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0. Introduction

It is well-known that it is possible to reduce the KP hierarchy to any of the SL(N)

KdV hierarchies. The KP hierarchy has a bi-Hamiltonian structure [1] and its second

Hamiltonian structure has been shown [2] to be related to Ŵ∞, a centerless, non-linear

deformation of the W∞ algebra of Pope, Romans and Shen [3]. This naturally leads

to the conjecture that the WN algebras of Zamolodchikov [4], which arise as the second

Hamiltonian structure of the SL(N) KdV hierarchies, can be obtained via some sort of

reduction of Ŵ∞ [2]. While the evidence for this conjecture is convincing, an explicit proof

is still lacking.

On the other hand, inspired by the fact that the linear algebra W∞ possesses a repre-

sentation in terms of two bosons [5], Yu and Wu [6] presented a two boson representation

of Ŵ∞. In [7], it was shown that this representation is related to the reduction of the KP

hierarchy to a 1 + 1 dimensional integrable hierarchy. In this talk, we recall some of the

results of [6] and of [7], and show further that the integrable hierarchy of [7] is related to

the well-known nonlinear Schrödinger (NLS) hierarchy. It seems that the fact that KP

admits such a reduction has been known to specialists in integrable systems for some time

[8][9].

Related results, albeit from a very different approach, were also presented by

C.S.Xiong at this workshop [10].

We will be using differential ∂ ≡ ∂x and pseudo-differential ∂−1 operators, where ∂−1

is an integration symbol satisfying ∂∂−1a = ∂−1∂a = a. We have ∂−1a = a∂−1 − a′∂−2 +

a′′∂−3 − . . . To shorten the expressions of the Poisson brackets, we write {a, b} = cδ′ for

{a(x), b(x′)} = c(x)∂xδ(x, x
′).

1. The two boson representation of Ŵ∞

The KP hierarchy

The KP hierarchy is usually introduced following the approach of the Japanese school [11];

specifically, the rth flow of the KP hierarchy is given by the Lax equation

∂

∂tr
L = [(Lr)+, L] , r ∈ N (1.1)

where L is the pseudo-differential operator

L = ∂ + u0∂
−1 + u1∂

−2 + . . . = ∂ +
∞
∑

i=0

ui∂
−i−1 , ∂ = ∂/∂x . (1.2)
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and (Lr)+ is the differential part of the rth power of the KP operator L. The fields ui are

implicitly understood to depend on x and on an infinite number of time coordinates ti.

For instance, for r = 2 we get (L2)+ = ∂2 + 2u0 and

r = 2 : u0,t2 = 2u1,x + u0,xx ,

u1,t2 = 2u2,x + u1,xx + 2u0u0,x ,

u2,t2 = 2u3,x + u2,xx + 4u0,xu1 − 2u0u0,xx ,

... (1.3)

The flows defined by (1.1) commute (∂ti
∂tj
uk = ∂tj

∂ti
uk) and furthermore they are bi-

Hamiltonian, i.e. (1.1) can also be written as

∂tr
ui = {ui,

∫

Hr+1}1 = {ui,

∫

Hr}2 (1.4)

where {., .}1 and {., .}2 are two Poisson brackets for the fields ui and the
∫

Hr’s are some

Hamiltonians. The brackets {., .}1 (historically the first set to be discovered [12]) were

shown in [13] to correspond to the linear conformal algebra W1+∞ with c = 0. The second

Hamiltonian structure [1] corresponds to Ŵ∞ [6]. The Hamiltonians are given explicitly

by

Hr =
1

r
res Lr , (1.5)

where res Lr denotes the coefficient of ∂−1 in Lr.

We give the first commutators of these algebras, as we will need their expressions

shortly. The relation between the u and W fields will be given later. For W1+∞ we have

{W1,W1}1 = 0 , {W2,W1}1 = W1δ
′ ,

{W2,W2}1 = 2W2δ
′ +W ′

2δ , {W1,W3}1 = 2W2δ
′ + 2W ′

2δ , (1.6)

and for Ŵ∞ we have

{W2,W2}2 = 2W2δ
′ +W2δ , {W2,W3}1 = 3W3δ

′ + 2W ′
3δ ,

{W2,W4}2 =
2

3
W2δ

′′′ +
4

3
W ′

2δ
′′ + (4W4 +

2

3
W ′′

2 )δ′ + 3W ′
4δ ,

{W3,W3}2 =
1

2
W2δ

′′′ +
3

4
W ′

2δ
′′ + (4W4 −

1

12
W ′′

2 − 2W2
2)δ′ + (2W4 −

1

6
W ′′

2 −W2
2)′δ ,

{W4,W4}2 = . . .+ (6W6 +
1

3
W ′′

4 +
1

45
W2

(4) − 6W4W2 − 6W3
2 − 2W2

3 −
1

2
W ′

2
2
)δ′

+ (3W6 −W ′′
4 +

1

15
W2

(4) − 3W4W2 − 3W3
2 −W2

3

+
1

2
(W 2

2 )′′ −
1

4
W ′

2
2
)′δ (1.7)
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Towards a representation of Ŵ∞

The algebra W∞ was found to possess a free field representation in terms of two real bosons

[5], so in [6] Yu and Wu proposed the existence of a similar representation of Ŵ∞. To this

end, they introduced the currents  (x) and ̄ (x) with the natural Poisson brackets

{ (x),  (x′)}2 = 0 , { (x), ̄ (x′)}2 = δ′(x, x′) , {̄ (x), ̄ (x′)}2 = 0 . (1.8)

Upon imposing

L = ∂ +

∞
∑

i=0

ui∂
−i−1 = ∂ + ̄

1

∂ − ( + ̄ )
 , (1.9)

we get an expression for the fields ui in terms of the currents, as

ui = ̄ [(−∂ +  + ̄ )i  ] . (1.10)

If (1.10) were to provide a faithful representation of Ŵ∞, one could just compute the

{ui, uj} commutators using their expression in (1.10) and the Poisson brackets (1.8). How-

ever, more careful examination [14] reveals that this is not the case. It is easy to check

that (1.10) implies relations or constraints between the fields ui; the simplest such relation

is

u2u0 − u2
1 + u′1u0 − u1u

′
0 = 0 . (1.11)

Thus it is not possible to unambiguously translate an expression in j j̄ into an expression

in the fields ui. The upshot of this is that the two boson representation is related to a

reduction, as opposed to a realization of the KP hierarchy.

Let us show this more explicitly. The map between the fields ui and Wi was derived

in [7] and gives, for the Ŵ∞ case

W2 = u0 , W3 = u1 +
1

2
u′0 , W4 = u2 + u′1 +

1

3
u′′0 + u2

0 ,

W5 = u3 +
3

2
u′2 + u′′1 +

1

4
u′′′0 + 3u0u1 +

3

2
u0u

′
0 . (1.12)

(note the correction of a typographical error in the expression for W4 in [7]). In terms of

 and ̄ , we find

W2 =  ̄ , W3 =
1

2
( ̄ ′ −  ′̄ ) +  ̄ 2 +  2̄ ,

W4 =
1

3
( ̄ ′′ −  ′̄ ′ +  ′′̄ ) −   ′̄ +  ̄ ̄ ′ −  ′̄ 2 +  2̄ ′ +  3̄ + 3 2̄ 2 +  ̄ 3 ,

W5 =
1

4
( ̄ ′′′ −  ′̄ ′′ +  ′′̄ ′ −  ′′′̄ ) +

1

2
(2 2̄ ′′ + 2 ′′̄ 2 + 3  ′′̄ + 3 ̄ ̄ ′′

+  ′2̄ +  ̄ ′2 −   ′̄ ′ −  ′̄ ̄ ′ + 3 3̄ ′ − 3 ′̄ 3 − 3 2 ′̄ + 3 ̄ 2̄ ′

− 9  ′̄ 2 + 9 2̄ ̄ ′) +  4̄ + 6 3̄ 2 + 6 2̄ 3 +  ̄ 4 , (1.13)
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so that under the interchange  → −̄ , ̄ → − , we see that Wn → (−)nWn. Such a

symmetry was already present for the bosonic representation of the linear W∞, [5]. We

note that the linear part (in terms of ui fields) of the field redefinitions (1.12) are given by

a formula analogous to (1.10), namely

W lin
n+2 = {u0, u1 +

1

2
u′0, u2 + u′1 +

1

3
u′′0 , u3 +

3

2
u′2 + u′′1 +

1

4
u′′′0 , . . .}

=
1

n+ 1

n
∑

m=0

[(−∂ +  + ̄ )m ][(∂ +  + ̄ )n−m̄ ] . (1.14)

Given the relations (1.12), (1.11) becomes a constraint on the W fields,

W4W2 = W 3
2 +W 2

3 −
1

4
W ′

2W
′
2 +

1

3
W2W

′′
2 . (1.15)

Note that the {W4,W4} commutator in (1.7) involves a W4W2 term, just like (1.15).

2. The  , ̄ hierarchy

In [7] a reduction similar to the one given in the last section was considered at the

level of the KP flows themselves. The second Hamiltonian structure of this  , ̄ hierarchy

is clearly given by (1.8), so we can immediately write down the flows as

~ ,tr
=

(


̄

)

tr

= P2∇~

∫

Hr , (2.1)

where ∇~ = (δ/δ , δ/δ̄ ) and P2 is the Hamiltonian structure corresponding to (1.8),

P2 =

(

 ̄

 0 ∂

̄ ∂ 0

)

, (2.2)

and Hr is obtained by taking the expression for the KP Hamiltonian (1.5) and writing it

in terms of the  , ̄ fields through (1.10).

Let us consider the second flow in more detail. It is written explicitly as

r = 2 : H2 = − ′̄ +  2̄ +  ̄ 2 ,

 ,t2 = (− ′ +  2 + 2 ̄ )′ ,

̄ ,t2 = ( ̄ ′ + ̄ 2 + 2 ̄ )′ . (2.3)

The  , ̄ hierarchy turns out to be bi-Hamiltonian, with the first structure P1 (correspond-

ing to W1+∞) being non local, but the third Hamiltonian structure P3 = P2P1
−1P2 being

local. P3 and P1 are given explicitly in [7].
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Let us try to manipulate (2.3) to see if it can be made to correspond to a known

integrable system. We notice that upon setting ̄ to 0, (2.3) becomes the “derivative” of the

Burgers equation, ht = h′′+2hh′, which can be linearized by the Cole–Hopf transformation

h = u′/u into the heat equation ut = u′′ [15]. Guided by this analogy, let us first “integrate”

the flows (2.3) by introducing h and h̄ defined by h′ = − and h̄′ = ̄ . We get:

h,t2 = −h′′ − h′2 + 2h′h̄′ ,

h̄,t2 = h̄′′ + h̄′2 − 2h′h̄′ . (2.4)

Using these equations, we find that ψ = h′eh−h̄ and ψ̄ = h̄′eh̄−h satisfy

ψ,t2 = −ψ′′ + 2ψ2ψ̄ ,

ψ̄,t2 = ψ̄′′ − 2ψ̄2ψ , (2.5)

which is the second flow of the NLS system. A more careful treatment of the relation

between our  , ̄ system and the NLS one in standard form can be found in [16]. In fact

it can be checked that the entire  , ̄ hierarchy can be mapped in this manner to the

NLS hierarchy. The simplest way to do this is to exploit the powerful concept of Fréchet

derivatives (see for instance [15]) to map the different Hamiltonian structures of the  , ̄

hierarchy to those of the NLS hierarchy. From h = −∂−1 and h̄ = ∂−1̄ , we find that the

Fréchet derivative of (h, h̄)T with respect to ( , ̄ )T is

D =

(

−∂−1 0
0 ∂−1

)

(2.6)

so that the Hamiltonian structure of the flows (2.4) is

DP2D
† =

(

−∂−1 0
0 ∂−1

)(

0 ∂
∂ 0

)(

∂−1 0
0 −∂−1

)

=

(

0 ∂−1

∂−1 0

)

(2.7)

(Here we are assuming the possibility of defining ∂−1 as an anti-self-adjoint operator). The

Fréchet derivative of (ψ, ψ̄)T with respect to (h, h̄)T is

D̃ =

(

eh−h̄(∂ + h′) −eh−h̄h′

−eh̄−hh̄′ eh̄−h(∂ + h̄′)

)

(2.8)

and using this we find

D̃DP2D
†D̃† =

(

−2ψ∂−1ψ −∂ + 2ψ∂−1ψ̄
−∂ + 2ψ̄∂−1ψ −2ψ̄∂−1ψ̄

)

(2.9)

This is the second Hamiltonian structure of the NLS system. Similarly one can show

explcitly that the P1 induces the first Hamiltonian structure of NLS.
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We can formulate the connection between the KP and NLS hierarchies directly, with-

out going through the j, j̄ hierarchy. It is straightforward to show that the Lax operator

(1.9) can be written

L = ∂ + ̄ (∂ −  − ̄ )−1 = ∂ − ψ∂−1ψ̄ (2.10)

by simply using the map from the  ’s to the ψ’s we just presented. So the reduction from

KP to NLS is given by the constraint LKP = ∂−ψ∂−1ψ̄, or, equivalently, by constraining

the KP fields as ui = (−)i+1ψψ̄(i). A natural question is to ask what kind of hierarchies

one gets by considering the reduction Ln
KP = ∂n + v∂n−2 + . . . + ψ∂−1ψ̄. This has been

considered in some details in [8].

Finally the relation between the NLS hierarchy and the  , ̄ system allows us to answer

the question that was left open in [7], of finding a zero-curvature formulation of the  , ̄

hierarchy, and of how to obtain it by reduction from the self–dual Yang–Mills system

[17]. Since we use slightly different notation than in [7], we recall how such a reduction is

introduced. The self–dual Yang–Mills equations in four dimensions are usually written as

F12 = F34 , F13 = F42 , F14 = F23 , (2.11)

where Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. Introducing w = x1 + ix2, z = x3 − ix4 and their

complex conjugates w̄ and z̄, eqs.(2.11) become

Fz̄w̄ = 0 ,

Fzz̄ + Fww̄ = 0 ,

Fzw = 0 , (2.12)

where now Fzw = ∂zAw − ∂wAz + [Az, Aw]. The gauge freedom in (2.12) is expressed

through the invariance of (2.12) under the transformations Aµ → A′
µ = gAµg

−1−∂µg g
−1.

Now, we know that to get the NLS equations by reduction of the self–dual Yang–Mills

system, we just need to choose

Az =

(

0 ψ
ψ̄ 0

)

, Aw̄ =
1

2

(

1 0
0 −1

)

. (2.13)

and reduce the system (2.12) first with respect to ∂w̄ and then ∂z −∂z̄ [17]. The potentials

Az̄ and Aw are determined by (2.12). Here, since we know that the  , ̄ system is related

to the ψ, ψ̄ system by the map given above, we consider the effect of a w̄-independent

gauge transformation on Az which leaves Aw̄ invariant. Under a transformation by

g =

(

α−1 0
0 α

)

, (2.14)
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we get

A′
z =

(

α−1αz ψα−2

ψ̄α2 −α−1αz

)

=

(

−1
2( + ̄ ) −
̄ 1

2
( + ̄ )

)

, (2.15)

where we have taken α2 = eh−h̄.

If we take the new form of Az from (2.15), and the form of Aw̄ from (2.13) and plug

into (2.12), imposing ∂w̄ = 0 but not ∂z = ∂z̄, we find

Az̄ = β

(

1 0
0 1

)

with βz = −
1

2
( + ̄ )z̄

(


̄

)

z

=

(

−∂ +  z∂
−1 + ( + ̄ )  z∂

−1 + 2
̄ z∂

−1 + 2̄ ∂ + ̄ z∂
−1 + ( + ̄ )

)(


̄

)

z̄

. (2.16)

The matrix operator in the second equation above is equal to P3P
−1
2 in [7]. The method of

reduction used here, not imposing immediatly ∂z = ∂z̄, gives us not only the equations of

the hierarchy we are looking for, but also its recursion operator (of course, the r = 2 flow

(2.3) is obtained after setting ∂z = ∂z̄). The same applies to the reduction to the KdV

equation, where one gets not only the usual KdV equation, but also its recursion operator.

3. Some open questions

The results presented here open up some potentially interesting avenues of research.

The Ŵ∞ algebra, which was originally introduced as an algebra that “contains” all the

WN algebras, apparently contains even more. It is clearly of some interest to try to find all

reductions of the KP system and to understand the physical significance of the associated

reductions of Ŵ∞. Work on the algebras associated with the class of reductions of [8],

generalizing the result here, is currently in progress.

Another question that arises is as follows: we know that the KdV equation arises by

reduction (i.e. constraining) the KP hierarchy. On the other hand, we also know how to

reduce the self-dual Yang-Mills system to the KdV equation [17]. In the work presented

here, we see that the KP hierarchy can also be reduced to the NLS hierarchy, and again

we know how to reduce the self–dual Yang–Mills equations to NLS. It is believed that self–

dual Yang–Mills is a universal integrable system, and in particular KP can be obtained by

reduction from it, for a suitable infinite dimensional gauge group. It would be interesting

to understand better why certain integrable systems can appear both as direct reductions

of self–dual Yang–Mills with a finite dimensional gauge group, and as indirect reductions

via KP. Work on this is also in progress.

Some work related to that presented here can be found in [18].
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