.From this paper also emerges the need for further studies and classi�cationsof the solutions of KdV, particularly a deeper exploration of the space of solu-tions that has been considered here, and reconciliation with the zoo of solutionsavailable in the literature [1].AcknowledgmentsI thank Steve Shnider for much encouragement and many useful suggestions,Peter Olver for a few critical comments, and the Rashi Foundation for supportvia a Guastella Fellowship.AppendixI complete here the proof of the theorem from Sec. 3. Eqs. (24) clearly imply, form � 0, n � �1, that@(Zm � �Zm�1)@tn �  @@tm � � @@tm�1!Zn + [Zm � �Zm�1; Zn] = 0: (137)Using Zm��Zm�1 = �m and Zn = Pn+1i=0 �n�i�i (where, following the conventionof Sec. 4, ��1 = � 0 01 0�), and equating powers of �, Eq. (137) gives the followingequations: @�0@tm�1 + [�m;��1] = 0 m � 0 (138)33



@�n+1@tm�1 � @�n@tm + [�m;�n] = 0 m;n � 0 (139)@�m@tn � @�n@tm + [�m;�n] = 0 m � 0; n � �1 (140)The �rst set of these reproduces Eq. (26). Note the other two sets imply theinteresting result @�n+1@tm�1 = @�m@tn m;n � 0: (141)Using Eqs. (27), the 1,2 entry of Eq. (139) or Eq. (140) gives @@tm @@tn�1 � @@tn @@tm�1! j = @u@tm�1 @j@tn�1 � @u@tn�1 @j@tm�1 (142)The situation faced at the end of Sec. 3 was that given the correct tn�1 
ow forj; u (n � 1), the correct tn-
ow for u could be deduced, but this was not su�cientto uniquely determine the correct tn-
ow for j, and instead gave us@j@tn = (14@2t0 � @�1t0 u@t0 � u) @j@tn�1 + cn(t1; t2; : : :): (143)(Here I have integrated both sides of Eq. (33). The integration operator @�1t0 canbe precisely de�ned, see [16].) Di�erentiating with respect to tm�1, Eq. (143)gives @2j@tn@tm�1 = � @u@tm�1 @j@tn�1 + @cn@tm�1 + � terms symmetricin m;n � : (144)This, with Eq. (142), implies@cn@tm�1 = @cm@tn�1 m � 0; n � 1: (145)As an application of this, set n = 1 to obtain that c1 is constant (and therefore,by an admissible change of coordinates, can be set to zero). However, it is clearthat Eq. (145) by itself is not enough to eliminate the tn dependence from allthe cn's (it admits solutions of the form cn = @P=@tn�1 for appropriate functionsP ). To do this, it is necessary to look at further entries of Eqs. (139)-(140); inparticular looking the 2,1 entry of Eq. (139), and using(�n)21 = �cn + �14@2t0 � @t0j + j2 + @�1t0 u@t0� @j@tn�1 ; (146)which follows from Eq.(31) and Eq.(143), gives, after some manipulations, thefurther requirement @cn@tm = @cm@tn : (147)This with Eq. (145) is su�cient to imply that all the cn's are constant.34
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