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Abstract

I report on work on a Lagrangian formulation for the simplest 1+1 di-

mensional integrable hierarchies. This formulation makes the relationship

between conformal field theories and (quantized) 1+1 dimensional inte-

grable hierarchies very clear.

1. Introduction

It is a not widely appreciated fact that at least some (1+1) dimensional inte-

grable hierarchies (of KdV type), in their “second” hamiltonian formulation, can

be derived from an action principle1. Interestingly, as I will show later, the same

action, considered as a functional of different sets of fields, can give rise to different

“gauge equivalent” integrable hierarchies2. But the main merit of this Lagrangian

approach to integrable systems is that when we quantize these theories in the ob-

vious way, we see the relationship between (deformed) conformal field theories and

quantized integrable systems emerge naturally. We need an action for integrable

systems in their “second” hamiltonian formulation, because it is the “second” Pois-

son bracket algebras of integrable systems that are related to the operator algebras

of conformal field theory3.

I will focus here on the KdV action, summarizing the results of ref.4, but

I will also give an action for NLS5 hierarchy. In section 2, after presenting some

* Based on a talk given at the NSERC-CAP Workshop, Quantum Groups, Inte-

grable Models and Statistical Systems, Kingston, Ontario, Canada, July 1992

1



results in classical KdV theory, including an explanation of the notion of the “gauge

equivalence class” of the KdV equation, I give the KdV action. In section 3 I show

how to quantize the theory defined by the KdV action, to obtain the usual notions of

“quantum KdV” and “quantum MKdV”; we also obtain very naturally the result of

Zamolodchikov6, that the quantum KdV hamiltonians are conserved quantities in a

certain deformation of the minimal conformal models. Similar treatment of the NLS

action, given in section 4, reveals the result that the quantum NLS hamiltonians are

conserved quantities in a certain deformation of the parafermion and SL(2)/U(1)

coset models.

2. Classical KdV Theory and the KdV Action

The meaning of the statement “the KdV equation is gauge equivalent to the

MKdV equation” is that via the “Miura map” u = jx − 1
2j

2, a) a solution to the

MKdV equation

jt = jxxx − 3
2 j

2jx (1)

generates a solution of the KdV equation

ut = uxxx + 3uux (2)

and b) the “second” Poisson bracket structure of the MKdV equation7

{j(x), j(x′)} = ∂xδ(x− x′) (3)

induces the “second” Poisson bracket structure of the KdV equation

{u(x), u(x′)} = (∂3
x + u(x)∂x + ∂xu(x))δ(x− x′) (4)

Less well known, but of fundamental importance8, is the fact that via the map

j = qxx/qx, a) a solution of the Ur-KdV equation

qt = qxxx − 3
2q

2
xxq

−1
x (5)

generates a solution of MKdV, and b) the Poisson bracket structure

{q(x), q(x′)} = ∂−1
x qx∂

−1
x qx∂

−1
x δ(x− x′) (6)

induces the Poisson bracket structure (3). As recognized and explained by Wilson8,

Eqs.(5) and (6) are invariant under Möbius transformations

q →
aq + b

cq + d
ad− bc = 1 (7)
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It follows that if f is some functional of q invariant under some subgroup of the

Möbius transformations, then Eq.(5) will imply some KdV-type equation for f

and the bracket (6) will imply some bracket for f . Examples of such f ’s are

j, which is invariant under the c = 0 subgroup of Möbius transformations, and

u = qxxxq
−1
x − 3

2q
2
xxq

−2
x , which is invariant under the full group of Möbius transfor-

mations. Another such f is j̃ ≡ qxxq
−1
x −2qxq

−1, which is invariant under the b = 0

subgroup; j̃ satisfies MKdV*, satisfies the same brackets as j, and u = j̃x−
1
2
j̃2. We

can also take f ’s that are invariant under one parameter subgroups of the Möbius

transformations, such as h ≡ ln qx (invariant under a = d = 1, c = 0), h̃ ≡ ln(qx/q
2)

(invariant under a = d = 1, b = 0), and η ≡ qx/q (invariant under b = c = 0).

All this is explained in ref.8. Note that we could have written any function of qx

instead of h above; we have chosen h and h̃ so that j = hx and j̃ = h̃x. The com-

plete set of equations obtained from Ur-KdV in this way is what I call the gauge

equivalence class of KdV; I should point out that this notion is usually introduced

via a zero-curvature formulation, but I will have no need for this here.

Consider now the following action:

S = S0 +H

S0 = −
c

48π

∫

dxdt qxtqxxq
−2
x

H =

∫

dxdt p[u]

(8)

Here c is a constant and p[u] is some function of u and its x-derivatives. S0 is

the “geometric Virasoro action” of Polyakov, Bershadsky and Ooguri and others9,

which is invariant under Möbius transformations (7), as is H. H has no time

derivatives in it, so the Poisson brackets are determined purely by S0; on the other

hand since S0 is first order in time derivatives it will give no contribution to the

hamiltonian, which is therefore H. The Poisson brackets determined by S0 are

exactly those in Eq.(6) multiplied by 24π/c. We can write

S0 = −
c

48π

∫

dxdt hxht (9)

so S can also be considered as an action for h. Treating S as an action for q the

equation of motion is found to be

ut = −
24π

c
(∂3

x + u(x)∂x + ∂xu(x))
δp

δu
(10)

* So there are two distinct maps from Ur-KdV to MKdV.
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Here δp/δu is defined by δH =
∫

dxdt (δp/δu)δu. Treating S as an action for h the

equation of motion is

jt = −
24π

c
∂x(∂x + j)

δp

δu
(11)

where here we understand that we should write δp/δu in terms of j. From (10) and

(11) it is clear that if we choose

p[u] =

∞
∑

n=1

λnpn[u] (12)

where the λn’s are constants and the pn’s are the densities of the conserved quan-

tities of the KdV equation,

p1[u] = u

p2[u] = 1
2u

2

p3[u] = 1
2
(u3 − u2

x)

...

(13)

then (10) will give an arbitrary equation in the KdV hierarchy and (11) an arbitrary

equation in the MKdV hierarchy. Note that by treating S as a non-local functional

of u we can also obtain an arbitrary equation in the Ur-KdV hierarchy from S.4

In the last paragraph we pulled the KdV conserved quantities out of a hat.

In fact we could have chosen p[u] as in Eq.(12) with the pn’s any set of densities

such that the quantities In =
∫

dx pn[u] mutually commute under the bracket

(4). This would have given a different integrable hierarchy. I am not aware of a

classification of all possible sets of pn’s. But when we write the pn’s of the KdV

hierarchy in terms of h we find that the In’s commute with both I+ =
∫

dx eh and

I− =
∫

dx e−h (note that I+ and I− do not commute though); in fact it is known10

that requiring the pn’s to be functions of j = hx and its derivatives such that the

In’s commute with I+ and I− uniquely determines the pn’s of the KdV hierarchy.

Note that in our formalism eh = qx so (assuming periodic boundary conditions

on q) I+ is zero. I strongly suspect (from conformal field theoretic considerations)

that a general set of pn’s can be obtained by requiring commutation of the In’s

with I+ and I(λ) =
∫

dx e−λh for some λ (not all λ’s will be allowed); but I am

unaware of a proof of this statement. In quantization we will for one purpose use

“commutation with I+ and I−” as the definition of the KdV hamiltonians, and for

another purpose use “commutation with I2” as the definition (this is also sufficient

to define the other In’s at the classical level10).
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3. Quantization

When we quantize a theory we choose a set of Poisson brackets and elevate

them to the level of operator commutation relations. In quantizing the theory based

on the action S0 we have a choice; either we can treat the field q as fundamental,

in which case we should use the u bracket (4), as u is the dynamical field, or we

can treat the field h as fundamental, in which case we should use the j bracket (2).

But in the latter approach we should not completely ignore the fact that S0 can

be treated as an action for q; this reflects the fact that we can impose a consistent

constraint on the theory defined by S0[h], namely the constraint I+ =
∫

dx eh = 0

(by “consistent” in this context I mean that this constraint is preserved under the

dynamics). We will do this.

But first a few words on the standard notions of quantum integrable systems.

A common feature of classical integrable systems is the existence of at least one

Poisson bracket structure and an infinite number of quantities in involution with

respect to this bracket. Given this situation, we can investigate whether upon

elevating the brackets to operator commutation relations there is still an infinite

number of quantities in involution, with “classical limit” (suitably defined) the

hamiltonians of the classical integrable system. If the answer is positive then we

can regard the quantities in involution as conserved quantities of some operator evo-

lution equation, which we dub the “quantum” version of the original classical equa-

tion. Remarkably it seems that there are infinite numbers of conserved quantities

for the quantum KdV equation (quantized using its first10,11,12 and second10,11,13

brackets), the quantum MKdV equation (quantized using its second bracket10,13),

the quantum NLS equation (quantized using its first14,12 and second5 brackets),

and the quantum SL(N) KdV equations (quantized using its second bracket11,13).

These are remarkable results because the “bihamiltonian” structure of integrable

systems, often regarded as responsible for the existence of the infinite number of

conserved quantities, is lost on quantization11.

Returning now to the quantization of our action, the first quantization of S0

proposed above consists of making the u Poisson bracket (4) into an operator com-

mutation relation. Looking at ref.3 we see that if we write

u = −
12

c

∞
∑

n=−∞

Lne
inx + 1

2 (14)

then the modes Ln satisfy a Virasoro algebra with central charge c. The natural

choice of Hilbert space is the “Verma module of the identity”, i.e. the states

L−n1
L−n2

....L−nr
|0〉, n1 ≥ n2 ≥ .... ≥ nr ≥ 2 (15)
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where |0〉 is a vacuum state satisfying

Ln|0〉 = 0, n ≥ −1 (16)

Since this quantum theory knows nothing of the classical fields h and j, we proceed

by defining a quantum analog of I2, namely

I2 =
1

2

∫

dx (uu) (17)

where the parentheses denote normal ordering. We seek quantum KdV hamilto-

nians as operators that commute with I2; this is just the quantum KdV theory

of Kupershmidt and Mathieu11. It has been proven that an infinite number of

quantum hamiltonians exist13.

For the second quantization the fundamental field is j; writing

j =

√

6

c

∞
∑

n=−∞

jne
−inx (18)

we find the modes jn satisfy the Heisenberg algebra

[jn, jm] = 2nδn,−m (19)

Without imposing the constraint the natural Hilbert space is the set of states

j−n1
j−n2

....j−nr
|0〉, n1 ≥ n2 ≥ .... ≥ nr ≥ 1 (20)

where here |0〉 is a vacuum state satisfying jn|0〉 = 0, n ≥ 0. To impose the

constraint, the quantum analog of I+ = 0, we restrict to states |ψ〉 satisfying

I+|ψ〉 = 0 (21)

where

I+ =

∫

dx : eh : (22)

In Eq.(22) the colons denote normal ordering and h = ∂−1
x j. Operators in the

constrained theory should commute with I+ so that they map physical states to

physical states. But before we work out the simplest such operator, let us first do

some rescalings to make our formulae appear more like the conformal field theory

literature; writing

φ = i

√

c

6
h

J = φx

(23)
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we have

S0 =
1

8π

∫

dxdt φxφt

I+ =

∫

dx : e−iβφ : , β =

√

6

c

(24)

Following ref.10, we can use conformal field theoretic techniques to evaluate com-

mutators. We find that the operator T = −1
4 : J2 : +iαJx commutes with I+ if

α = 1
2(β − β−1). T is the analog of u in this quantization of the theory, and the

modes of T satisfy a Virasoro algebra, but with central charge c̃ = 1 − 24α2 =

13 − 6(β2 + β−2) = 13 − c− 36c−1.

For β =
√

m/(m+ 1), m = 3, 4, ..., we obtain in this way the central charges

of the minimal conformal models. In fact what we have seen here is that quantizing

S0, treated as an action for the constrained field h, leads us naturally to certain

features of the Dotsenko-Fateev-Feigin-Fuchs construction for the minimal models.

As explained by Felder15, this construction works because the Hilbert spaces of

the minimal models (which are representation spaces of the Virasoro algebra) can

be realised as the cohomology of a certain operator acting between certain repre-

sentation spaces of the Heisenberg algebra (“Fock spaces”). We have obtained a

Lagrangian prescription of a part of this; the states in our theory are restricted to

lie in the kernel of I+, which on the single charge-zero Fock space we have been con-

sidering, is Felder’s BRST operator. It might be hoped that a more careful analysis

of S0 might lead to a more complete Lagrangian prescription of Felder’s work; in

particular in ref.4 I explained why the field h should be regarded as compactified,

and this would motivate us to enlarge the Hilbert space of the unconstrained theory

to include Fock spaces of exactly the charges required. But it is at the moment not

clear to me how the constraint operator becomes Felder’s operator on these spaces.

Returning to the main subject, we have seen that operators in the quantum

theory of S0 we are now considering must commute with I+, and it is therefore

natural to seek quantum KdV hamiltonians in this context by seeking operators

that commute both with I+ and with I− ≡
∫

dx : e−h : . It is not clear that

the quantum KdV hamiltonians defined this way will coincide with those defined

previously. But it turns out that the second hamiltonian constructed this way can

be written in the form
∫

dx (TT ) (cf. Eq.(17)), so the set of quantum KdV hamil-

tonians defined here does coincide with those defined above (up to a replacement of

c with c̃). This is a non-trivial result, that the two definitions of the classical KdV

hamiltonians given at the end of section 2, namely “commutation with I+ and I−”

and “commutation with I2”, give rise to the same set of quantum hamiltonians (up
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to c→ c̃)*; we will appreciate this result more in the next section.

Finally in this section we note the significance of the quantum KdV hamiltoni-

ans in the minimal models. Defining the quantum KdV hamiltonians via commu-

tation with I+ and I−, we see that (for appropriate values of β) they are operators

in the minimal model which commute with
∫

dx : e−h : ; but : e−h : is exactly the

(1,3) primary field, so the quantum KdV hamiltonians are conserved quantities in

the Φ(1,3) deformations of the minimal models6.

4. An action for the Nonlinear Schrödinger Hierarchy

I will now give the NLS action. In the KdV case, while the action gave us an

interesting perspective, we did not really learn anything new. In writing the NLS

action a) we gain insight into the gauge equivalence class of the NLS equation (it

only takes fragmented knowledge of the class to write the action, and then it can

be used to deduce more), b) on quantization we see how just as quantum KdV is

related to (a deformation of) the minimal models, similarly quantum NLS is related

to (a deformation of) the parafermion and SL(2)/U(1) coset models, and c) the

most cryptic element in the bosonization of these models, the form of (one of the)

screening operators is obtained naturally from the classical theory. I will just give

a few details here; for a more complete discussion see ref.5.

The gauge equivalence class of NLS is specified by giving the Ur-NLS equa-

tions, their second Poisson bracket structure and the group action that leaves the

equations and brackets invariant. Calling the Ur-NLS fields S, T , the equations,

brackets and group action are

Tt = Txx + 2TxSx

St =
2SxTxx

Tx

+ 3S2
x − Sxx

(25)

(

{S(x), S(y)} {S(x), T (y)}
{T (x), S(y)} {T (x), T (y)}

)

=

(

0 −∂−1
x Tx∂

−1
x

∂−1
x Tx∂

−1
x 2∂−1

x Tx∂
−1
x Tx∂

−1
x

)

δ(x− y)

(26)
eS → λ(cT + d)eS

T →
aT + b

cT + d

(27)

* There are several other results we are taking for granted; for example, on the

classical level it is straightforward to show that the set of objects that commute

with I2 generate an abelian algebra, but this is not so clear on the quantum level.

Such issues are discussed in ref.10.
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where in Eq.(27) ad − bc = 1. The group is SL(2) × R. In the KdV case we had

four different variables that were useful, q, h, j, u. S, T are the analogs of q, and the

analogs of h, j, u are, respectively the three sets of variables

h = S

h̄ = −S + ln(SxT
−1
x )

(28)

j = hx

j̄ = h̄x

(29)

A = 1
2 (j − j̄ + jx/j)

B = jj̄
(30)

The variables A,B are invariant under the full transformation group. Eq.(25)

induces the NLS equation for the quantities ψ, ψ̄, where

ψ = eh−h̄hx

ψ̄ = e−(h−h̄)h̄x

(31)

these are invariant under the SL(2) subgroup of the transformation group; indeed

the NLS equations
ψt = ψxx − 2ψ2ψ̄

ψ̄t = −ψ̄xx + 2ψ̄2ψ
(32)

display an obvious invariance under ψ → αψ ψ̄ → α−1ψ̄, which is the residual R.

The NLS action is

SNLS = k̃

∫

dxdt hxh̄t +

∞
∑

n=1

λn

∫

dxdt pn[A,B] (33)

where the pn’s are certain functionals of A,B and their x-derivatives; one way to de-

fine them is to require commutation with H1 ≡
∫

dx eh+h̄ and H2 ≡
∫

dx hxe
−(h+h̄),

which play the role of I− and I+ in the KdV theory. In fact, when written in terms

of S, T , and assuming periodic boundary conditions, H2 vanishes, just as I+ van-

ishes in terms of q in KdV theory; similarly A,B commute with H2, just as u

commutes with I+ in KdV theory. SNLS gives the A,B hierarchy when varied with

respect to S, T , and vice-versa; it gives the j, j̄ hierarchy when varied with respect

to h, h̄, and vice-versa; it gives the usual NLS hierarchy when varied with respect

to variables T and Sx/Tx.
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Quantizing SNLS along the lines of the second quantization method in sec-

tion 3, we are naturally led to consider states in a Fock space annihilated by a

normal-ordered version of H2, and we have to seek operators that commute with

this constraint operator. It is easy to find quantized analogs of ψ, ψ̄, B (written in

terms of h, h̄), and these take exactly the forms of the fundamental parafermion, its

conjugate, and the stress-energy tensor in the bosonized version of the parafermion

and SL(2)/U(1) coset models. And as I have already said, the normal-ordered

version of H2 is the mysterious screening operator in these theories, which we have

now obtained from a simple classical argument. The quantum NLS hamiltonians,

defined by “commutation with H1 and H2” (both normal ordered) can thus be iden-

tified as conserved quantities in a deformation of the parafermion and SL(2)/U(1)

coset models by an operator eh+h̄, which is just the first “thermal operator”. Fi-

nally I should mention that searching for the conserved quantities in the deformed

theories by looking for operators (written in terms of j, j̄) that commute with H1

and H2 is quite a bit easier than trying to build such operators out of the quantized

ψ, ψ̄ fields.
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