ON THE COMPLEXITY OF THE ANISOTROPIC
KEPLER PROBLEM AND THE PLANAR
ISOSCELES THREE BODY PROBLEM

Jeremy Schiff
Department of Mathematics and Computer Science
Bar Ilan University
Ramat Gan 52900, Israel
e-mail: schiff@bimacs.cs.biu.ac.il

and

Hava T. Siegelmann
Department of Information Systems Engineering
Faculty of Industrial Engineering
Technion (Israel Institute of Technology)
Haifa 32000, Israel
e-mail: iehava@ie.technion.ac.il

July 1995

ABSTRACT. We show how to associate a computation to certain 2 degree of freedom
hamiltonian systems, and use this to discuss the level of complexity of certain prob-
lems in the dynamics of these systems. A type of Turing machine over the reals can
be identified, embedded in these systems.

1.Introduction. In two articles [1], C.Moore has explored a class of simple dy-
namical systems, and, in particular, has drawn conclusions about the complezity
of these dynamical systems by connecting them with Turing machines. Moore
makes the conjecture that the level of complexity of his systems is typical of the
level of complexity of finite dimensional dynamical systems like the three body
problem. Such a conjecture is motivated by the “physical Church-Turing thesis”
[2], which states that physical systems cannot perform computations that cannot
be performed by Turing machines, i.e. the dynamics of realistic physical systems
cannot be more complex than the dynamics of Turing machines.

The purpose of this paper is to provide icing on the cake of Moore’s work. It
turns out that certain 2 degree of freedom hamiltonian systems (we will study
the anisotropic Kepler problem (AKP) and the planar isosceles 3 body problem
(PI3BP), making heavy use of the results given by Devaney in [3]) have dynamical
systems very reminiscent of those of Moore embedded in them, and this provides
the key for discussing the complexity of these systems. Our work continues the

Typeset by AMS-TEX

2 ON THE COMPLEXITY OF...

work of Fredkin and Tofolli [4], who were the first to show how to build a physical
system which could in some sense perform any given computation that a Turing
machine, or, equivalently, a digital computer, could perform. To study the physical
Church-Turing thesis, we need to do the opposite of what Fredkin and Tofolli did
- that is, we need to associate computations with given physical systems. This is
exactly what we plan to do here, at least for the AKP and PI3BP.

The natural computation which one might say a dynamical system performs, is
that it computes the evolution of any given initial point in phase space. For systems
like the AKP and PI3BP, we can use digital computers to numerically simulate
this. Denoting the orbit of the point p(0) as p(¢), and assuming existence of a
convergent numerical algorithm, a digital computer can be used to verify that p(t)
lies in some particular open set in phase space, but cannot, in general, verify that
it lies in some particular closed set (the numerical algorithm computes only with
finite accuracy in finite time). Since the dynamical system computes p(t) exactly,
this is convincing evidence against the physical Church-Turing thesis - apparently
dynamical systems can do something more than digital computers! This is indeed
so, but what we are witnessing is the simple fact that dynamical systems of the
type we will study here use real numbers', which digital computers, with constraints
of finite memory, cannot. The “Turing machines” referred to in the statement of
the physical Church-Turing thesis should be taken to be some set of fundamental
computers with real number handling capabilites; for clarity, from here on, we
will refer to these computers as “Turing machines over the reals”, as distinct from
“classic Turing machines”.

What are Turing machines over the reals? One proposal has been made in [5],
and we will make another proposal in this paper - that of (.S, g) pairs, introduced in
section 2 - motivated by the desire to keep the physical Church-Turing thesis true.
The only property we should require of Turing machines over the reals, is that they
should be in some sense approximable, to any degree of accuracy, by classic Turing
machines. The analog neural nets of [6] are another possible candidate.

To present our main results we need to first clarify an important property of
Turing machines over the reals, which we will do by introducing a machine which
we call a “reactive Turing machine” - we will relate these to (5, g) pairs later. Recall
that a classic Turing machine takes as input a finite string of 0’s and 1’s. A reactive
Turing machine functions in the same way as a classic Turing machine, but takes
as input an inifnite string, which consists of a finite string of 0’s and 1’s, embedded
inside an inifnite string of 0’s? (so there exists an obvious way to get an input for
a reactive Turing machine from one for a classic Turing machine - just surround it
with 0’s - but not vice-versa). Since the “interesting” part of the input to a reactive
Turing machine is surrounded with 0’s, as opposed to blanks in the case of the
classic Turing machine, there is no finite-time algorithm to determine the length of
the “interesting” part. Consider now the following 3 questions:

(1) Is the machine in the state S at time 77
(2) Does the machine ever reach the state S7

1Some purists may insist that the use of real numbers in a physical model is itself an approxi-
mation to reality. Even if this is so, it is worthwhile to understand the complexity of these - often
remarkably accurate - approximations.

2The name “reactive” is chosen because of the similarity with reactive programs, which have
an open input channel throughout their computations.

ON THE COMPLEXITY OF... 3

(3) Is there a time 7" such that the machine is in the state S for all times greater
than 77

(Here for simplicity we discuss reactive Turing machines that do not have a specified
“halting state”.) There is a simple qualitative distinction between these questions.
The answer to question (1), whether it is “yes” or “no”, can be ascertained by
running the machine for time 7. If the answer to question (2) is “yes”, this will
be found by running the machine for some finite time, but if it is “no”, this will
not be determined by running the machine for any finite time (this question is
the well-known “halting problem”). Finally, for question (3), neither a “yes” or
“no” answer can be determined by running the machine for any finite time. These
arguments suggest that for reactive Turing machines, questions (1),(2), and (3) are
(generically) of different complexities, and this is indeed the case. For classic Turing
machines, however, questions (2) and (3) are of the same complexity (because we
know the length of the input, we can keep track of the length of the tape during
the calculation, and, thus, once we know that the machine arrives in state S we
only need to check it stays there for some finite time to know that it will stay
there forever). Indeed for classic Turing machines, it is hard to phrase a question
of greater complexity than the halting problem; but for Turing machines over the
reals, there are interesting dynamical questions of a greater complexity than the
halting problem.

In the title and the opening paragraph of this paper, we referred to the notion of
“the complexity of a physical system”. Since we now see that for Turing machines
over the reals (and therefore for physical systems) there are questions of a range of
complexities, we see that that “the complexity of a physical system” is not a well-
defined notion; we have to discuss the complexities of different questions about a
physical system individually [2].

We now state our results. In our study of the AKP we will focus on the question
of whether a given orbit is a collision orbit, and in our study of the PI3BP we
will ask if a given orbit is an escape orbit. We argue that these questions are
computationally equivalent to questions (2) and (3) above, respectively, for reactive
Turing machines. These results are easilly motivated - for the AKP, collision takes
a finite time, so asking whether a particular orbit reaches collision is equivalent
to asking whether some reactive Turing machine ever reaches a certain state; for
the PI3BP, escape takes an infinite time, and only happens if for all times after
a certain time the escaping particle is moving away from the other pair, which is
equivalent to question (3) above. These complexity results may well have practical
meaning: we expect that computer simulation will be in some qualitative sense less
useful in identifying the set of escape orbits for PI3BP than it is in identifying the
set of escape orbits for AKP (the precise sense of this remains to be seen). But
the main observation we want to make here is, as seen from the result for PI3BP,
that not all interesting physical problems are reducible to the halting problem for
a Turing machine. The physical Church-Turing thesis is often misunderstood as
meaning this.

Two further notes are necessary before we proceed with the body of this paper.
First, we should mention that even if we establish that a particular physical question
is a “type (2)” or “type (3)” question, to establish its complexity we really need
to prove it is a gemeric question of its type. In the terms introduced in [7], we
have to prove the “computational irreducibility” of the relevant physical system (in

4 ON THE COMPLEXITY OF...

computer science terminology, we have to prove that the given question is complete
in its class). We will not do this for the systems we consider, but we just note,
following [7], that computational irreducibility is the norm, not the exception, for
physical systems. Second, we will see in section 4 that just as there are problems
of different complexity for the same physical system, there are also different ways
to associate a computation with the same physical system - this arises because for
general physical systems there is no canonical way to associate an input and an
output.

This paper proceeds as follows. In section 2 we will define (.S, g) pairs, our notion
of real number Turing machines. In section 3 we will see how there are (.S, g) pairs
associated with the reactive Turing machines defined above, and also we will display
(S, g) pairs associated with the AKP and PI3BP. Conjecturing that these various
(S, g) pairs are of the same complexity (more will be said about this conjecture in
section 4), we will deduce the results stated about the complexity of the problems
stated for AKP and PI3BP. Finally in section 4 we tackle the question of whether all
(S, g) pairs are of the same complexity. This paper is intended to be self-contained,
and does not require a previous reading of Moore’s work [1], which is nevertheless
recommended, and was the starting point for these investigations. The results of [3]
have been used very freely, and the meticulous reader will certainly wish to consult
this work.

2.(S,g) pairs. Let S be a smooth 2-manifold® provided with a partition, i.e. a
countable set of smooth 2-dimensional submanifolds R;, i = 0,1,...,d, (d < c0),
such that R;,NR; = 0 for all distinct 4, j, and S = UR;. Let g be a map with possible
singularities on S, i.e. a function defined on S — (UC;), where C;, ¢ = 0,...,N
(N < o0), are smooth 1-dimensional submanifolds of S. There is a natural way
to associate a computation with such a pair (S, g): given a point = € S we write
down the sequence {i,(z)}, n = 0,1,..., where i,(x) = a if ¢"(x) € R,. This
sequence may terminate (if g"(x) € UC; for some n), or be infinite (otherwise). We
say the sequence {i,(x)} is the output of the pair (S, g) for input . For the most
part we are interested in the case where the input z is recursively specifiable, i.e.
its coordinates (a pair of reals, and possibly also an integer to specify which chart
we are using in some countable atlas for S) are recursive.

As a simple example of such a computation, let S be the square [0,1] x [0, 1],
with the partition S = Ry U Ry, where Ry = {z < 3} C S,and Ry ={z > 3} C S.
Let g be the baker tansformation

(2z, %y) r<g

W) 9(@,9) {(2x—1,%(y+1)) x> 1L
(see fig.1) which is defined and smooth on S — C, where C' is the line 2 = in S.
The computation associated to this pair (S, g) is exactly the binary expansion of
the x-coordinate of a point in S.

The connection of (S, g) pairs with physical systems is that (.5, g) pairs can arise
from flows on 3-manifolds, which arise, for instance, as the flow on a constant energy
surface of a 2 degree of freedom hamiltonian system. Suppose X is a vector field on

3All manifolds may be with or without boundary, unless otherwise stated, and are assumed
oriented.

ON THE COMPLEXITY OF... 5

a smooth 3-manifold M which admits a forward singular cross section. A forward
sinuglar cross section is a smooth 2-dimensional submanifold S of M such that

(1) X is transverse to S

(2) There exist smooth 1-dimensional submanifolds C;, i =0,..., N (N < c0),
in S, such that the forward orbit of the flow determined by X through any
point of UC; does not return to S;

(3) The forward orbit through any point of S — (UC;) does return to S;

(4) Each orbit of X meets S at least once

(c.f. [3]). Taking g to be the Poincaré return map on S for the flow determined
by X, and supplying S with a partition, we clearly obtain an (.5, ¢g) pair. Note
that if M has some physical interpretation, then we should have a notion of how
to measure the coordinates of a point € M, and one (rather optimistic) way to
do this is to supply M with a partition and to measure by specifying which cell of
M the point z falls in. So M may come supplied with a partition, which would
automatically give rise to one on S.

In [3], Devaney points out that the flows on constant energy surfaces of 2 degree
of freedom hamiltonian systems frequently admit (at least after the removal of
certain invariant submanifolds) forward singular cross sections.

We propose that we should view the set of (S, g) pairs (with a condition on the
well-behavedness of g that we will give in section 4) as a candidate for the set of
Turing machines over the reals. Comparison with [5] is left to a later date.

3.Examples of (S, g) pairs.
1. Let S be the half-open square [0,1) x [0,1), and let D be a positive integer. For
i€{0,...,(D—=1)} and a € {0,1} let

xega—i—l eii-i—l
2 2)Y 1D D

(see fig.2).The R;, clearly provide a partition of S. Define, for j € {0,...,(D—1)},
the following four maps from R;, to S:

(2) Rio = {(x,y) es

1 -3
gjOO(xvy) = (2.’[]— «, _y+ 2)

2 D
1 141
gjlo(w7y)=(2x_a7§y+J 21(;))
- .
Y gior(x y){ (3 (z—Sa) 29+ 122) y<
J B = ‘ | l
(3 (1+z— o), 2g+ 2020 y> 1o
gj11(x y)—{(%(%+$—%a),2y+jD2i) y<i4§
J 9 = | | -
(%(%+I_%)a2y+$) y > 41;2

(see fig.3). Each of these maps is area and orientation preserving, with g;q0 stretch-
ing in the z-direction and contracting in the y-direction, and g;j41 stretching in the
y-direction and contracting in the z-direction. Note g;g,(Ria) C Rjo U Rj1. If we
choose a function g by specifying for each of the R;, one map g;z~, we get an (5, g)
pair; the map g in this case is defined on all of S, i.e. it has no singularities (but it
has lines of discontinuity).

6 ON THE COMPLEXITY OF...

For any reactive Turing machine with D internal states there is an associated
(S,g) pair of this sort. A Turing machine makes three “decisions” on the basis
of its current internal state and the binary digit it is reading; it decides how to
update its internal state, how to update the binary digit it is reading and whether
to move left or right on the input/output tape. Equivalently [1], it is specified by
three functions Fi (4, o), Fa(i,), F3(i,a) (i € {0,...,(D — 1)}, a € {0,1}), with
Fy valued in {0,...,(D — 1)}, and F3, F5 valued in {0,1}. We just choose the
function g in our (.5, g) pair to be given by the action of gr, (i,a)F, (i,a) 73 (i,0) ON Ria-
It is straightforward to show that the computation performed by the (S,g) pair
defined this way gives as output, for some given input point (x,y) € S (x,y having
finite binary expansions), a record of the reactive Turing machine’s computation
starting with a tape determined by the binary expansions of z and the fractional
part? of yD. By a record of the computation, we mean a listing of the internal
state of the machine and the binary digit the machine is reading at each step of the
computation. The details are left for the reader.

We note, as in [1], that (.9, g) pairs of this form can be associated with a forward
singular cross section of some noncontinuous vector field on some subset of three
dimensional space, which describes the motion of a free particle in a region bounded
by mirrors.

The halting question for the reactive Turing machine is translated into the ques-
tion whether, for a specific input (z,y), the iterates ¢g"(z,y) ever enter the set
R;o U R;; for some particular ¢ (without loss of generality take ¢ # 0). Once we
have identified a “halting region”, it is natural to modify the definition of the (S, g)
pair by contracting the halting region to the line y = ¢/D, on which ¢ is now
undefined, and by redefining g on regions that map to the halting region, to map
them to the line y = ¢/D. We then have an (5, g) pair with singularities, and thus
the possibility of finite output, corresponding to halting of the associated reactive
Turing machine.

The reader will have observed that while we have associated the (5, ¢g) pairs of
this section with reactive Turing machines, whose inputs are finite strings of 0’s
and 1’s embedded in an infinite string of 0’s, they are more naturally related to
Turing machines which take infinite strings of 0’s and 1’s as input (the coordinates
of a point in S need not have finite binary expansions). Our use of reactive Turing
machines is motivated by the fact that we really want to discuss the complexity of
(S, g) pairs for recursively specifiable input; a reactive Turing machine is associated
with an (S, g) pair of this section with a very restricted - and most definitely
recursively specifiable - input.

2. Consider the flow of the hamiltonian system (the anisotropic Kepler problem)
given by

2 2
1
(4) H:@+&_ﬁ
2 2 (41 +43)2

(1w > 1) on the smooth manifold M defined as the surface of constant negative
energy H = —e, e > 0, with the invariant submanifolds {¢1 = p; = 0} and
{¢2 = p2 = 0} removed. It was shown in [3] that if S = ST U S~, where ST =
{p2 = 0,2 > 0} and S~ = {p2 = 0,¢g2 < 0}, then S is a forward singular cross

4The initial state of the machine should be taken as the integer part of yD.

ON THE COMPLEXITY OF... 7

section for this flow. ST and S~ are both planes, which can be parametrized by
p1, wWith —oco < p; < oo, and an angle 6 with 0 < 8 < w. The Poincaré map is
defined everywhere on S except for on two spirals Ci, Cif in S* and on two spirals
Cy,C; in S™. S can be given a partition as follows: the orbit through any point
of S must have crossed the surface {g2 = 0} some time prior to reaching S, and it
will also return to {g2 = 0}. We associate with each point = of S a positive integer
#(x) which is the number of times the orbit through S crosses the surface {¢; = 0}
between its last crossing of {¢ga = 0} before reaching x and its next crossing of
{g2 = 0} after reaching x. We give S a partition by saying x € R, if #(x) = a.
The proof that 0 < #(z) < oo and of the other facts cited here can be found in [3].
The (S, g) pair associated to this forward singular cross section computes, for any
initial point on S, a sequence - possibly finite, possibly infinite - of positive integers.
The set of inputs to the (S, g) pair for which the output is finite are the points of S
on collision orbits; thus by comparison with example 1, assumed valid, we have the
first main result stated in the introduction, that the set of points of S on collision
orbits is comparable to the set of halting inputs for a Turing machine. Note here
that there are a few obvious differences between the (S, g) pair of this example and
that in example 1: first, in the current example we have a countably infinite, not a
finite, partition of S, and second, in this example g(R,) N R} is nonempty for all a, b.
The first of these differences is unimportant, at least for the purpose of comparing
the question of when the (S, ¢g) pairs give finite output, for the reason that even
if an (S, g) pair has access to an infinite number of regions, in any finite time it
only enters finitely many of them. The second difference is also superficial; given
the (S, g) pair of a Turing machine, we can consider new pairs of the form (S, gV),
for any N; generically, for large N, we expect g%V(R;o) N R;s to be nonempty for
all 4,5, a, 8. Note that when we argue that these differences are unimportant, we
mean for the purpose of determining the complexity of the problem.
3. Consider next the flow of the hamiltonian system (the planar isosceles three
body problem) given by

24¢€ , 1 4e

5 H: 2+— - - -
() Pt e T 2y aa)

(¢ > 0, 1 > 0) on the smooth manifold M defined as the surface of constant
negative energy H = —e, e > 0, with the invariant submanifolds corresponding to
homothetic orbits (orbits along z2 = 0 and x3/2% = 3/4) removed. In [3] it was
shown that {z1 = 0,22 # 0} is a forward singular cross section for this flow. Any
orbit through a point y € S will return to .S, or reach collision at z; = z2 = 0,
in finite time, and we define #(y) to be the number of intersections of the orbit
with the set {x2 = 0} until this return. This gives a partition of S, as in example
2, but this time there is no reason why #(y) need be greater than 0. Thus the
computation associated to the (.59, g) pair obtained from this forward singular cross
section computes a sequence of nonnegative integers. As in example 2, the points
of S on collision orbits are the inputs that give rise to finite outputs. The points
of S that lie on escape orbits (i.e. for which z9 — oo as t — o0) are points for
which the output of the (S, g) pair is zero for all but a finite number of entries;
comparing with example 1, this is similar to the set of inputs to a Turing machine
for which the Turing machine does not halt, but for which after a certain finite time
the internal state of the machine becomes fixed in a certain predetermined state or
set of states. This is the second main result stated in the introduction.

8 ON THE COMPLEXITY OF...

4.Are all (S, g) pairs of the same complexity? It is straightforward to construct
an (S, g) pair whose output, in one time step, determines whether the input point
lies in a particular subset of S. But there exist subsets of any manifold S for
which the membership function should certainly not be computed in finite time by
a Turing machine. So it follows that we need to limit the class of (5, g) pairs we
consider, and we do this by requiring that g be continuous except on a countable
union of 1-dimensional submanifolds of S — UC;.

Our conjecture is that, with this limitation, all (S, g) pairs are of the same com-
plexity. This is a highly nontrivial conjecture. To display some of its content, let us
consider another computation associated with the PI3BP. In the notation of section
3, example 3, let S = {x3/2? = 3/4,21 # 0} U M. This is the union of two planes,
and the flow is transverse to S. S has a natural partition: it is straightforward
to show that any orbit through a point of S must meet the coordinate axes before
returning to S, and we determine the region that a point on S lies in by counting
the number of times it meets the coordinate axes before returning (this number
can be infinite, for a point on S that escapes). It is straightforward to check this
does indeed define a partition, and thus although we do not have an (S, g) pair,
since there are open sets of S (the escape orbits) upon which the Poincaré return
map is not defined, we have a naturally associated computation, that computes, for
each point in S, a sequence of elements of N U {oo}, which can be either infinite
consisting only of positive integers, or finite terminating in oo (corresponding to
escape) or finite terminating in an integer, (corresponding to collision). oo can only
appear as the last element in a finite sequence. Suppose now that the Poincaré
return map was only not defined on some finite set of open sets of S; we could then
perform a simple surgery on S to remove these sets, and use the return map to
construct an (S, g) pair, which would compute the above described sequence, and
for which the halting problem would be equivalent to the problem of identifying an
escape orbit, contradicting our conjecture. Thus our conjecture makes a prediction
that the number of open sets on S of immediate escape orbits is inifnite; we are
not aware of whether this question has been investigated.

Acknowledgements

JS thanks Radel Ben-Av, David Kessler, Moshe Koppel and Steve Shnider for
helpful discussions, and acknowledges being supported as a Guastella fellow by
the Rashi Foundation, and also by a grant from the Bar Ilan University Research
Authority. Echoing Moore’s sentiments, we request that noone derive, directly or
indirectly, military benefit from this work.

Bibliography

[1] C.Moore, Phys.Rev.Lett 64 (1990) 2354; Nonlinearity 4 (1991) 199.

[2] R.Penrose, The Emperor’s New Mind, Oxford University Press (1989).

[3] R.L.Devaney in Ergodic Theory and Dynamical Systems I, ed.A.Katok, pub.Birk-
hauser, Boston (1981).

[4] E.Fredkin and T.Toffoli, Int.J. Theo.Phys. 21 (1982) 219.

[5] L.Blum,M.Shub and S.Smale, Bull. Amer.Math.Soc. 21 (1989) 1.

[6] H.T.Siegelmann and E. D. Sontag, Theo.Comp.Sci. 131 (1994) 331.

[7] S.Wolfram, Phys.Rev.Lett 54 (1985) 735.

ON THE COMPLEXITY OF... 9

Figure Captions

1. The baker transformation.
2. The partition for the (S, g) pair associated with a Turing machine with D internal

states.
3. Possible mappings of R;, by g of the (S, g) pair associated with a Turing machine.

