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ABSTRACT

Self-Duality in Gauge Theory, and Integrable Systems

Jeremy Dan Schiff

Three papers are presented. In “Hyperbolic Vortices and Some Non-Self-
Dual Classical Solutions of SU (3) gauge theory”, a proposal of Burzlaff [Phys.Rev.D
24 (1981) 546] is followed to obtain a series of non-self-dual classical solutions
of four-dimensional SU(3) gauge theory; this is done by finding solutions of the
classical equations of motion of an abelian Higgs model on hyperbolic space. The
lowest value of the Yang-Mills action for these solutions is roughly 3.3 times the

standard instanton action.

In “Kéhler-Chern-Simons Theory and Symmetries of Anti-Self-Dual Gauge
Fields”, Kahler-Chern-Simons theory, which was proposed as a generalization of
ordinary Chern-Simons theory, is explored in more detail. The theory describes
anti-self-dual instantons on a four-dimensional Kéhler manifold. The phase space
is the space of gauge potentials, whose symplectic reduction by the constraints of
anti-self-duality leads to the moduli space of instantons. Infinitesimal Backlund
transformations, previously related to “hidden symmetries” of instantons, are
canonical transformations generated by the anti-self-duality constraints. The
quantum wave functions naturally lead to a generalized Wess-Zumino-Witten
action, which in turn has associated chiral current algebras. The dimensional

reduction of the anti-self-duality equations leading to integrable two-dimensional



theories is briefly discussed in this framework.

In “The Self-Dual Yang-Mills Equations as a Master Integrable System” a
systematic method of dimensional reduction of the self-dual Yang-Mills equations
to obtain two-dimensional integrable systems, and simple three dimensional ex-
tensions thereof, is examined. This unifies existing knowledge about such reduc-
tions. The method produces the recursion operators of various two-dimensional
integrable systems; for gauge group SL(2, C) the recursion operators of the KdV,
MKdV, Gardner KdV and NLS hierarchies appear, and for SL(3,C) the recur-
sion operators of the Boussinesq and fractional KdV hierarchies. We also obtain
the Sine-Gordon and Liouville equations. The different possible reductions for
SL(N, C)) are classified, giving a conjecture on the existence of large numbers of
new integrable systems, and possibly even a scheme for classification of integrable

systems.
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Preface

This thesis consists of three of the research papers that I have written while a
graduate student at Columbia University. The first and third are predominantly
my own work; the second was written in collaboration with V.P.Nair. While
there is a thread of connection between the three, as I shall shortly explain,
they are essentially independent, and therefore I have presented them as three
“chapters”, each of which can be read without reference to the others. Equations
and references are numbered separately for each paper, and individual lists of

references are given at the end of each paper.

The connection between the papers is that they are all in some way relevant
to the study of the self-dual Yang-Mills (SDYM) equations. The central paper is
the second of the three, in which a five-dimensional Kahler-Chern-Simons theory
is presented as an analogue of Witten’s three-dimensional Chern-Simons theory.
The equations of motion of this theory are exactly the SDYM equations, on cer-
tain types of 4-manifold. The theory affords a rich new viewpoint on the SDYM
equations, as well as possibly a door for the generalization of two-dimensional
conformal-field-theoretic techniques to four dimensions. A number of questions
arise out of this work. It has been known for some time now that the SDYM
equations are of some relevance in four-dimensional physical gauge theories, as
they provide solutions of the equations of motion of Yang-Mills theories in Eu-
clidean space. For many years it was suspected that (for SU(2) gauge theory and
possibly SU(3)) they possibly give all solutions with finite action. In 1989 this

was proven incorrect by Sibner, Sibner and Uhlenbeck. Thus from working on the

A%



self-dual equations, I was naturally led to consider the question of non-self-dual
solutions, and in the first of the three papers here I show how to construct some
non-self-dual solutions in SU(3) gauge theory. The third paper in this collection
is of more direct relevance to the SDYM equations. One of the facts that makes a
theory of self-dual gauge fields look very attractive as a possible generalization of
conformal field theory is that the SDYM equations are “integrable”. It is known
that two-dimensional integrable field theories generalize conformal field theories.
It has been proposed that the SDYM equations, being a four-dimensional inte-
grable system might contain all two-dimensional integrable systems, the latter
being obtained by some suitable reduction. Some recent progress has been made
in showing how known integrable systems are embedded in SDYM. In the third
paper of this collection, I therefore consider reductions of SDYM.

There is a slight overlap between the second and third papers; pages 58-61
in the second paper are essentially an announcement of the most basic results
of the third paper. For the sake of independence of the papers, I have left this
slight duplication in. Note that the second paper is also referred to in the third,
as reference [10].

The first of these papers has been accepted for publication in Physical Review
D, and is due to appear in July 1991. The second, which was coauthored with
V.P.Nair, has been submitted for publication to Nuclear Physics B. The third
was written specifically for this thesis, and is not planned for publication in the

current form, though the results will be used for publication at some later date.

vi



1

I. Hyperbolic Vortices and Some Non-Self-Dual
Classical Solutions of SU(3) Gauge Theory

1.Introduction

There has been some recent interest in finding finite action, non-self-dual
classical solutions in (Euclidean) four dimensional non-abelian gauge theory (on
flat space), in the wake of the proof of Sibner, Sibner and Uhlenbeck [1] that
such objects do indeed exist for gauge group SU(2). For many years after the
discovery [2] and subsequent development [3] of the instanton solutions in gauge
theories, it was an open question as to whether these were the only finite action
solutions (this is often known in the literature as the Atiyah-Jones conjecture,
see [4]). Some progress in this direction was made by Bourguignon and Lawson
[5], who proved (for certain gauge groups) that the only local minima of the
Yang-Mills functional were given by instantons, so other solutions would have
to correspond to saddle points. Furthermore, in [6] Taubes proved that in the
two dimensional abelian Higgs theory with critical coupling, both in flat and in
hyperbolic space, the only finite action solutions of the equations of motion were
given by the solutions of the relevant self-duality equations; this result, in hyper-
bolic space, implied the non-existence of finite action, non-self-dual solutions in
four dimensional SU (2) gauge theory with “cylindrical symmetry”, as introduced
by Witten [7]. We now realise that this result cannot be generalized as we might
have hoped. In addition to the proof of existence of finite action, non-self-dual

solutions for group SU(2) [1], a set of such solutions has been explicitly con-
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structed by Sadun and Segert [8], following a proposal of Bor and Montgomery
[9].

The significance of the non-self-dual solutions, to both physics and mathe-
matics, is currently not clear. In physics, despite the fact that the non-self-dual
solutions correspond to saddle points, and not minima, of the Yang-Mills func-
tional, to do a correct semi-classical approximation by a saddle point evaluation
of the path integral, it is certainly necessary to include a contribution due to
non-self-dual solutions, and if it should be the case that there is a non-self-dual
solution with action lower than the instanton action (this question is currently
open, and of substantial importance), then such a contribution would even domi-
nate. Unfortunately, it is questionable whether the semi-classical approximation
can give a reliable picture of quantized gauge theories; it has been argued that
in four dimensional gauge theory small quantum fluctuations around classical
solutions can not be responsible for confinement, unlike in certain lower dimen-
sional theories. But it may still be possible to extract some physics from the
semi-classical approach. A first step in such a direction would be to obtain a

good understanding of the full set of non-self-dual solutions and their properties.

In this paper, we pursue an old idea, due to Burzlaff [10], for obtaining a
non-self-dual, “cylindrically symmetric” solution for gauge group SU(3). If we
write R* = RxR3, and identify some SU(2) (or SO(3)) subgroup of SU(3), with
generators that we will denote T, then we can look at the set of SU(3) gauge
potentials which are invariant under the action of the group generated by the sum
of the T%’s and the generators of rotations on the R? factor of R* (we choose the

T*’s and the R3 rotation generators to satisfy the same commutation relations).
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We call such potentials “cylindrically symmetric” (in analogy to the standard
notion of cylindrical symmetry in R?, which involves writing R? = R x R? and
requiring rotational symmetry on the R? factor). Such potentials will be specified
by a number of functions of two variables, the coordinate on the R factor of R*
(which we will denote z), and the radial coordinate of the R3 factor (which we
will denote y). Clearly the equations of motion for such cylindrically symmetric
potentials (if they are consistent) will reduce to equations on the space {(z,y) :
y > 0}. In [10] Burzlaff gave an ansatz for a cylindrically symmetric SU(3)
potential that would give a finite action, non-self-dual solution, with vanishing
topological charge density, for every finite action solution of the equations of
motion in a particular two dimensional abelian Higgs model in hyperbolic space
(which is just the space {(z,y) : y > 0}, equipped with a certain metric). Most
of this paper is, therefore, devoted to the study of the abelian Higgs model in
hyperbolic space with arbitrary couplings; using the ball model for hyperbolic
space, we argue that there should exist radially symmetric vortex solutions for a
range of values of the coupling constants. For the couplings of Burzlaff we find
solutions by straightforward numerical techniques. We also perform numerical
experiments for other couplings; it seems quite possible that the same model,
with different couplings, may emerge when examining other ansétze for non-self-
dual solutions. We make some brief comments on the resulting non-self-dual

solutions we have found.

2.Hyperbolic Vortices

The standard two dimensional abelian Higgs model on a spacetime with



(Euclidean) metric g, is given by the action
s = [ @ayi( EgD,sDud + Lgr ¢V FuFuw + 2162 —1?) (1
= 2v/g( 59" DudDué + 79" 6" Fpw Frr + (1917 = 1) (1)

Here ¢ is a complex scalar field, A, is an abelian gauge potential, F,, = 0,4, —
0,A, is the field strength, and D denotes a covariant derivative, D,¢ = (9, —
iA,)¢. K, A and p are coupling constants; since classically an overall factor in
the action is irrelevant, we can without loss of generality set x = 1. For the
case of flat space (g,, = 0,,) we can make a scale transformation z# — &x*,
A, — A,/€ toset p to 1, to be left with one physical parameter .

For the case of flat space, the above action has been thoroughly studied.
Since for finite action we need |¢| — 1 at infinity, we can define, for finite action

configurations, an integer-valued topological invariant, the vorticity

1

n=—
27

darg ¢ (2)

circle at oo
Furthermore, for finiteness of the scalar field kinetic energy term in the action,
it follows that if ¢ — e at infinity, then A, must tend to the pure gauge

configuration 0, x towards infinity. From this follows the fluz-vorticity relation

1
— — [ &?2F 3
n - xFyo (3)

For further analysis it is convenient to separate the cases A = 1 and A # 1. For
A =1 it is possible to find solutions to the second-order equations of motion by
solving a first-order set of equations, the “self-duality” or “Bogomolnyi” equa-
tions [11,12]. One can establish the existence of a radially symmetric solution of
these equations with arbitrary vorticity n, and then, by use of an index theorem,

one can show that there is in fact a 2|n|—parameter family of solutions with
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vorticity n [13]. More precisely, Taubes has shown that the parameter space of
n—vortex solutions is exactly Rl [14]. The action for all n—vortex solutions
is the same, S = |n|m, and it is convenient to consider an n—vortex solution,
for n > 0 (n < 0) as a superposition of |n| 1—vortices ((—1)—vortices) at |n|
arbitrary points on the plane. Finally, as mentioned in the introduction, Taubes
[6] has shown that, for A = 1, the solutions of the self-duality equations give all

finite action solutions of the equations of motion.

For X\ # 1, one has to attack the equations of motion directly. In [15] it was
established that there is a radially symmetric solution to the equations of motion
for any vorticity n, for (apparently) arbitrary A, but [11] that for A > 1, n > 1
these solutions were unstable (i.e. did not correspond to minima of the action).
A detailed numerical study by Jacobs and Rebbi [16] revealed that for A > (<)1
the action for the radially symmetric 2-vortex was greater (less) than twice that
for the 1-vortex and thus the solutions with n > 1 were unstable (stable). Their
results show convincingly that for A # 1 there are no solutions of the equations
of motion corresponding to two 1-vortices at some non-zero, finite separation;
for A > (<)1 the vortices will repel (attract). It seems reasonable to suggest
from this that the only solutions of the equations of motion for A # 1 are the
radially symmetric ones, but for our purposes it is only important to note that
as we go away from “critical” coupling, the radially symmetric solutions of the
equations of motion do persist. Another result of [16] that we will see reproduced

for hyperbolic vortices is that the action for the 1-vortex is an increasing function

of \.

We now turn to the hyperbolic case. There are several useful representations
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of hyperbolic space; in [7] and [10], hyperbolic space appears naturally in the
upper half plane model, {(z,y) : y > 0} with metric g,, = §,,/y*>. But in
this model there is no concept of radial symmetry, so it is much easier for our
purposes to work with the ball model, {(z!,2?) : r = \/(21)2 + (22)2 < R} with

the metric g,, = d,,,/h where

TR @

Here R is an arbitrary parameter. The two models of hyperbolic space are related

by the conformal transformation

ol ia? = R(w) (5)

iR+ (z +1iy)
We note that the point (0, R) in the upper half plane model maps to the origin

in the ball model. Using the ball model, our action is simply

1 —— h A
5= [ (30D LRk G0 -17)  ©
r<

A scaling transformation here, z#* — &x#, A, — A, /¢, R — £R cannot be used
to remove one of the parameters A, u (though it does show us that the choice of
R is arbitrary). So in the hyperbolic abelian Higgs model we have two coupling
constants.

Another difference between the hyperbolic and flat space cases is that we
cannot, in the hyperbolic case, write down an immediate flux-vorticity relation,
simply by finiteness of the action arguments. We can still define vorticity, as

since h — 0 as r — R, we need |¢| — 1 as r — R; we therefore define

1

n:%

darg ¢ (7)

circle r=R
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Unlike the flat case though, we have no finiteness reason to insist that |D¢| — 0
as we approach the spacetime boundary. However, to make our theory well-
defined we need to specify some specific behavior for the fields at the boundary,
and, specifically, we would like to choose behavior such that the surface term,
that appears when we vary the action to obtain equations of motion, vanishes.
For this, the obvious condition to impose is |D¢| — 0 as r — R; the solutions
we obtain are consistent with this. We then have the flux-vorticity relation (3).

We approach the action (6) as we do in the flat case. It is first useful to

establish when we can write a set of self-duality equations. Using the identity

D,¢D, ¢ = |(Dy £iD2)¢|* £ |¢|* Fiz £ (01 (¢D2g) — 92(¢ D1 $)) (8)

we can integrate by parts to write the action

1

S = §/T<R (|(D1 +iDy)¢|* + (\/7F12i \/— |¢>|2—1))2iF12) (9)

provided Ay = 1, which is the condition for self-duality. In this case we can at

once write down the self-dual equations

(D1 +iDs)¢ = 0
(10)
ISPES —(|¢|2 1) =

Here, and in all that follows, the upper sign is appropriate for positive n, and the
lower sign for negative n.) If we write ¢ = fe'”, we can solve the first of these
to obtain

A, =*€,,0,Inf+0,w (11)

and the other equation yields a single equation for f (w is just the gauge degree

of freedom), which we can write in the form

w(f)-CE ()
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In writing this we have exploited the fact that V2Inh = —2/h. We see straight
away that the case A\ = 2, u = 1/2 is very special; in this case we obtain
the Liouville equation, an integrable equation. This is the case that Witten
considered in [7], where he found explicitly 2|n| solutions of vorticity n. For
general \, however, Painlevé analysis suggests that (12) is not integrable [17]. For
later reference let us write down the equations for a radially symmetric solution
to the self-duality equations; the appropriate ansatz for a radially symmetric

n-vortex is

¢ = f(r)em’ (13)

where 6 is the usual polar coordinate. Equation (11) gives

a(r)

A'u = _nGHVxVT—Q
/ (14)
a(r)=1- rf
nlf
and the second of equations (10) tells us
Inla” A 5
— (1= 15
(1 f?) (15)
or, equivalently, f must satisfy equation (12), which reduces to
Inf) A
In f)" ( = (-1 16
(nfy’+ S = 2 (72 - ) (16)

For the integrable case, A = 2, we can write down the solutions to this equation

satisfying the necessary boundary conditions

_( (+/R)— (RJ7)
f ‘p<<r/R>p - <R/r>p>
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where p = |n| + 1. Tt is straightforward to check that these solutions have the

following asymptotic behaviors; near r = 0

ror~p(5)"

0525 (7)

2 r 2
1 fr)~2 - 1(1—§)

1~ a(r) ~ 2= 1)Z(p+ 1) <1 ) %)

and near r = R

(19)

We will later be able to use these as a check for the asymptotic behaviors for
general A, fi.
Let us now look at the action (6) for arbitary A, u. The equations of motion

are

A
D Db+ 50 (1~ 16%) = 0

. ) (20)
M&,(th) + §(¢Du¢ - ¢Du¢) =0

We look for a radially symmetric n—vortex solution in the form

¢ = f(r)e™
a(r) (21)

A, = —ney Ty, 7

The equations of motion reduce to

/ 2 o 2
prad A

2y _
7‘2 +%(1_f)_0

1w 2
" /
L (1=
a (r h)a—l— h( a)=0

(22)

(Note that these reduce to equations (2.18) in ref [16] if we set h = 1, and suitably

redefine coupling constants.) At this point it is useful to introduce the variable
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t = r/R to eliminate the constant R from the problem. Using a dot to denote

differentiation with respect to ¢, we obtain

f n%f(l1—a)? 2\

) -
. (1 4\, 42 ) 0
Q- (z*m)“m( —a)=

It is straightforward to compute the action density for the ansatz (21), and we

obtain

1
S —or / o)
0

B tf? n2f2(1—a)®  pn?(1—12)%a> (1 - f?)?
Blt)==5+ 2t + 8t 2(1 — t2)2

(24)

We need to analyze the system (23) with the requisite boundary conditions.
The first step is to write Frobenius-type expansions for the solutions of (23) near
the points ¢ = 0 and ¢ = 1, both of which are singular points of (23). We obtain

the following results: near ¢ = 0 the nonsingular solutions of (23) have form

f = Atl"! (1 +> fqt2q>
q=1
a = Bt? (1 + Z aqt2q)

g=1

Here A, B are some unspecified constants, and the f,’s and a,’s are constants
determined by A, B. It is possible to write a recursion relation for f,,a, in

terms of A, B, fi,au,...., fg—1, aq—1, but here we just give the first few coeflicients
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explicitly
( Bn? 4+ \ )
fr=—{ o
2(n| + 1)
1 Bn2 2 2
fo= C n+A)—4kHﬂMB—2%F@A+£)A%WO
8(|n| +2) |n|+ 1 L
22 (26)
a; = 1-— ﬂ5|n‘1
A? A? Bn?+ )\
=1———0po——=(4—B— —— |dn
2 6uB " 6MB< |n|+1)"1

Near ¢t = 1 we find that solutions of (23) with f(1),a(1) finite are given by series

1—f:a(1—t)<(1+§gq(1—t)q)

l—a:ﬁ(l—t)d(l—l—i::bq(l—t)q)

Here a, 3 are arbitrary constants, the g,’s and b,’s are defined by a recursion

(27)

relation, and (, d are given as the positive roots of
A=C(¢-1)

1 (28)
L = dd+1)

Equations (28) are very pleasing. For Witten’s case [7], A = 2 and u = 1/2, so
we have ( = 2 and d = 1. For Burzlaff’s case [10], A = 2 and pu = 1/6, so we have
¢ = 2 and d = 2. Uhlenbeck [18] has shown that any solution of the Yang-Mills
equations on R* with finite action can be obtained (in a suitable gauge) from a
smooth gauge field on $*; thus if we are to obtain finite-action solutions of the
Yang-Mills equations from either the Witten or Burzlaff ansatze, we need the
coefficients ( and d to be integers, and we see they are.

To summarize our problem, we see that we need to find solutions of (23),

with f,a given by (25) (for some A, B) near ¢t = 0, and by (27) (for some «, [3)
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near t = 1. Intuitively this problem is solvable; essentially we just need to choose
A, B, a, (3 in such a way that f,a, f, a are continuous. We use a straightforward
numerical method to actually solve the problem. For a specific A, B we use
the power series (25) with the coefficients (26) to obtain f,a up to t = 0.002.
We then use the Runge-Kutta method (introducing extra dependent functions
g = f, b = a to obtain a first order system), with a step length of 107>, to
integrate up to t = 1. All work was performed with double precision arithmetic.
There is an inherent instability as we approach ¢ = 1, corresponding, roughly
speaking, to the negative roots d,( of equations (28). For generic A, B the
functions f,a will be unbounded as we approach ¢t = 1. We label the functions
f,a arising from the numerical integration with a “+” if they are monotonically

w_»

nondecreasing, and with a otherwise. Thus we can plot two curves in the

A, B—plane corresponding to the values of A, B where f and a change from “+”

“—” behavior. The critical values of A, B required for the vortex solution,

to
Acrit, Berit, will be at the intersection of these two curves. Plots of the curves
in the A, B—plane are shown in figure 1* for n = 1 for the Witten case A = 2,

@ =1/2, and similar plots are found for n = 2,3,4. We obtain the results

Acrit = |7’L| +1
5 _ 2 (29)
crit — |’fL|

as expected from (18).
In general we find we require very accurate values of Ay, Berit (accuracy

of about one part in 10%) to obtain “reasonable” vortex solutions. There is a

* In this and later figures, the label “+—" denotes that the function f has

«

“4+” behavior and the function a has “—” behavior in the marked region; the

other labels are defined similarly.
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useful method of checking the “reasonableness” of a vortex solution; the action
density E(t) defined in (24) is linear in ¢ for ¢ ~ 0, and for ¢ ~ 1 goes as (1 —1)??,
where

z =min(d,{ — 1) (30)

In general, because of the instability at t = 1, we will find the numerical E(t) has
a slight “tail”, that is, instead of tending to zero in the expected way at t = 1, it
will, after a point, display a slight increase. We have aimed to obtain A.,;;, Berit
to an accuracy such that this “tail” affects the numerical approximation to the
action by less than one part in 103. The algorithm performs correctly, to well
within the required accuracy, for the Witten case.

It remains to give some results. First we check a self-dual case, A\ = 6,

i =1/6. For any self-dual case, it is easy to check that for the n—vortex

A
Berit = 7
n| (31)
S = 7|n|

We reproduce these results accurately, and we find the values for A..;; given in

table 1.

Acrit
3.13728895
6.80933129

12.40261138
20.30221717

B o =3

Table 1: A..;; values for A\=p ' =6

(Note that while we quote A.;; values to the accuracy necessary to make

our numerical algorithm produce reasonable vortex solutions, it is possible that
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the A.,;; of our numerical procedure is only the same as the real A.,;; to a lower
degree of accuracy.) In figure 2 we display the curves in the A, B—plane for this
case, for n = 1, and in figure 3 we display the functions f,a for n = 1,2, 3,4 for

both the Witten case and this case: note the difference in the behaviors at ¢t = 1.

Now we move to the Burzlaff case, A = 2, u = 1/6. We obtain the results in

table 2.

Acrit Bcrit 8/27T
2.32258782 4.55248618 0.412
4.18191496 2.18876301 0.783
6.57417323 1.43867781 1.145
9.51117487 1.07160765 1.504

B o |3

Table 2: Vortex solution data for A =2, u=1/6

The A, B—plane plot, for n = 1, is shown in figure 4 and f, a plots, for n =
1,2,3,4, are in figure 5. The A, B—plane plot shows an interesting feature: the
curve marking the change of behavior of f apparently has a cusp at (Acrit, Berit)-
This feature is reproduced for higher n, and we have found this feature in general
for A < 1 (but it seems that the curve straightens as Au " 1, and we have not
noticed a cusp in plots for Ay > 1). One proviso is in order here: our numerical

algorithm is not necessarily reliable anywhere but exactly at the vortex solution.

Finally we present results for 1— and 2—vortices for A = 2 and a range of
values of p. The results are summarized in table 3, where the superfix on At

etc. denotes the value of n.
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M Aim’t Bclm't Agm’t Bgm't 51/27T 52/27T
1/6 2.3225878 4.5524862 4.1819150 2.1887630 0.412 0.783
0.4 2.0546757 2.3706522 3.1859077 1.1771755 0.481 0.954
0.5 2.0000000 2.0000000 3.0000000 1.0000000 0.500 1.000
0.75 1.9131831 1.4605004 2.7169828 0.7383847 0.534 1.085
1.0 1.8607006 1.1626815 2.5531907 0.5917803 0.557 1.145
1.5 1.7984541 0.8362130 2.3661313 0.4290016 0.589 1.227
5.0 1.6807265 0.2949309 2.0341395 0.1535178 0.665 1.421

Table 3: 1— and 2—vortex solution data

for A = 2 and various values of u

The main result here is that for Ay < 1 (Ap > 1) it seems that the 2—vortex
is stable (unstable) against decay into two 1—vortices. This, and the fact that
the action is an increasing function of Au are in accordance with the flat space

results.

3.Non-Self-Dual SU(3) Yang-Mills Solutions

We feel no need to reproduce verbatim the analysis of Burzlaff [10], save
for one point that requires a little clarification. Witten’s ansatz [7] for cylin-
drically symmetric SU(2) gauge fields can be embedded into SU(3) in two dis-
tinct ways. One uses the the SU(2) subalgebra of SU(3) with the generators
o' = (A\1/2,2/2, X3/2) and the other uses the SU(2) subalgebra with generators
E* = (A7, =X5,\2) (Here the \,’s are the usual Gell-Mann matrices). Both o*
and E' satisfy the SU(2) commutation relation

[T, T7] = ieI*T* (32)
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but we have different trace formulae

Tr(o'c?) = %(Vj

o ; (33)
Tr(E'E’) = 2§Y
Because of this difference, when we use the E%’s for the embedding we obtain
the hyperbolic space action (6) with A = 2, u = 1/2, with a prefactor of 32, as
compared to a prefactor of 8 which we obtain when using the o%’s. Burzlaff’s
construction for non-self-dual solutions gives the action (6) with A =2, u = 1/6,
with a prefactor of 32m.

Having stated this we can at once give the main result of this paper: we
have non-self-dual SU (3) solutions with action given by 6472 times the figures in
the last column of table 2. This is in units where the standard instanton action
is 872, so the lowest action of our solutions is roughly 3.3 times the instanton
action. We would speculate that there exists a solution of the type we have
looked at for any n, and we see that the action for the “n—solution” is less than
n times the action of the basic solution. The asymptotic behavior for large n is
clearly of interest. We note that the solution for n = 4 is almost as low as only
three times the n = 1 action. The lowest action for a non-self-dual solution in
SU(2) found by Sadun and Segert [8] is roughly 5.4 times the instanton action.
In SU(4) gauge theory, it is clear that we can find a non-self-dual solution with
action twice that of the instanton: we pick two commuting SU(2) subalgebras
and consider the potential which is composed of an instanton in one SU(2) and
an anti-instanton in the other SU(2).

Let us investigate just briefly the geometry of our solutions. To do this
we must revert to the upper half plane model of hyperbolic space. In section

2 we introduced Cartesian coordinates (x,y) on hyperbolic space in the upper
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half plane model, and (z!,2?) on hyperbolic space in the ball model, and we
also used polar coordinates (r,#) on the ball model. Let us now introduce polar

coordinates (p, ¢) on the upper half plane model (0 < p < 00, 0 < ¢ < ) via
p=\r?+y?
¢ = tan” ' (y/x)

(34)

p is the standard radial coordinate of R* (that is, if the R* coordinates are

(y', 9% %, y*), then p = \/(y")2 + (¥2)? + (y°)2 + (y*)?). The action density of
our solutions can be expressed in the ball model as a function of r alone, but in
the upper half plane model it is a function of the two variables p, ¢. Explicitly

we have, for the Yang-Mills action,

R 2m
YM = 327r/ / d(%)d@ E(r/R)
= 327r/ / d(ﬁ>d¢ JE(r/R)
o Jo R
where J is the necessary Jacobian
S 1 2
J_Z(1+52+2581n¢) (36)

where we have written ¢t = r/R, as before, and we have introduced s = p/R. In

terms of p, ¢, we have

r 4ssin ¢
t=— = |1 37
R \/ 1+ 8%+ 2ssin¢ (37)
The functions E(t) for our solutions, with n = 1,2,3,4 are displayed in figure
6; as mentioned above, for ¢t ~ 1, E(t) behaves as a multiple of (1 —t)2. This

completes all the necessary information to work out the large p behavior of the

action density, that is the integrand of (the second part of) (35). We find that the
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action density drops off (for fixed ¢) as (p/R)~°. This is identical to the behavior
of the standard instanton, except of course we must remember that our solutions
do not have full “spherical” symmetry in R*. The reproduction of the instanton
result here is essentially due to the fact that the parameter z of equation (30) is
the same for the Witten case and the Burzlaff case. We note that our solutions,
like standard instantons, have a scale parameter R associated with them. It
seems, in fact, that there is an eight parameter family of our solutions (for each
n), as opposed to a five parameter family for the standard instanton: we have in
addition to the usual “center” and “scale” parameters, three extra parameters
associated with the choice of the time axis, which we use to define the cylindrical
symmetry. Possible subtleties could arise in this naive counting, however, due
to gauge transformations. We can also consider the effect of the full conformal
group on our solutions: applying special conformal transformations to our eight
parameter family could generate up to a twelve parameter family of solutions
(compare [19]); the form of the potentials for the solutions thus generated would,
it seems, be messy, and the task of checking that these solutions are not gauge

equivalent might be very tricky.

In conclusion, we just mention a few more points worthy of study, in addition
to the various points that have been mentioned in passing above. It is important
to examine the stability of our solutions as solutions of the Yang-Mills equations
(as solutions of the hyperbolic abelian Higgs model it seems they correspond
to genuine minima of the action). By virtue of the results of [5] they do not
correspond to minima of the action functional, but to saddle points, and it is of

interest to count (if it is finite) the number of small variations away from the
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solutions that reduce the action functional. Intuitively, the objects that we have
found are potentially of more relevance to physics if this number is low. Another
question that could produce interesting results is to generalize Burzlaff’s ansatz to
larger groups, using other SU(2) embeddings, to see if we can obtain hyperbolic
abelian Higgs models with other couplings. We expect the couplings to be such

that the numbers (,d defined by equation (28) are integers.
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II. Kahler-Chern-Simons Theory and
Symmetries of Anti-Self-Dual Gauge Fields

1. Introduction

Recently [1] we proposed a five-dimensional theory, referred to as Ké&hler-
Chern-Simons theory (KCST), as a generalization to a 4 + 1 dimensional setting
of many features of three-dimensional Chern-Simons theory (3d CST) [2]. In this
paper, we give a more elaborate presentation of the theory as well as several new
results. The three-dimensional Chern-Simons theory, it is by now well known,
gives an intrinsically three-dimensional quantum field theoretic interpretation of
the Jones polynomials for links; the polynomials are essentially the correlation
functions of the Wilson loop operators for the links. 3d CST is also very closely
related to two-dimensional conformal field theory. In particular, 3d CST on
> X R, where ¥ is a Riemann surface, is an exactly solvable theory with a finite
dimensional Hilbert space which can be identified as the space of chiral blocks
of a rational conformal field theory. The relevant chiral algebra is the current
algebra of a Wess-Zumino-Witten (WZW) model, a Kac-Moody algebra, defined
on X [3]. The construction of link invariants highlights the topological nature
of 3d CST. The current algebraic aspects are, however, related to the fact that
the reduced phase space is the space of flat gauge potentials on ¥ modulo gauge
transformations. The Narasimhan-Seshadri theorem [4] shows that, for gauge
group SU(N), this space is also the moduli space of stable, rank N holomorphic

vector bundles of Chern class zero over ¥; holomorphic gauge transformations
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and chiral algebras are naturally defined in this case. It is as a generalization of

the current algebraic features that we introduced KCST.

The four dimensional manifold in KCST, the analogue of the Riemann sur-
face ¥ in 3d CST, is a K&hler manifold. The analogue of the Narasimhan-
Seshadri theorem is Donaldson’s theorem [5] which relates the moduli space of
holomorphic vector bundles to instanton moduli spaces. The equations of mo-
tion of KCST are thus, not surprisingly, the anti-self-duality conditions in four
dimensions and the classical solutions are anti-self-dual instantons. Instantons
or anti-self-dual (ASD) gauge fields have also been of interest recently for differ-
ent but related reasons; this is in connection with integrable systems. There are
two connections between integrable systems and conformal field theories. First,
integrable theories describe a class of perturbations of conformal field theories
away from criticality [6]. Second, the Poisson bracket algebras associated with
certain integrable systems are classical analogues of the Virasoro algebra and the
Wy algebras (the chiral algebras for conformal field theories with higher spin
operators) [7]. The connection of ASD gauge theories with integrable systems
is that ASD gauge theories are conjectured [8] to provide a unified description
of all two-dimensional integrable systems. Systematic derivations of integrable
systems by gauge and dimensional reduction of ASD gauge theories have given
strong support to this conjecture [9],[10]. Virasoro and Wy symmetries emerge
as the residual gauge symmetry of the ansatze for gauge and dimensional reduc-
tion. By virtue of this idea that ASD gauge theories are “master” integrable
systems, and the known connection of integrable systems and conformal field

theory, it is natural to look at ASD gauge theories for an extension of conformal
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field theoretic ideas to four dimensions. Quite apart from this, there are many
hints that a four-dimensional Kahler manifold may be the natural setting for the
study of Wy algebras [11]; in particular, the most appropriate description, from
a geometric point of view, of W, gravity in two dimensions may be in terms of
ASD gravity on a four-dimensional Kéhler manifold [12]. Thus it seems appro-
priate that we find a Lagrangian formulation of ASD gauge theory as a theory
defined on a Kahler manifold, despite the fact that the notion of anti-self-duality

exists on any Riemannian manifold.

From all the above we have ample motivation for the study of ASD gauge
fields, especially in a Lagrangian and symplectic framework. We shall see that
some of the symmetries of ASD gauge theories, known at the level of equations
of motion, especially Backlund transformations, are realized as canonical trans-

formations within KCST.

This paper is organized as follows. In section 2, we discuss the action and
equations of motion of our theory. The (reduced) phase space is identified as the
moduli space of ASD instantons, obtained by reduction of the space of gauge po-
tentials on the Kahler manifold by the conditions of anti-self-duality. We discuss
briefly the Hamiltonian version of the theory, and identify the symplectic form
on the space of gauge potentials defined by the theory. In section 3 we discuss
some of the properties of this symplectic form, specifically its gauge invariance,
that it is an instance of the Donaldson u-map [13], and its evaluation for specific
instanton moduli spaces. We then look at the Poisson bracket algebra of our
theory, and particularly the algebra of the anti-self-duality constraints. Classical

and quantum symplectic reductions are discussed in section 4. We show that in-
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finitesimal Béacklund transformations are generated as canonical transformations
by the anti-self-duality constraints. At the quantum level, the wave functions
naturally involve a generalized form of the WZW action with an accompanying
Polyakov-Wiegmann type factorization property. We examine briefly the chiral
algebra associated with this action. In section 5, we specialize to the case of R*
as our Kéhler manifold; we show that the infinitesimal transformations found in
section 4 give the known “hidden symmetries” of the R* ASD equations. We dis-
cuss reduction of the ASD equations to integrable systems such as KdV, putting
known results into a unified framework, exploiting a critical insight from our the-
ory. In section 6, in addition to some concluding discussion, we mention higher

dimensional analogs of our theory.

2. Action, Equations of Motion and Phase Space

We define Kihler-Chern-Simons theory on a spacetime of form M?* x R,
where M* is a four (real) dimensional Kihler manifold, with a Kéhler form

denoted by w. The action is taken to be

™

5:/ [_ﬁTr(A/\dAJr%A/\AAA)/\w+Tr((<I>+6)/\7-“) (2.1)
M4*xR

A is the gauge potential; it is a locally defined 1-form on M* x R, with values
in the Lie algebra of the gauge group GG. We take GG to be a compact semisimple
Lie group; when needed we use a basis {T"} for the Lie algebra of G, with
Tr(T'T7) = —46%. F denotes the field strength, 7 = dA + A A A; we use F
for the “magnetic field”, i.e. that part of F which is a 2-form on M*. ® and

® are, respectively, locally defined, Lie algebra valued (2,0) and (0,2) forms on
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M*, which are also 1-forms on R. Thus, if 2%, a = 1,2 denote local complex

coordinates on M*, and t denotes the coordinate on R, then we can write locally
©=¢Ndt, O =5 Dabet,2 Papdz® Ad2”, Gab = —Pba

o B B . B B _ (2.2)
¢ =oNdt, ¢ = % 25,5:1,2 PapdZ® N dZ°, Pap = —Ppa

The behavior of the fields in the theory under gauge transformations is given by
A— A% =vAu! — duut
P — % = udbu ! (2.3)
d - =udu!
where u is a locally defined G-valued function on M* x R. By virtue of the
fact that w is closed, the action (2.1) is invariant under gauge transformations on
M* xR which are homotopic to the identity; in the case where M* is noncompact
or has a boundary, it may be necessary to impose the vanishing of F' at “infinity”
or on the boundary (of course, in such a case, to completely define the theory it is
necessary to give some boundary conditions, and we require that these should be
compatible with gauge invariance of S). Invariance of e* under homotopically
nontrivial gauge transformations can lead to quantization of k; we will discuss
this quantization from another point of view later in the paper.

In local complex coordinates we write w = % Jaadz® A dz%, and the Kahler
metric is given by ds? = g,4dz%dz%. We remind the reader that the components
of the Kéhler form can be derived from a Kéhler potential K, via w = i00K. On
a Kahler 4-manifold, the notions of self-dual and anti-self-dual 2-forms become
especially simple: a 2-form is anti-self-dual if it has no (2,0) or (0,2) part and its
(1,1) part is perpendicular to w (i.e. it vanishes upon taking the wedge product

of it with w).
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The equations of motion of the theory from varying ®, ®, A; are
FEO = 02 =g (2.4a)

FAw=0 (2.4b)

and express the fact that for all ¢ the 2-form F on M* is anti-self-dual, i.e.
that A,,Az is an instanton potential. The equations of motion from varying the

spatial components of A yield, in the gauge A; = 0,

k0Aa . o

o~ 9" Vadua (2.4¢)
k 8‘45« _ s bag T

_47'(' ot = +19 Va¢b& (24d)

Here g% is defined by grzg® = 6, and we have denoted by V and V the gauge
covariant versions of 9 and O respectively, so, for instance, Vadpe = Oadpa +
[Aa, dpa]. Since V, V appear in the above equations acting, respectively, on (0,2)
and (2,0) forms, we could replace both of them by the gauge covariant version
of the exterior derivative d = 0 + 0. Furthermore, since on a Kihler manifold
the Christoffel symbols I'f. and Fg‘c vanish we can consider V, V to be covariant
with respect to both gauge and coordinate transformations. We note that we

can write equations (2.4c,d) in coordinate independent form as, for instance,

k 0ALO) =

o = i* Vo (2.4e)
E 60AO01) R

O T +i* Vo (2.4f)

where * denotes the usual Hodge star operator. Equations (2.4c,d) give us
the time evolution of the gauge potentials, or, rather, since the gauge poten-

tial is an instanton potential, and equations (2.4c,d) are gauge invariant under
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t-independent gauge transformations (only these since we have fixed A; = 0
gauge), equations (2.4c,d) give us the time evolution of the moduli of the instan-
ton potential A,,Az. We clearly need to check that the time evolution (2.4c,d)
keeps us in the space of instanton potentials, and this will give us constraints on
¢, ¢. We will do this shortly.

First we make some other observations relevant to the action (2.1). We have
not considered so far the equation of motion that could be obtained by varying the
Kahler form w, or, rather, varying the Kahler potential K. This is in line with
our comments in the introduction that our theory should be viewed as being
defined in a background Kahler metric. The equation of motion obtained by
variation of K is satisfied automatically if the time derivatives of A,,Az are zero,
which, as we shall see shortly, is certainly the case when M* is compact without
boundary. Thus, although we use a metric expicitly, many of the properties of
the theory will be independent of the metric, i.e. “topological” within the class
of Kahler metrics.

The case where M* is hyperkihler merits some special comments. We then
have, in addition to the Kéhler form w, a closed (2,0) form w™ and a closed
(0,2) form w™, related to each other by complex conjugation. Writing w?® = w,

1

wh=1(wh+w™),w? = & (wT —w7), equations (2.4a,b) may be written

FAw =0, i=1,2,3 (2.5)

These, along with the equations 0A,/0t = 0Az/0t = 0, can be derived by

variation of the imaginary quaternionic action

k .
S = - M4XRT7~(A ANdA+2ANANA) Nw'e; (2.6)
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where e, = (1, ¢;) are a basis of quaternions. In this action we regard w’ as fixed.
For the case M* = R?, the action (2.6) has the advantage over the action (2.1)
that it does not require one to pick a specific Kéhler structure (which breaks
SO(4) invariance). But imposing hyperkdhler structure may, in general, be too
restrictive. We note that we can also consider the action (2.6) for a Riemannian
manifold M* which is endowed with quaternion-Kihler structure [14]; it would
then be necessary to use quaternionic quantization techniques [15].

We return now to consider the question of when the time evolution (2.4c,d)
keeps us within the space of instanton potentials. Computing the time derivative
of equation (2.4b) using equations (2.4c,d) we find no constraint on ¢ or ¢. But

taking the time derivative of F(39) =0, we find that ¢ must satisfy
V(xV¢) =0 (2.7)

For M* compact, with no boundary, this implies straightaway that V¢ = 0, since

in this case we can write

| Tr@avee) = [ Tr(@0) axTo) - IVelE @)
where || || denotes the standard norm. Thus for M* compact with no boundary,

the time evolution is trivial and the equations of motion reduce to
F20) — p0.2) _

FAw=0 (2.9)

8Aa_8Aa_0
ot ot

In fact it is possible to say a little more than this; for the case where M* is

compact, without boundary, and has positive scalar curvature it has been shown
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by Itoh [16], using a Bochner-type argument, that the dimension of the solution
space of (2.7) is zero. This result is of importance in computing the dimension
of the instanton moduli spaces for such manifolds, using the index of the twisted
Dolbeault complex. The complex dimension of the moduli space (if it is not
empty) of g-instantons on such a manifold is [16] 4¢ — 1dimG(x + 7), where
x is the Euler number and 7 is the signature of the manifold; furthermore the
moduli spaces have Kéhler structure [17]. These moduli spaces are exactly the
phase spaces for our theory (at least for M* compact, without boundary, and
with positive scalar curvature).

For more general M* one can have nontrivial solutions to (2.7). We shall
see below that changes in A0 of form *V¢ are generated canonically by the
action of F(%2) (and similarly the action of F(>9) generates changes in A(%1) of
the form *V¢). The equation F(*2) = 0 shows that such transformations may
be regarded as a different type of gauge symmetry. The time evolution of A, and
Az is flow along such gauge directions, and is still therefore trivial in a larger
sense.

Consider now the Hamiltonian version of the theory, treating the coordinate
t as time. The action (2.1) immediately gives the following first class constraints

on the canonical momenta
w4, =0 T =0 T35 =0 (2.10)

We can eliminate these constraints by choosing the gauge fixing constraints

Ay =0 =0 $=0 (2.11)

but we have to further impose the equations

87I'At _ 87r¢, _ 8775 _
T 0 5 5 0 (2.12)
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as constraints, which give equations (2.4a,b). Time evolution is once again trivial.
One more ingredient is necessary to complete the picture of the classical
phase space of the theory. The action (2.1) determines naturally a symplectic

2-form on the space A of all gauge potentials on M?,

Q= L Tr(6ANJA) Nw (2.13)
47 M4

Here 6 denotes the exterior derivative on A, and we have suppressed the wedge
product between forms on A. So our theory essentially describes the symplectic
reduction of the space A, endowed with the symplectic form 2 of (2.13), by
F20) FO2) and FAw. FAwis , with respect to the symplectic form €2, the
generator of usual gauge transformations, as we shall see later, so (2.4b) is the

“Gauss law” of the theory.

3. Properties of the Symplectic Form and the Algebra of Constraints

2, being nondegenerate, cannot be gauge invariant on the full space A, but
the general theory of symplectic reductions [18] dictates that there should be
gauge invariance on the subset of A where the moment map arising from gauge
transformations vanishes, which is the set of potentials such that FF Aw = 0. Tt
is interesting to see this gauge invariance emerge explicitly, without appealing
to the general theory of symplectic reductions. Let us take the case where M*
is compact and without boundary first. The Lie algebra valued 1-form A is
only defined locally on M*, so to compute (2.13) we need to introduce a set of
patches on M*, and to sum the contributions to (2.13) from a set of patches

that exactly cover M?. Explicitly, let {B,} be a (sufficiently large) collection of
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dﬁf@qu Let A, represent

closed sets that cover M4, with B, N B, = 0B, N OB
the gauge potential on B); we are given a set of G-valued transition functions
hpq, one for each pair p,q such that p # ¢ and 0B,,; # 0 (these satisfy the usual
relations). On 0B, we have A, = h,, Athql dhpthq ; gauge transformations
act via A, — gpApg, ' — dgpg, !, where g, is a Lie group valued function on
B, and on 0B,, we have g, = hpnghqul*. Under gauge transformations we
have 0A, — g,(6A,+Da, (g, '69p))g, ", where D4, denotes the gauge covariant

derivative. With all this one finds, after integration by parts and a few other

simple manipulations,

Z/ Tr(0Ap, NdA,) Nw — Z/ Tr(dA, NdA,) Nw
+20 (Z/B Tr((g, '6gp)F(Ap)) /\w)

-+ Z/ Tr 2(5A 159,,) + (ggl5gp)DAp (ggl5gp)) Aw

(3.1)

On the subspace of A where F' A w vanishes, the second term in this expression
is clearly zero. For the third term there are two contributions from 0B,,, which
is contained in both 0B, and 0B, and these can be shown to cancel; thus this
term is also zero. This establishes gauge invariance. For noncompact manifolds,

or manifolds with boundary, it clearly is necessary to impose certain boundary

* Gauge transformations are correctly defined as fiber-preserving automor-
phisms of the underlying principal bundle. The gauge potentials A, are obtained
from the bundle connection in terms of local trivializations. Gauge transforma-
tions can then be described in terms of local G-valued functions g, with the

prescribed overlap relation g, = hpqgqh,. -
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conditions to avoid contributions to the third term in (3.1).
Despite the fact that 2 is not gauge invariant on the whole space A, it does
define a (non-trivial) element of the second cohomology H?(A/G), where G is

the group of gauge transformations. This follows from the fact that if we define

QL(A, g) = / Tr((g~69)F(A)) Aw (3.2)

(2! is the 1-form on A appearing in the second term in (3.1) above, and is in
some sense the obstruction to gauge invariance) then Q!(A4,g) obeys a cocycle
condition

Q'(A, hg) = QL(A, g) + Q' (A9, h) (3.3)

Furthermore, the cohomology class of Q in H?(A/G) depends only on the coho-

mology class of w in H?(M?). This is easily seen if we write () as

k _ .

Q:E Tr(FANF)Aw (3.4a)
where
F=({d+8A+ANA (3.4b)
Then we have, for w — w + da,
Q—>Q+5{£/Tr(ﬁ/\ﬁ”ma] (3.5)

Since [Tr(F A F) A ais a 1-form on .A/G, it follows that the cohomology class
of € is not changed. Actually, 2 is an example of the Donaldson map from
H?(M*) to H*(A/G). (This is the cohomology version of the Donaldson map,
as described in [13]. We have an extra factor 27k, since our {2 is derived from an

action, which is measured in units of 2m.)
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With this understanding we can now discuss the quantization of k, for the
case where M* is compact and without boundary. If k is an integer, then, as-
suming that w represents an integer cohomology class of M*, the requirement
that k is an integer is exactly the requirement that {2/27 represents an integer
cohomology class of A/G. (Being Kihler, M* has nontrivial homology 2-cycles;
this implies that 71 (G) is nonzero, which implies that there are nontrivial ho-
mology 2-cycles in \4/G.) The relevance of this to the quantum theory, is that
in a geometric quantization of our theory we construct a line bundle, called the
prequantum line bundle, on the phase space with curvature 2; sections of this
line bundle satisfying a certain polarization condition are the wave functions.
The existence of the prequantum line bundle requires that the integral of /27
over any nontrivial homology 2-cycle in the phase space should be an integer [19],
i.e. Q/2m must belong to an integral cohomology class, which, as stated above,
means k£ must be an integer. Let us see this explicitly in a specific example, say
M* = S? x §2. We consider a homology 2-cycle in A/G, parametrized by o, 7,
0 <o,7 <1, given by

Azt 2, 0,7) = —1dgg™? (3.6)

1 .2

where 2!, 22 are coordinates of one of the component S?’s of M4, and g(x*, 2*

70-)7
with g(x!,2%,0) = g(z',22,1) = 1, is a nontrivial element of 73(G) = Z. Inte-

gration of ) over this 2-cycle gives

/Q = 21kQ|g] /82 w (3.7)

where Q)[g] is the winding number of g, i.e.

Qlol = 35 [ Tridag ) (33)
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Since Q[g] and [ w are integers, k must be an integer. This example we have
given here is, since we essentially ignore the second component S? in M?* in
construction of the nontrivial 2-cycle in \A/G, a simple extension of an argument
that can be given for the quantization of k£ in three dimensional Chern-Simons
theory; for arbitrary M* we use the nontrivial homology 2-cycles in place of the
component S2’s of the example. For noncompact M* there is no quantization of
k.

Having now established various properties of ), we consider briefly the eval-
uation of 2 on specific instanton moduli spaces. For instanton solutions we have
F(©:2) = 0, allowing us to write locally A(®)) = —9UU !, where U is G€-valued.
It follows that on some patch B we can write A = UA'U~! — dUU~! where
A’ is a G Lie algebra valued (1,0) form, A’ = (UTU)'0(U'U). We have
6A =U(6A" — D',(U~16U))U"; comparing with (3.1) and using the fact that
if A is an instanton potential we must have F(A") Aw = 0, we deduce that the

contribution to () from the patch B is simply given by
Op :/ Tr(26A"(U'6U) + (U '6U)D 4/ (U '6U)) Aw (3.9)
dB

We see at once that ) can be calculated on an instanton moduli space by summing
contributions from surfaces of patches. Note that here, unlike in the calculation
leading to gauge invariance above, the contributions to € from boundaries of
neighboring patches do not in general cancel; adopting the patching notation from
earlier on in this section, it is easy to see that on 0B,, we have U, = hpeU,9pq,
where the g,,’s are some holomorphic GC matrices, depending on the moduli
of the instanton potential A. There is some freedom in choosing the matrices

Jpq, arising from the freedom in choice of the matrices U,, but it is insufficient
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freedom to set them all to the identity (if we could set them all to the identity
the sum of all the contributions of type (3.9) would vanish). More precisely, the
matrices gp, define a holomorphic vector bundle on M 4 and the freedom we
have in the choice of g,,’s means that a specific instanton solution determines
exactly an isomorphism class of holomorphic vector bundles. This is one part
of Donaldson’s theorem [5] that states that there is an isomorphism between
moduli of (irreducible) SU(N) instanton potentials on M* and moduli of (stable)

holomorphic rank-N vector bundles on M*.
We now turn to an examination of the Poisson bracket algebra of our theory.

The canonical Poisson brackets following from (2.13) for the components of A

(defined by writing A = (A dz® + ALdz?)T") are

2 W (z —y)

[Afz(x)ﬂ Aé(y)] = %ga&yj det(g) (3.10)

Here det(g) = det(gaa). The basic structure of the theory is the symplectic
reduction of A by the constraints FO0) FO2) F Aw, so central to the quanti-
zation procedure is the algebra of these functions. We introduce the following

generators

k k |
B@) =5 [ Tr@nF) = o [ aVe e F
_ k
= _—/Tr e AF) = 2 /dVg‘m Bt i (3.11)

G(o) = 5 / Tr(bwn F) = —% / 4V g agi F

where 0, ¢, are, respectively, Lie algebra valued (0,0),(2,0) and (0,2) forms

(which essentially serve as parameters for the transformations generated by F' A
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w, F0:2), F(Q’O)); the components of 6, ¢, ® are defined by
0=> 0T
=3 PLTidz" Ndz2, Py = —Pha (3.12)
F= 3 PuTdz N2 Ty =y
In equation (3.11) the volume element is given by dV = 1d*2zd*z det(g). We find

the following Poisson brackets of these generators with the components of A:

(G(0), Ay ()] = —(VO), () (G(0), Ay ()] = —(VO), ()
[E(®), Au()] =0 [B(9), A5 ()] = i(xVP)a(z)  (3.13)
[E(p), Ay ()] = —i(+Ve), (x) [E(¢), A5(x)] =0

These tell us the facts that we have cited previously, that F'Aw is the generator,
with respect to the symplectic form (2.13) on A, of gauge transformations, and
F0:2) F(20) are, respectively, the generators of transformations of the form

ALO L AL _ 4T
(3.14)
AOD  AOD 44 VE

The symplectic form (2.13) on A is Lie-invariant with respect to flows on A
generated by both these transformations and gauge transformations. The three
constraints of our theory are moment maps corresponding to these three sets of
transformations. This result generalizes both the observation of Donaldson [5]
that F' Aw is the moment map corresponding to gauge transformations, and also
the result [20] that the anti-self-dual equations on R* (or for that matter any
hyperkdhler manifold) can be obtained via a hyperkéhler reduction.

It remains to write down the algebra of the generators E(%), E(¢), G(6).
We obtain

[G(8), G(0)] = G(6 x 0') (3.16a)
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G(0), B@)] = EO x ) (3.160)
G(0), Bl = F(O x ¢) (3160
Blo) E@) = 5 [ Tr(@ATT) (3.164)

Here 0 x 0/ = k079’ T" etc. E(p) and E(¢’), and E(p) and E(¢') evidently
commute. We note that on compact M* without boundary, we can rewrite the
right hand side of (3.16d) using (2.8). The algebra (3.16) is clearly of central
importance in our theory. We should mention that while we obtained the sym-
plectic structure (2.13) from our action (2.1), it is also that natural symplectic
form to consider on A from the point of view of the connection of the moduli
space of instantons with the moduli space of holomorphic vector bundles via
Donaldson’s theorem mentioned above. We thus, independently from the point
of view of Kéhler-Chern-Simons theory, expect the algebra (3.10),(3.13),(3.16)
to play a significant role in the quantization of instantons, i.e. the construction
of line bundles over the moduli spaces of holomorphic vector bundles on M*.

In the quantum theory, A, F, E, G become operators, and the Poisson bracket
relations (3.10),(3.13),(3.16) are replaced by commutators. Notice that right
hand side of (3.16d) contains both the holomorphic and anti-holomorphic com-

ponents of A, and hence one has to take care with operator ordering in (3.16d).

4. Symplectic Reductions, Classical and Quantum

The G(0), E(p) operators have a closed Poisson bracket algebra, given by
(3.16a,c). We attempt a two-stage (classical) symplectic reduction of A, first set-

ting E(p) (or equivalently F(%2) to zero, and then setting G(#) (or equivalently
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F Aw) to zero. The E(p) = 0 subspace of A consists of potentials locally of the
form

(Ag, Ag) = (Aq, —0,UU ) (4.1)

where U is GC-valued. The flow on this subspace generated by E(y) is given by

U—-U
(4.2)
Ay — A=A, — i(*vgo)a

We need a gauge fixing condition that will restrict us to the orbit space of the

flow (4.2). We note that under an infinitesimal change of the form (4.2) we have
F@0) R0 _ v %V (4.3)

Thus it follows that provided there are no solutions to equation (2.7), the condi-
tion F(>0) =0 (or equivalently E(%) = 0) will be a good gauge fixing condition.
Consistently with this, we note that if there are no solutions of (2.7), then the
right hand side of equation (3.16d) can be regarded as an invertible inner prod-
uct on the space of Lie algebra valued (2,0)-forms ¢; the invertibility of this
inner product is exactly the criterion for E(®) = 0 to be a good gauge fixing for
flows generated by E(yp). We are of course, only considering infinitesimal flows
at this stage. Note that, even if there are no solutions to (2.7), the gauge fixing
F(29 = 0 could in principle suffer from a Gribov ambiguity. The solution to

F(20) = 0 satisfying the appropriate reality conditions is
A, = (UNH19,UT (4.4)

The phase space after reduction by E(y) is thus given by the space of U’s, U
being a locally defined G©-valued function. Gauge transformations act on this

space via U — gU.
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Continuing with discussion of the case where equation (2.7) has no solutions,
let us proceed to the second stage reduction, by setting G(6) to zero and dividing

out by gauge transformations. The condition G(6) = 0 is easily seen to be

9%9a(J19,J) =0 (4.5)

where J = UTU. J is gauge invariant. (4.5) gives the instanton equations in
the so-called J-formulation. The reduced phase space now (i.e. the solutions of
(4.5)) is the moduli space of instantons.

Consider now the case of manifolds where there are nontrivial solutions to
equation (2.7), and impose E(¢) = 0. Imposing E(@) = 0 will not be a good
gauge fixing for the flow generated by the E’s. More specifically, if A, solves
E = 0 then so will A/, defined by (4.2) provided V * Vi = 0. Another way to
view this is as follows: if V * Vi = 0, then locally we can write *V¢ = Vo for
some Lie algebra valued function o, and it is straightforward to check that for

such ¢ we have

[E(¢), E(@)] = —iE(0 x P) (4.6)

So the flow generated by E(y) for these ¢ leaves the condition E = 0 invariant,
i.e. in the space E = 0, some of the flows generated by E are tangential to
the subspace FF = 0; in other words, whereas in the compact case ¥ = 0 was a
good gauge fixing for the symmetries generated by E on the space E = 0, in the
noncompact case there is an infinitesimal Gribov ambiguity.

Now instanton solutions are defined by £ = E = 0 and G = 0. From

what we have said above, for the first two conditions we have two solutions,

both with A; = —0,UU . If we take the first to be the “real” solution, i.e.
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A, = (UN)719,(UT), then the second is given by
Al = (U 0.(UT) = i(+Vp),
= (UN)18,(U") = i(Vo), (4.7)
V)0V

where VI = Ufe™% (¢ and o are infinitesimal). If UT,U solves F A w = 0,
then so will VT,U. Thus E-flow on the E = 0 subspace may be regarded as
generating new instanton solutions from old ones via solutions of V * V¢ = 0.
This will be made more precise for the case of R?* in the next section. The new
solution will clearly not satisfy reality conditions; but we can also consider the
analogous E-flow on the space E = 0, which will use solutions of V * V& = 0 to
generate new instanton solutions. Taking the right combination of these flows we
can generate new real solutions from old real solutions. Here we shall just write

equations (4.7) in a more useful form. The quantities relevant for the condition

G=0areJ=U'Uand J = VIU. We find
(JroJ) — (JtoJ) =iU 1 (Vo)U (4.8)

Note that equation (4.8) implies that if .J satisfies (4.5) so does J' (use the identity
(U talU) = U (Va)U). Thus (4.8) is an infinitesimal Béicklund transforma-
tion for (4.5).

We now turn to the subject of quantum reductions. We can consider quan-
tization of our theory in two ways. We can quantize the whole space A, endowed
with the symplectic form €2, and then impose the constraints (2.4) by restricting
to the set of wave functions annihilated by the appropriate operators. Alterna-

tively, we can directly quantize the reduced phase space, i.e. the subset of A
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defined by equations (2.4). We shall consider the first method, and at the end
of this section make some brief comments on the second method. For quantiz-
ing the space A, a natural choice of polarization for the wave functions is the
holomorphic polarization, i.e. the wave functions are functionals of A% with the

action of A given by

, ’ 2 ow
AZ \D Ag = V7 Yaa 49
R (49)
The scalar product is given by
(102) = [ R Ui adu(4) (4.10)

where du(A) is the Liouville measure on A given by ©, and K is the Kéhler

potential for €, i.e.

.k o
K=— [ dVg*"A® AL 4.11
o [avgeaia (411)

We perform a first stage of reduction by requiring
E(p)¥(AL) =0 (4.12)

This implies that the wavefunctions have support only on configurations for which
F(0:2) = (. For the simplest case, this means Az = —9;UU ! for some global G-
valued function U on M* (in this case, of course, the instanton number is zero).

We can now consider U’s to be functionals of U. The scalar product becomes
(| W) = / [dU]e~ KU D g (U)W, (U) (4.13)

where [dU] is defined as the product over M* of the Haar measure on G€. The

second stage of reduction is now performed by imposing gauge invariance, i.e.

GO)T(U) =0 (4.14)
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Using the definition of G() from (3.11) and (4.9), we see that this is equivalent

to

U(eU) = exp {—g / dVg““Tr(@aéaaUU_l)} T(U) (4.15)

for infinitesimal #. The solution to this is given by ¥ = () where

k _
SU) = — / dV g™ Tr(0,U0,U ")
27'(' M4
LA Tr(U™1dU) A (U™LdU) A (U™HdU)) Aw
127 M5

(4.16)
This is an analogue of the Wess-Zumino-Witten (WZW) action which appears in
the wave functions for three dimensional Chern-Simons theory. In this expression
M?5 is taken to be M* x [0, 1]; we identify one boundary component of M°® (say
A = 1, where ) is the coordinate on [0, 1]) with our space M*, and extend U
into M? in such a way that it tends to some fixed function Uy on the other
component of the boundary (A = 0). Depending on what M? is, the set of
GC-valued functions on M4, i.e. the set of U’s, may fall into distinct homotopy
classes. Then we would need to specify a set of fixed functions Uy on A = 0, one
in each homotopy class, in order to define S(U), and we define the extension of
U into M? so that it tends to the appropriate Uy on A = 0. Note that (4.15) only
gives the behavior of the ¥’s under homotopically trivial gauge transformations.
The behavior of ¥‘s under homotopically non-trivial transformations can involve
additional phase factors (the same for all states), in a way analogous to the
f-vacua of QCD [21].
Before we go on to look at (4.16) as an action, we note that in a more
general case than the one we have considered, when F(2) = ( cannot be solved

in terms of a globally defined function U, but rather we have A; = —0,UU !
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where U is only locally defined, we still expect a factor of the form e5(V) in
the wave functions, where S is now some refined notion of the functional (4.16)
(to construct this we could exploit, for example, [22], where it is shown how to
construct the usual two dimensional WZW functional for a Riemann surface with
boundary). In the general case, the gauge invariance condition will not determine
a unique wave function either; the residual freedom has to do with the degrees
of freedom of the reduced phase space or moduli. The quantization of the latter
will complete the identification of the wave functions. We will not consider these
issues here (apart from some comments at the end of this section), but content
ourselves with some discussion of the functional (4.16) as an action.

(4.16) clearly can be used as an action for a field theory on any Kéhler

manifold M*. The action satisfies a Polyakov-Wiegmann type formula

S(U1U2):S(Ul)—l—S(UQ)—l—F(Ul,UQ) (4.17(1)
k - _ _
DU, T) = — / VT (U7 0,0 (002U ) (4.17b)

By use of this formula we see that the normalization integral in (4.13) will involve
eS(7), From (4.17) it is clear that the variational equation for S(.J) is equation
(4.5). Thus we may think of S(J) as an action for anti-self-dual gauge theory
in the J-formulation®, something that has been sought in the past [23]. Note

that if we choose any parametrization for the group G, the action (4.16) can be

* J in equation (4.5), of course, is not globally defined, but on the intersection
of patches we have J, = gququq where ¢, is holomorphic. From (4.17b) we
see that S(U) is unaffected by multiplication on the left(right) by antiholomor-

phic(holomorphic) matrices. Thus S(J) can be defined for all instanton numbers.
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expressed as an integral over M* [24]; so for instance we can obtain Pohlmeyer’s
action [25] for Yang’s equations [26].

Equation (4.17) shows that the transformations U — hU, U — Uh, where
h is antiholomorphic and & is holomorphic, are gauge symmetries of the action
(4.16). (Obviously such symmetries also exist for S(J); this has been noticed
before at the level of the equations of motion.) In the case of the usual WZW
action, these are, of course, the Kac-Moody symmetries. One can then consider
a Hamiltonian quantization using the holomorphic coordinate z as the time coor-
dinate [24]. An analogous quantization can be carried out in our case, using, say,
z1 as the time variable (of course, this procedure is only meaningful for four man-
ifolds for which one can define a time coordinate consistently, e.g. M* = X x R?,
where ¥ is a Riemann surface). The symplectic 2-form, on the space G® of

G-valued functions of 29, Z1, Z5, given by (4.17) is then
. k _
0B = o / d*zdzs det(g) g™ Tr(£0a€ + 26€(0,U)U ) (4.18)

where ¢ = SUU! is a 1-form on G, and we suppress the wedge product

between forms on G(®). The basic current density of interest is

I= % det(g)g™ (0zU)U 1 (4.19)

The Poisson bracket algebra of these quantities is determined from (4.18) to be

[I%(22, 21, Z2), 19 (25, 2}, )] = f9*T* (29, 21, 22)0®) (z—z’)—% det(g)g* 926 (z—2")5%
(4.20)

The antiholomorphic symmetries U — hU are generated by Q(z1, 22) = [ dzo1.

The algebra of @’s is obtained from (4.20) as

[Q'(2), @7 ()] = f7*Q*(2)6(z - ') - g(WC(Z, Z) (4.21a)
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C(5,7) - / dzs det(g)g™ 0,62 (5 — 7) (4.21h)

This algebra is obviously similar to the Kac-Moody algebra. However it is very
limited in its utility in solving the theory defined by (4.16); this is because, unlike
its two dimensional analogue, the solution space of equation (4.5) is not given
just by some finite dimensional space of solutions, up to multiplication on the

left and right by antiholomorphic and holomorphic matrices respectively.

Finally in this section, we note that the quantization of the reduced phase
space can be carried out in a relatively straightforward way by calculating €2 on a
specific instanton moduli space. The Hilbert space will be characterized by k and
by ¢, the instanton number. As mentioned in section 2, the complex dimension
of the moduli space (on a suitable manifold) is 4¢ — 1dimG(x + 7); furthermore
the moduli space has finite volume, for compact M*. Thus the number of states
(dimension of the Hilbert space) will be finite. For noncompact M* this is not

the case.

It would be interesting to provide a specific example of the reduced phase
space quantization, but as far as we know, no one has succeeded in writing down
all anti-self-dual instantons for any compact Kéahler manifold, for any value of ¢
for which instantons are known to exist, even for G = SU(2), which is the only
case we will consider in this paragraph. For the case of CP?, where all self-dual
1-instantons are known [27], there are no anti-self-dual 1-instantons [28], and the
complex dimension of the anti-self-dual g-instanton moduli space for ¢ > 2 is
4q — 3. By virtue of Donaldson’s theorem relating moduli spaces of instantons
and moduli spaces of holomorphic vector bundles, we can identify at least the

topology of the 2-instanton moduli space, which must be isomorphic [17] to the



56

complement in CP? of the hypersurface
202122 + 2232425 — zozg — 222% — zlzi =0 (4.22)

Here z, ..., z5 are homogeneous coordinates for CP°. For the case of the 4-
torus (S')*, some anti-self-dual 1-instantons are known [29], and the complex
dimension of the ¢-instanton moduli space is 4¢q. The 1l-instanton moduli space
is conjectured to be isomporphic to the product of a 4-torus and a K3 surface
[30]; if this is true, finding all 1-instantons on the torus would provide us with a
Kahler structure on a K3 surface. The closest we can get, for now, to an explicit
calculation, is to consider the evaluation of €2 for the subset of solutions of the R*
anti-self-dual equations that are S* g-instantons. The real dimensions of these
moduli spaces are well-known to be 8¢ — 3, which is odd, so {2 is degenerate
(which is not in contradiction with anything we have said). The evaluation for
l-instantons can be found in [1]; since we have shown above that  can be
calculated as a sum of surface terms, we suspect it is possible to compute €2 for

q > 1 explicitly, but have not, as of yet, succeeded in doing this.

5. Analysis on R*

R* is an interesting example of M*, since as mentioned in the introduction,
the study of instantons on R* is relevant to the study of integrable systems. We
shall look at reductions to integrable systems shortly. Before this, however, we
explian how some of the general analysis of KCST can be carried farther in the
special case M*=R*.

Consider the (classical) symplectic reduction of A by E(y) and G(6). Equa-

tion (2.7) now has solutions, or, equivalently, we can find Lie algebra valued
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O-forms and (2,0) forms ¢ and ¢ such that

The flow generated by E(y) for such ¢ will generate new instanton solutions

from old. Note that equation (5.1) implies

*V * Vo =0
(5.2)
*V %« Vo =0

Thus both ¢ and o satisy the covariant Laplace equation. On R* we have a
covariantly constant (2,0) tensor €up, and one can write @q., = feqp; f and o
satisfy the same equation. So we might try choosing f to be a multiple of o, i.e.

we might look for solutions of (5.1) with
Pab = FAT€qp (5.3)

where ) is a complex constant. (For a general hyperkihler manifold M* we might
look for solutions of (5.1) with ¢ = Aow™, in the notation of section 2.) From

the definition of VT in equation (4.7) we see that
JV =U e U 1 —iU toU (5.4)
Using (5.3),(5.4) we can rewrite (4.8)
J 10, — J' 10,0 = —\gPea02(J1T") (5.5)

This is exactly the form of the inifinitesimal Backlund transformations and the
associated infinite dimensional symmetry of the ASD equations on R* [31]. We

see these are indeed generated as canonical transformations by E(¢). One may
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regard equation (4.7) as giving the analogue of the Backlund transformation on
a general Kihler manifold M*.

Equation (5.2a) is of course the same as (2.7); it is the variational equation
obtained by varying ||V¢||?, the functional defined in (2.8). It is clear that the
only way we can have a solution to (5.2a) with V¢ nonvanishing, is to have a

nonzero surface integral of the form

/6M4 Tr(p A*Vp) (5.6)

(here @ is the hermitean conjugate of ). The asymptotic behavior of J~1J’ on
R* will thus be non-trivial.

We now turn to the consideration of reductions of the ASD equations on
R* that give rise to integrable systems. In [9] Mason and Sparling showed that
in a certain reduction to two dimensions, the SL(2,C) ASD equations yielded
both the KdV and non-linear Schrédinger (NLS) equations, and these were (up
to gauge transformations) essentially the only reductions of this kind. In [10],
Bakas and Depireux, realised that the Mason-Sparling reduction to KdV could
be gauge transformed into a particularly simple form, and by taking an ansatz of
this form for larger gauge groups, found many more integrable equations arising
as dimensional reductions of the ASD equations. In the context of this paper, it
would be appropriate to fully realise these reductions in a symplectic framework,
but we do not do this here. We shall, however, reconsider these reductions with
a particular insight from our work. In [9],[10] it is apparent that the equations
F©2) =0 and F Aw = 0 play a different role from the equation F(*:0) = 0. This
distinction is natural, of course, in our symplectic framework, and furthermore,

from our viewpoint it is more natural to gauge fix after imposing F(*-2) = 0 and
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FAw = 0 (these are moment maps in our presentation). Following this procedure,
at least partially, we show that the Bakas-Depireux ansatze are actually gauge
choices; this increases the significance of their results substantially.

We introduce complex coordinates w, z on R*. We dimensionally reduce by
restriciting to potentials that in some gauge are independent of w. We clearly
still have the freedom to do gauge transformations that are independent of w,

under which we have

Ap — uAgu™? (5.7)

where u(w, z, ) is the gauge transformation matrix. Exploiting this freedom, we
can put Ag into a canonical form. For G = SL(N, C), the possible canonical
forms are just the possible Jordan normal forms for a traceless N x N matrix

function of the variables w, z, z. For SL(2, C) we have two possible forms

Aw:((l) 8) or /<;<(1) _01) (5.8)

and for SL(3,C) we have four possible forms
0 0 O 0 0 O k 0 0 k 0 0
Az=(1 0 0,1 O O],|1 ~ O or 0 A 0
0 0 O 0 1 0 0 0 -2k 0 0 —k—2A

Here &, A are arbitrary functions of w, z, z. Each canonical form gives rise to a
different type of reduction: the two SL(2,C) choices give KdV and NLS type
equations, as found in [9]; equations based on the first two SL(3,C) choices
are considered in [10]. Each canonical form also has associated with it a set of

residual gauge transformations u, which leave it invariant; for the first SL(2, C)

w= (i (1)) (5.10)

form we can take
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for some function v of w, z,z. Thus for each reduction we will obtain a whole
gauge equivalence class of integrable systems, and this is the notion of gauge
equivalence described in [32].

To proceed further let us look at a specific example; we will look at the first
SL(2,C) form, i.e. the KdV type reduction, but it is straightforward to work

out any particular example. We parametrize the remaining potentials suitably

Aw=<‘c’ _ba) AZ:@ _ed) A;:(? _hg) (5.11)

All the entries in these matrices are functions of w, z, Z. We will not exploit the
remaining gauge freedom at this juncture. Instead, we impose Fgz = Fyg+F.z =
0 in line with our comments above. The potentials then must take the form
A, — ((Jz - fzc— 2dj)/2 L —dzfz_ze2dj)/2) A, = (}l _ed) A = (3 8)
(5.12)
where ez = 0. We see we are left with unfixed functions ¢, d, e, f, j withe; = 0. e
is unchanged by the residual gauge transformations, and it actually emerges that
any choice of e will give us an integrable system. The choice e = 0 gives a trivial
system, so we will look at e = 1. Having fixed e, we have four functions left, one
of which corresponds to the gauge degree of freedom ~ of equation (5.10), and
the remaining three of which will be “almost fixed” by imposing Fy,, = 0 (these

equations do not fix e in any way). Under gauge transformation with u given by

(5.10), we find
c—c—Yw + 72 _f2_2dj)+72(j_d2)

d—d—v
(5.13)
f—f+2vd—~" -,

J—=7—"-
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We consider three possible gauge choices, 5 = 0 (Mason-Sparling gauge), d = 0
(Bakas-Depireux gauge) and f = 0 (MKdV gauge). In these three gauges we
obtain, respectively, the following equations by imposing Fy,, = 0 (and making
suitable choices of integratiom coefficients):
(d)w = [§02 +2(d2) + (d2).0; '](d2)z

fu=1302 = f = 5£.07'1f (5.14)

dy = [202 — d* — d,0; 'd]d;
These are three dimensional versions [33] of the KAV, KdV and MKdV equations
respectively. Further reduction to two dimensions by imposing 9, = 9;, as in [9]
[10], yields the standard equations. For gauge group SL(N, C), for any N, in the
case when Ag is chosen in the canonical form with exactly one non-zero entry,
not on the leading diagonal, it is straightforward to define the gauge choice to
reproduce the ansétze in [10]. We note that, in addition to clarifying some issues
of gauge freedom in reductions of the ASD equations to integrable systems, we

also inherit from our work on the ASD equations a full understanding of the

hidden symmetries of the integrable systems we obtain (see also [34]).
6. Concluding Remarks

The emergence of the anti-self-dual equations in the symplectic reduction of
the space of gauge potentials A by F(*2) and F Aw is perhaps the most important
feature of Kéhler-Chern-Simons theory. The algebra (3.10),(3.13),(3.16) of the
gauge potentials and the generators F(©:2) F(2:0) F Aw plays a crucial role in this
picture. Within this framework, the previously known “hidden symmetries” of

the instanton equations, related to Backlund transformations, can be understood
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as canonical transformations. Our discussion in section 5 shows that reduction
of A by F(2) and F A w is also the most appropriate setting for the gauge and
dimensional reductions of ASD gauge fields leading to two-dimensional integrable
systems. In this context we expect the study of analogous reductions and subal-
gebras of (3.10),(3.13),(3.16) to shed light on how Virasoro and Wy symmetries
emerge, and the role they play, in two-dimensional integrable systems.

As an obvious generalization of what we have presented here, we can consider
a KCST theory on a Kihler manifold of arbitrary even (real) dimension M?2¢,

d > 2. The natural action to look at is

k —
S:/ [——TT(A/\dA—I—%A/\A/\A)/\wd1+TT((‘I>-|-‘1))/\.7:)
M2ix R 4
(6.1)
where now ® and ® are, respectively, (d,d — 2) and (d — 2,d) forms on M??, as

well as being 1-forms on R. The equations of motion (for suitable M?29) are just
FEO = p0:2) — (6.2a)

Wit AF =0 (6.2b)

On R??, these equations were studied, amongst others, as possible candidates
for the appropriate higher dimensional extension of the ASD equations [35]. The
main reason we have focused our attention in this paper on the d = 2 case, is
that for d > 2 it seems these equations of motion are not integrable on R?2<.
They cannot be written as consistency conditions for the integrability of a set
of linear equations [36], and in the J-formulation (obtained by solving (6.2a)
to write Az = —0,UU~Y, A, = (U")719,(UT), in which case (6.2b) becomes

%03 (J710,J) = 0, where J = UTU), the equation of motion fails the Painlevé
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test [37]. Nevertheless, the set of solutions to (6.2) on an arbitrary Kahler man-
ifold M?? might well merit study; we are not aware of any work on the re-
lationship of the moduli spaces of solutions to (6.2) and the moduli spaces of
holomorphic vector bundles on M?24. In [9] it is shown that higher order equa-
tions in the KdV hierarchy can be obtained from equations (6.2) on R2¢, for
appropriate choices of d. Also we note that much of what we have said in this
paper goes through for the action (6.1); particularly, in the procedure of quanti-
zation we find the obvious extension to higher dimensions of the WZW functional
(4.16).

Certain remarks in the last paragraph also may help clarify the distinction
between 3d CST and KCST. The equations (6.2) on R? are completely solvable,
but on R?* they are only “integrable”. The notion of integrability, for partial
differential equations, is a (currently) non-precise notion, which reflects a degree
of solvability, falling just short of the notion of complete solvability, which we
take to mean the ability to write down explicitly the most general solution. This
reinforces to us the possibility that KCST is the appropriate arena to discuss the
host of phenomena now known that are generalizations, in one sense or another,

of conformal field theory.
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III. The Self-Dual Yang-Mills Equations

as a Master Integrable System

1. Introduction

The self-dual Yang-Mills (SDYM) equations first arose in physics in the
context of the semiclassical approximation to Yang-Mills theories [1] in Euclidean
space; solutions of the first order SDYM equations are also solutions of the full
second order Yang-Mills equations, and in fact provide all the local minima of the
Yang-Mills action [2]. Thus, determining all solutions to the SDYM equations
was considered an important problem, which found a solution in the ADHM
construction [3]. The combined efforts of mathematicians and physicists yielded
a substantial body of knowledge about the SDYM equations and their solutions;
amongst the findings [4] were an infinite dimensional symmetry group of the
space of solutions, an infinite number of “conserved currents” for the equations,
and the fact that the equations could be viewed as consistency conditions for
a set of linear equations. By virtue of these results, the SDYM equations were
afforded the status of an “integrable system”; it was probably the first known

four-dimensional integrable system, and remains until today one of few [5].

Despite our relatively good understanding of the SDYM equations, to date
little reliable information has been obtained from the semiclassical approxima-
tion to Yang-Mills theories, and its validity remains in question. The SDYM

equations, however, have produced very useful results in mathematics, in the
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study of the topology of 4-manifolds. The SDYM equations can be formulated
on an arbitrary Riemannian 4-manifold, and the equations contain explicit met-
ric dependence. The space of solutions (of fixed instanton number) of the SDYM
equations depends on the metric, but the topology of the space of solutions should,
intuitively, be insensitive to slight variations in the metric, and therefore it ap-
pears that we can study the topology of 4-manifolds by studying the topology of
the “moduli spaces” (i.e. spaces of solutions of the SDYM equations of fixed in-
stanton number). This approach has been remarkably fruitful, and the interested

reader is referred to [6].

In physics, the SDYM equations (specifically on R* with the flat metric)
have recently become of interest again for an entirely different reason. As men-
tioned above, the SDYM equations are one of the few known examples of four-
dimensional integrable systems (moreover, the SDYM equations can of course be
formulated for arbitrary gauge group, so they actually provide a large number
of four-dimensional integrable systems). Ward [7] has conjectured that all two-
dimensional integrable systems are contained in the SDYM equations, and can
be obtained from them by suitable reduction (there also exist 3-dimensional inte-
grable systems, such as the Kadomtsev-Petviashvili (KP) and Davey-Stewartson
(DS) equations, but for reasons we shall present below these are not thought to be
contained in the SDYM equations for any finite dimensional gauge group). Sub-
stantial evidence for Ward’s conjecture has been found by two groups, Mason and
Sparling (MS) [8] and Bakas and Depireux (BD) [9]. MS systematically consid-
ered reduction of the SL(2, C) SDYM equations to two dimensions by imposing

one null and one timelike symmetry. They found that there were essentially two
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such reductions, which yielded the Korteweg-De Vries equation (KdV) and the
non-linear Schrédinger equation (NLS). BD considered reductions of the SDYM
equations to two dimensions by imposing either one null and one timelike sym-
metry or two null symmetries; by taking suitable ansdtze for the gauge fields
they found a number of equations in the generalized KdV hierarchies, and also
some new equations, which they dubbed “fractional KdV” type equations. All

this will be presented in detail below.

The main purpose of this paper is to give a method of systematic reduction
of the SDYM equations by imposing just one null symmetry (clearly all of the
equations of MS and BD will be contained in the equations we find). A brief pre-
sentation of the scheme, and some results for gauge group SL(2, C), has already
been given in [10], of which this paper is essentially a more detailed version,
with a number of new results. It will become apparent that the BD ansétze for
reduction of the SDYM equations are actually gauge choices for certain types of

reduction, substantially increasing the importance of their results.

The structure of this paper is as follows. In section 2 we give all the necessary
background material on the SDYM equations, and also on the generalized KdV
hierarchies and the Drinfeld-Sokolov [11] notion of gauge equivalence for the KdV
hierarchies. In section 3 we explain our reduction method, and work out the case
of gauge group SL(2,C). We obtain KdV, MKdV, Gardner KdV, NLS, Sine-
Gordon and Liouville equations, and generalizations. In section 4 we present
some general facts about the reduction for gauge group SL(N, C) for arbitrary
N. 1In section 5 we look at SL(3,C) in detail. In section 6, we will make

some concluding remarks, and briefly discuss different possible approaches to
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the problem of obtaining the hierarchies of integrable two-dimensional equations

from the SDYM equations.

Before leaving the introduction, it is appropriate to make a few comments
about the relevance of integrable systems in two-dimensional physics, or, more
specifically, in conformal field theory and two-dimensional gravity. Integrable
systems are related to conformal field theories in two, apparently different ways.
First, certain perturbations of conformal field theories away from criticality give
rise to “integrable field theories” (i.e. field theories where the equations of mo-
tion are exactly the two-dimensional integrable systems we will be seeing) [12].
Second, the Poisson bracket algebras associated with two-dimensional integrable
systems are classical analogues of the Virasoro algebra and the Wy algebras
and their extensions, the operator algebras of conformal field theory [13]. The
relation of integrable systems with two-dimensional (quantum) gravity is also
twofold: first, two-dimensional gravity is described by Liouville field theory [14],
and second, the partition functions of topological gravity theories (or of the
equivalent matrix models) are given in terms of certain “tau functions” which
are solutions of certain hierarchies of integrable equations [15]. While all these
facts are currently unrelated, it seems it may be useful to have a general frame-
work of integrable systems within which to understand them, particularly since
this framework, the SDYM equations, is quite possibly of relevance in physical

four-dimensional theories.

Throughout this paper we will focus solely on the process of systematically
reducing the SDYM equations to obtain integrable systems. In light of the com-

ments of the previous paragraph, it is also very important to study the Poisson
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bracket algebras of the integrable systems we obtain, but we leave this for later
consideration. BD have studied the algebra associated with the simplest frac-
tional KAV equation in [9], and found it is the W2 algebra of Polyakov and Ber-
shadsky [16]. We will see that there exists a certain way to reduce the SL(N, C)
SDYM equations for any partition of N into integers: the partition 1V gives a
trivial system, the partition 2.1V~2 gives the integrable system associated with
the Wy algebra, and the partition 3 for N = 3 gives the integrable system asso-
ciated with the W3 algebra. This suggests that possibly there are other W-type
algebras that have as of yet not been found for N > 4 (unless of course there
are coincidences between the algebras associated with the integrable systems we
find). It seems there may well be a relation between the new integrable systems

we predict and some recent work of de Groot, Hollowood and Miramontes [17].

2. Background Material

The self-dual Yang-Mills equations are usually written in the form

Fio = F3y
Fis = Fi (2.1)
Fiy = Fa3

Here the fundamental fields are Lie algebra valued gauge fields A, n = 1,2, 3,4,
and the “field strengths” are defined by F,, = 0,4, — 0, A, + [A,, A)]. The
equations (2.1) are invariant under gauge transformations

A, — A, = uA,u™t — O uu! (2.2)

where u is a gauge group valued function; under this Fj,, — F,’w = uF,,u"t.



71
Yang [18] observed that by defining complex coordinates suitably (via, for in-
stance, w = x! +iz?, z = 2® —iz?), and defining new gauge fields appropriately

(via A,dz + Apdw + AzdzZ + Apdw = A,dx*), equations (2.1) can be written

Fop=0 (2.3a)
Fzg + Fww =0 (230)

(here F,,, = 0,A, — 0w A, + [A,, Ay] etc.). We will work throughout with the
equations in this form, using complex coordinates. Most of the time we will
not be considering real gauge groups, and therefore we will treat z,z, w,w as
independent.

There are two useful simplifications of the system (2.3). We can, following

[18], solve the equations (2.3a),(2.3b) to write

Ay = —0,DD! A, =-0,DD7}
(2.4)
Aw == —awEE_l Ag = —82EE_1

where D, E are some gauge group valued functions (which are related if we impose
some reality condition on the potentials). Under gauge transformations we find
D — uD, F — uF; note that the gauge potentials are unchanged if we multiply
D (E) on the right by a antiholomorphic (holomorphic) gauge group valued
function, so there is some freedom of choice in D and E. Substituting equations
(2.4) back into (2.3c) we find that solving the SDYM equations is essentially

equivalent to solving the equation

0:(J7L0,T) 4+ 0 (J L0, J) =0 (2.5)
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where J = D7!E. J is clearly gauge invariant. A solution of equations (2.3)
defines a solution of (2.5) up to multiplication on the left by an antiholomorphic
gauge group valued function and on the right by a holomorphic gauge group val-
ued function; a solution of (2.5) determines a gauge equivalence class of solutions
of (2.3) (the gauge degree of freedom arises from the freedom we have in choosing
D, E to satisfy J = D7'E). Equation (2.5) is known as the “J-formulation” of

the SDYM equations. We should mention that equation (2.5) can be rewritten
0,(JOzT ™) + 0y (JOp 1) = 0 (2.6)

To obtain the other simplified version of the system (2.3) we observe that
equation (2.3b) allows us to choose a gauge in which A; = Az = 0. Equation

(2.3¢), in this gauge, reads

which we can solve, to give
Az = 8@N
(2.8)
Au) == —85N

for some Lie algebra valued function N. Substituting in the remaining equation

(2.3a) we find we need
0Oy N + 0,0:N + [0pN,0:N] =0 (2.9)
Writing M = 05N (also a Lie algebra valued function), we can write this
OwM = —(05"0,0:M + [M, 0,0 M]) (2.10)
(understanding the inverse of Oz in some suitable fashion), or equivalently

M, = —LM, (2.11a)
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L=05'0,+[M 05" ] (2.11b)

(here suffices denote derivatives). This formulation is due to Bruschi, Levi and
Ragnisco [19], who also pointed out that the operator £ defined in (2.11b) is
a recursion operator [20] for the equation (2.11a) (and in fact for a large class
of equations, including the equations M,, = L"Mz, n = 2,3,4,... which can be
viewed as “higher order” SDYM equations; we shall say more of this later). The
integrability of the SDYM equations (in the sense of the existence of an infinite
number of conserved quantities) is immediate once this recursion operator has
been identified. We note that the SDYM equations in the form (2.11) can be
regarded as an integrable evolution equation with w identified as the “time”.
To obtain local equations (i.e. not involving integration operators) we need to
reduce the system by specifying the form of the w dependence. All this lends some
(admittedly a posteriori) motivation for the approach we will take to reduction
of the SDYM equations; we shall consider solutions of the SDYM with potentials
independent of w, and we shall obtain integrable evolution equations by solving
equations (2.3b) and (2.3c) first, and then imposing (2.3a). We will reiterate this
later, with examples.

Having said that the integrability of the SDYM equations can be seen with
ease in what we will call the “M-formulation” (2.11), it is interesting to see the
emergence of an infinite number of conserved quantities for the SDYM equations
in J-formulation (2.5), for which we will give an argument which is a slightly

modified version of that given by Chau* [4]. We will construct, by an inductive

* We deviate from Chau’s argument in the form of some covariant derivatives

we will shortly define; Chau’s argument is perfectly valid, but the conserved



74

procedure, an infinite number of “currents” Vuﬁ,"), Vg(n), n = 1,2,3,... and an

infinite number of quantities €™, n =0, 1,2, ... such that

DV + 0.V =0 (2.12a)
Ve = Vg b
(2.12b)
Vz(n) — ng(n_l)
Here we have defined some covariant derivatives
Vw:aw+[J8@J_1, ]
(2.13)

Ve=08:+[Jo:07", |

Clearly once we have proved the existence of the currents, the quantities
Q™ (w,z) = / dzv, (2.14)

are an infinite number of quantities independent of w (which we have identified

as time). We start the inductive proof by taking

€0 =p (2.15a)

VY = [J0uJ 1, )
(2.15b)
ViV =[J0:0

where p is an arbitrary constant element in the Lie algebra. These satisfy

(2.12) by virtue of equation (2.6). For the inductive step, suppose we are given

Vuﬁf”, Vg(p), ¢P=1) gatisfying (2.12). Then we can define ¢(P) via

Vi = 0.¢W)
(2.16)
Ve — _g, e

quantities she constructs do not live in the Lie algebra of the gauge group, but
rather in its universal enveloping algebra. Our argument will give conserved

quantities in the Lie algebra.
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exploiting (2.12a), and we define Vlgpﬂ)’ Vi(pﬂ) by

yrt) _ g )
(2.17)
v g e®)

We need to check that VP VP satisfy (2.12a), which is a straightfor-
ward calculation, using (2.6) again, and the fact [Vg, Vz] = 0. Thus in the J-
formulation we also can see the infinite number of conserved quantities. Dolan,
in [4], gives a construction of the infinite number of conserved quantities directly
for equations (2.3) without reference to any simplified formulation of the SDYM
equations. This is actually a straightforward extension of the proof above, which
is a “gauge-fixed” version of Dolan’s proof, in the gauge A,, = A, = 0 (in our
proof above we use covariant derivatives V 5, Vz and ordinary partial derivatives
Oy, 0,; in a general gauge it is necessary to repeat the analysis above with all
derivatives covariant).

When we reduce the SDYM equations the conserved quantities above will
furnish an infinite number of conserved quantities for the reduced equations (in
general though, it seems to be a tricky issue to check that they are the same con-
served quantities as those more usually constructed directly for the integrable
systems we obtain; we will not consider this issue in this paper). Another struc-
ture that reduced systems will inherit from the SDYM equations is a Lax pair
formulation [21]. The equations (2.3) can be viewed as the consistency conditions
for the linear equations

(Vi + AV =0

(2.18)
(V.= AVyg)y =0

Here V,, = 0, + [A,, |, ¢ is a Lie algebra valued function,\ is the “spectral

parameter”, i.e. some complex parameter, and we wish (2.18) to be consistent
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for all A. Equivalently, equations (2.3) can be compactly written
[Vw+AV:, V, —AVy] =0 (2.19)

(expanding order by order in A gives equations (2.3)). On reduction, by taking
some suitable form for the gauge potentials, this will yield immediately a Lax
pair formulation for the reduced integrable system. From (2.19) it is also possible
to understand, at an intuitive level, the origin of the integrability of the SDYM
equations. Equations (2.19) are invariant under gauge transformations (2.2) even
with u depending on A, provided the combinations A,,+AA;, A,— Ay transform
into linear expressions of A. A little calculation shows that this is a substantially
larger freedom than the freedom of gauge transformations with u independent of
A. Also from (2.19) we can see why we do not expect to obtain the KP or DS
equations from SDYM: the KP and DS equations are believed not to have a Lax
pair formulation of the type (2.19).

This completes the background material we need on the SDYM equations.
For completeness we also define, and describe the notion of gauge equivalence
of, the generalized KdV hierarchies, the integrable systems we will be trying to
obtain and to generalize in this paper. The rth equation in the N-KdV hierarchy

can be written in the form
Ly =[(L7M) 4, L] (2.20)

Here L is an Nth order “monic” [22] differential operator in the variable z with

coefficients that are functions of w and z, i.e.

L =0 +us(w, 2)0N 2 +uz(w, 2)0N 3 +.. . +uy_1(w,2)0, +un(w,z) (2.21)
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The Nth root of L is defined as a “psuedodifferential operator”; to compute it

we suppose it takes the form
LYN =8, + v 107 40 9072+ ... (2.22)

where v_1,v_o, ... are some functions of w, z; we raise this to the Nth power and
compare with L term by term. To determine the form of the equation (2.20)
it is only necessary to know some finite number of terms in L'/, as by the
expression (L™/N), in (2.20) we mean the part of the rth power of L'/N that
involves non-negative powers of d,. Usually simpler than this procedure is to

just write

(LMY 4 = 00 + we0 > + w30 *+... +w, (2.23)

and to substitute into (2.20) and determine the functions wsy, ws, ...w, by requir-
ing that the right hand side of (2.20) is a differential operator of order N — 2,
which it must be for consistency of the equation. This determines the functions
wa, W3, ..., w,. For more details on this construction see for instance [22]. Note
that the equation (2.20) is trivial when r is a multiple of N, and when r =1 just
gives (a number of copies of) the equation wu,, = u,.

More relevant, for us, is another presentation of the KAV hierarchies: the

equation (2.20) can, it turns out, also be written in the form

Ly—A,+[AL=0 (2.24)
where
0 1 0 0 0 0
0 0 1 0 0 0
N 0 0 0 1 0
L= : : (2.25)
0 0 0 0 0 1

uy +A uUn—1 UN—2 UN—3 ... Uy O
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and A is an N x N matrix, the dependence of which upon \ determines r (apart
from this input, A is fixed by requiring the consistency of (2.24)). Let us consider

the simplest example: for N = 2, we have

- (,0))

A= (O‘ b ) (2.27)

vy o —«

and we take

Using equation (2.24) we eliminate «,y to get

If we now specify the A dependence of 3 (ug is independent of \), by taking
8 = Z;:o BpAP, where the functions 3, are independent of )\, and we take

Bs =1 (from (2.8) it has to satisfy (5s), = 0), then we find that us must satisfy
(ug)w = (307 — uz — §(u2),0; )% (uz), (2.29)

This is the » = 2s + 1 equation in the standard (N = 2) KdV hierarchy (and
despite appearances does not involve nonlocal operators): for s =1 we have the

standard KdV equation

(u2)w = %(UQ)ZZZ - %UQ(UQ)Z (230)

Note that the forms of L we have taken in (2.24) to obtain the KdV equations
are not unique. One of the first derivations of the N = 2 KdV hierarchy in this

fashion is due to Ablowitz, Kaup, Newell and Segur [23], who used

L= (;2 g) (2.31)



79

where ¢, ¢2 are some functions independent of A, to obtain not only the N = 2

KdV hierarchy, but also a number of other integrable systems.

Before we go on to look at the notion of gauge equivalence for the KdV
hierarchies, we are now in a position to appreciate a further piece of motivation for
trying to find integrable systems by reductions of the SDYM equations. Equation
(2.24) has the form of a zero-curvature equation, and it is known that certainly
most, if not all, two-dimensional integrable systems arise from a zero-curvature
equation. Clearly, every equation we will obtain from the SDYM equations can
be also obtained from a single zero-curvature equation: this is just saying that
every solution of the SDYM equations satisfies (2.3a). So why do we need to
look at the SDYM equations as opposed to focusing our attention purely on a
single zero-curvature equation? The problem with the latter approach is that
there is no method to systematically generate suitable ansitze for the matrix L.
In the SDYM approach we will see matrices like (2.25) appearing naturally. In
the next paragraph we will see that in fact it is not necessary, because of gauge
equivalence, to produce ansétze as specific as (2.25), but it still is necessary to
give L by hand a specific dependence on the spectral parameter, at least to obtain
hierarchies. In SDYM reduction, if we reduce equations (2.3) by specifying w
dependence, we will have a system that depends on three coordinates w, z, z. It
might have been hoped that z would play the role of the spectral parameter; this
is not actually the case, but as we shall see the z coordinate does give us some

information which renders the need for a spectral parameter almost superfluous.

The notion of gauge equivalence, for the KdV hierarchies, is attributed in

[11] to Mikhailov. The essential observation is that one can replace the matrix
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L of (2.25) by a more general form

01 0 0 0 0
0 010 0 0
., looo 1 ...00
L=L+1. . . . . (2.32)
0 00 0 ... 01
A0 00 ... 0O

where L is an arbitrary N x N traceless lower triangular matrix (with entries
functions independent of A). L’ has $N(N + 1) — 1 degrees of freedom; but the
form of L and the equation (2.24) are invariant under gauge transformations of
the form . .
L—ST'LS+5719,5
(2.33)
A— STtAS+5710,8

where S is a lower triangular matrix with 1’s on the leading diagonal (i.e. an
element of the Borel subgroup of the gauge group). Thus we have a %N (N -1)
parameter gauge invariance; the real number of free functions in L is %N (N +
1)—1—1N(N—1) = N—1. The form (2.25) is just a gauge fixing; another useful
gauge fixing is to take L’ in (2.32) to be diagonal. This gauge choice gives rise
to the “modified KdV (MKdV) hierarchies”. Solutions of the KdV hierarchies
are related to those of the MKdV hierarchies by gauge transformation relations,
known as Miura maps (in general these maps show how to obtain solutions of
the KdV hierarchies from those of the MKdV hierarchies, but not vice-versa). In
reducing the SDYM equations one of our main goals will be to reproduce, and

generalize, this picture of gauge equivalence classes of equations.

3. The Reduction Scheme and the Case of SL(2,C)

As we have already mentioned, we dimensionally reduce the SDYM equa-



81

tions by considering only potentials independent of w. This is a gauge dependent
statement, so more precisely we consider potentials that in some suitable gauge
are independent of w, and we note that we still retain the freedom to make gauge
transformations (2.2) with u independent of w. Under such transformations A

transforms homogeneously, i.e.
A’lD — U_]'Auju (31)

This divides up the set of Az’s into equivalence classes, and we choose one repre-
sentative for each equivalence class. Generically, it seems that each equivalence
class gives rise to a specific two-dimensional integrable system, though at the
moment we only have a very few explicit calculations. There is of course no
guarantee that there exist solutions for Ag’s in every equivalence class, and we
shall see a case where restrictions do arise.

Having chosen a specific Ag, there will still, in general, be some residual
gauge invariance. Our general philosophy will be to avoid further gauge fixing
until after solving at least some of equations (2.3), which as mentioned before
we impose in the order (2.3b), (2.3¢c), (2.3a). To reproduce the Drinfeld-Sokolov
picture we need to arrive at (2.3a) with sufficient gauge invariance intact. The
best way to discuss the reduction scheme further is by specific examples, and we
will study at length in this section the case of SL(2, C).

In the case of SL(2,C) the representative Az’s we need consider are given

AU—):<§) g)m(é _01) (3.2)

where k is an arbitrary function of w, z, 2. In the first case we have a residual

by
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w= (i 8) (3.3)

where v is an arbitrary function of w, z, z. We parametrize the remaining poten-

() ae(f ) (k) el

All the entries in these matrices are functions of w, z,Z. Imposing (2.3b) gives

gauge invariance

tials by

us straight away that ¢ = h = 0. Imposing (2.3¢) gives
e; =0
b=ds;—ej (3.5)
a=3(j— fz — 2dj)
The last two equations of (3.5) (which of course are unaffected by residual gauge
transformations) allow us to eliminate a and b leaving us with the functions
c,d,e, f,7 with e satisfying ez = 0. Ignoring the constrained function e for the
moment, we have four degrees of freedom remaining, one of which is the gauge
degree of freedom, and the other three of which will be constrained by imposing
(2.3a). The gauge transformation rules for ¢, d, e, f, j are
¢ — ¢+ 70z — f2 = 2dj) +7°(j — dz)
d—d—r
e—e (3.6)
f=f+2yd—v" -7,
J—= 7=
Choosing e to be some fixed constant (say 1) we recover a close analogue of the

Drinfeld-Sokolov picture (A, is the analogue of the matrix L we had in section
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2). We could opt to take e to be a parameter, and take the functions d, f to be
independent of e and the others dependent on e, to recover the exact Drinfeld-
Sokolov picture. This is ad hoc, and we will not do it, but will suffice ourselves
with looking at the picture with e fixed to be 1, and we will now discuss different
gauge choices. Note from (3.6) that fixing e does not restrict the residual gauge
invariance.

The “KdV type” gauge choice involves setting d to zero, which we can clearly
do, from (3.6), leaving no further gauge invariance. In this our forms for the gauge

fields reproduce those used in [9]. Equation (2.3a) now yields
25, = f z
c=5(foz —Joz) = Jf (3.7)
Jw=1c.+ f(j. — f2)
Eliminating ¢ using the second of these equations, and using the first of these

equations to rewrite j, in terms of f wherever possible, we find the system

2jz = fi
(3.8)
Jw = %fzzi —ffz—rJ
which we can rewrite compactly as
fw=1[302 = f — 50011 (3.9)

This form is highly reminiscent of (2.11). In fact this is a known equation, a three
dimensional version of the standard KdV equation first studied by Calogero [24].
We can write it in compact notation f,, = R fz, where R denotes the recursion
operator of the KAV equation [20], and once again we point out the resemblance

to (2.11). Although we have not obtained the usual KdV hierarchy, since from
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our equation (3.9) we can read off the KdV recursion operator we essentially
have just the same information. We suspect, by virtue of (2.11), that in general

our reductions will lead us directly to recursion operators.

Two more points should be made before we leave this gauge. First, if we
consider a reduction of (3.9) to two dimensions, we might well opt to impose
uz = 0, in which case (taking 910 = —2) we obtain u,, = u,, the 7 = 1 equation
in the standard KdV hierarchy. In [8] imposing uz = u, was proposed; this gives
us the 7 = 3 equation in the hierarchy. It is no less ad hoc to impose uz = R°u, in
which case (3.9) yields u,, = R*T!u,, the r = 2543 equation in the hierarchy. In
this ad hoc manner the whole hierarchy can be obtained, but it is more correct to
see our reduction procedure as leading logically to the recursion operator which
is the structure behind the entire hierarchy. Second, we note that our reduction
has been systematic apart from the detail of the choice of e. Any choice for e
(satisfying ez = 0) gives an integrable system. The general form of these systems
is not particularly illuminating; the most natural choice for e is probably e = 0,
which gives a trivial system. It is possible to study the general case, but since we
wish to focus on systems that are relevant to two-dimensional physics, we shall
content ourselves with the choice e = 1 (which we shall now carry through to
other gauges too), and we shall make similar choices in later reductions without

comment. It is always possible to work in full generality.

We now look at the “MKdV type” gauge, in which we set f = 0 (and we
still take e = 1). From (3.6) the ability to choose this gauge is predicated on the
existence of a solution to a Riccati equation. Keeping a and b in our calculations

for the moment, we get the following system from imposing (2.3a) and writing
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down the last two equations of (3.5):

dy = a, +c

c, = 2cd

b, = 2(a — bd) (3.10)
Jj. =2(a+ jd)

d:=b+]

We can clearly solve the second of these by imposing ¢ = 0, and we shall do
this. In the “KdV type” gauge we had no arbitrary choices to make after setting
e = 1; here we are making an extra choice, so we expect the relevant gauge
transformation relations to provide us with a solution of (3.9) for every solution
of (3.10) with ¢ = 0 but not vice-versa. It is straightforward, once we have chosen

¢ =0, to eliminate a, b, j from (3.10) to obtain

dy = 302 — d* — d.0; " d|d; (3.11)

This is a generalized version of the MKdV equation, which can be written d,, =
7~%d5 where R is the MKdV recursion operator. Setting dz = 0 (and choosing
8;10 = —1) we obtain d,, = d,, and setting dz = d, we obtain the usual MKdV
equation. Also in this latter case it can be shown that j is related to d by
a Miura map, and satisfies the KdV equation. Before we look at the gauge
transformation relation between (3.9) and (3.11), let us just look at some further
possible reductions of (3.11) obtained taking all functions to be independent of

w. Going back to (3.10) we see we can then make the choice a = 0, and equations
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(3.10) reduce to the system

b, = —2bd
7. = 2j5d (3.12)
dz=b+]

If both b and j are zero this system is trivial. If b is zero and j is nonzero,
we eliminate d to get 0,0;Inj = 2j, the Liouville equation. If j is zero and
b is nonzero, we similarly get 0,0;Ind = —2d. 1If both b and j are nonzero

1 and b satisfying 0,0;Inb =

we can satisfy the equations above with b = j~
—2(b + b 1), or, writing b = ie'*(= j '), z, = —4isinz, the Sine-Gordon
equation. Combining the different results in this paragraph, we observe that
by suitable reduction of (3.10) the function j can be made to satisfy the KdV
equation (in w, z) or a version of the Sine-Gordon equation (in z, Z); this is very
reminiscent of a known relation of the MKdV and Sine-Gordon equations [11].

We can now discuss the gauge transformation between equations (3.9) and
(3.11). Let us consider the gauge transformation (3.6) between the MKdV gauge,
in which f = 0, and the KdV gauge (we will mark quantities in this gauge with
primes ), in which d’ = 0. Straight away we see we need to choose v = d in (3.6),
and we find f' = d® — d,. We deduce that if d satisfies (3.11) then f’ satisfies
(3.9), and this is the Miura map, generalized for the three dimensional equations
(3.9) and (3.11). Note we get a solution of KdV from a solution of MKdV, but
not vice-versa, as we expect from considerations presented above.

There are two more gauges in which we will briefly look at the SDYM re-
duction given by the first choice of Az in (3.2). We can choose j = 0 as a gauge
choice, and this is the gauge used in [8]. Imposing (2.3a) we find (amongst oth-

ers) the equation d,; + 2dd, = 0. If we solve this by setting d, + d? = 0 then we
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find, after some calculation, that we need
(dz)w - [i@f + 2(dz) + (dz)zagl](dz)z (313)

i.e. —2d, satisfies (3.9). We could have predicted that this equation would have
arisen by just looking at the gauge transformation relations (3.6). Finally we
consider the gauge choice f = ed, where € is an arbitrary constant (and the
MKdV gauge is the choice € = 0). The manipulation of the system in this gauge

is a little complicated. It can be shown that
(0, —€e—2d)(c—ea — Le%d;) =0 (3.14)

We make the choice of setting ¢ — ea — ieng to zero. The resulting equation is
then

dyp = [202 —d® — d.0;'d — e(d + 3d.0, ")]d> =0 (3.15)

This is a three dimensional version of the so-called Gardner KdV equation, which

we can obtain from (3.15) by setting d; = d,:

dy = 3d,.., — 3d°d, — 3edd, (3.16)

1
1 2

Examination of the gauge transformation from this gauge to the regular KdV
gauge tells us that if d solves (3.15) then f’ = d? + ed — d, solves (3.9), which
is a generalization of the standard “Gardner map” which relates solutions of the
Gardner KdV (3.16) with solutions of the usual KdV equation (note that again
the map is a one-way map, since in this last gauge we had to make more choices
than in the KdV gauge). The Gardner map is considered of some importance

in the theory of integrable systems, as it can be used to give a simple proof of
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the existence of an infinite number of conserved quantities for the KdV equation
[25]. Generalizations of this are of considerable interest.

We now turn to consider the second possible choice for Ay in (3.2), which
we shall treat in somewhat less detail, having made the general scheme we are
using evident. The case x = 0 is trivial, so we will assume x # 0. The residual

gauge transformations for this choice of Ay have the form

u= (7 01) (3.17)

0 ~
where 7 is a arbitrary function of w, z, 2. We parametrize the remaining poten-
tials again using (3.4). Solving (2.3b) implies that j = h = 0 and k; = 0. Here
we are seeing a restriction on the form of Az for which solutions of the SDYM
equations exist. Solving (2.3c) yields
ez —2eqg — 2bk =0
fz+2fg+2ck =0 (3.18)

gz“—/’iw_di:o

Under gauge transformation we find

d—d—ry

e — ey? (3.19)
f=fr
and the gauge d = 0 suggests itself. We restrict to the case where k is a non-
zero constant, and then from equation (3.18) we see we can choose g = 0, and
eliminate b, ¢ in terms of e, f. (2.3a) now yields the system
2Key = €y5 — 2ae
~%fy = for —2af (3.20)

a, = (ef)i
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where we have written a = 2ka. A priori the functions e, f,a are all complex,
but we can consistently take f to be plus or minus the complex conjugate of e
if Kk is pure imaginary. Then, setting x = ik, we can write the system in the
compact form

2key, = (—i0, £ 4ied] ' Re(e*-))e: (3.21)

i.e. 2ke,, = R'es, where R’ is the recursion operator for the NLS equation, which
can be recovered from (3.21) by the further reduction e; = e,. Again, note the
similarity in form of (3.21) to (2.11a).

There are other interesting reductions of (3.20). If we consider functions
that are independent of w we can consistently take e = f in (3.20), and obtain
the system

e,z = 2ae

(3.22)

a, = 2ee;

We can use the second of these equations to get an expression for ez in terms of

e, a, and substituting this in the first equation we find we need
a,e, — ed,, + 4ae® = 0 (3.23)

This is a Bernoulli equation for e which we can solve in the usual manner to

obtain
~9

2 a,
= —""— 3.24
4a? + \(Z) (3:24)

e

Here A\(Z) is an arbitrary function of z arising as the integration constant. Making

the substitution

a = 2i\"?cosy) (3.25)
we have
e? = —1y? (3.26)



90

and substituting back into the second of equations (3.22) we see we need 1 to

satisfy
Y.z = v(Z)siny (3.27)

where v(Z) = iA/2. Once again we find the Sine-Gordon equation (in fact a
generalized version thereof) in coordinates z,z. This reduction of SDYM to
Sine Gordon is actually, up to gauge transformation, equivalent to that given by
Ward in [7]. It would be interesting to see if in this reduction (or the previous
reduction given for Sine-Gordon) the operator £ of (2.11) relates to the Sine-

Gordon recursion operator [20], but we will not undertake this here.

4. SL(N, C)

The first step in our reduction scheme is to find the equivalence classes of
Ag’s under the relation (3.1). For gauge group SL(N, C) this problem is solved
by writing down all Jordan normal forms for traceless N x N matrices. If the
eigenvalues of the matrix are \;, i = 1, 2, ..., D say, with the eigenvalue \; occuring
fi times (we will have ). f; = N, and the tracelessness condition ), f;\; = 0),
then the possible Jordan normal forms all have the form

Ay
Az

Ap
where the A;’s are f; x f; blocks, each with form

Ail

Aini
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and each A;,, 1 =1,2,...,D,p=1,2,..n; is a matrix of form

A 0 0 ... 0 O
1 X 0 ... 0
0O 1 X ... 0 O
Ap=1. . . (4.3)
0O 0 0 ... X\ O
0O 0 0 ... 1 X\

Thus for SL(3, C), for instance, we have 3 possible forms for Ag:

kK 0 0 kK 0 0 00 0

AV =0 x o0 AP =1 k o0 AP =1 0 0

0 0 —k—A\ 0 0 -2 010
(4.4)

where k, A\ are arbitrary functions of w, z, 2. As we have previously mentioned,
there is no guarantee that a particular form of A, will yield any solutions of the
SDYM equations.

We will focus on the systems obtained for A;’s that have all eigenvalues
equal to zero. The motivation for this is simply that it is these that give in-
tegrable systems of interest in two-dimensional physics, and furthermore the
calculations for these Ag’s are in many respects more tractable than for others.
Once we restrict to these Ag’s, there is just one block in (4.1), and the differ-
ent normal forms are classified by partitions of N into integers (or equivalently
Young tableaux with N blocks), the partition telling us the sizes of the blocks
in (4.2). For SL(3, C) we have the three forms in (4.4), with K = A = 0. These

correspond to the partitions 13, 2.1, 3 respectively. For SL(4, C) we have five

forms:
0O 0 0 O 0O 0 0 O
I 0 0 0 O II 1 0 0 O
Ay = 0O 0 0 O Ay = 0 0 0 O
0O 0 0 O 0 0 0 O
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000 0 0000
. 1 00 0 v 1 00 0
Ao =10 0 0 0 A =10 1 0 0 (4.5)
0010 0000
000 O
v 1 00 0
Ag 010 0
0010

These correspond to partitions 14, 2.12, 22, 3.1, 4 respectively. It is convenient,
in fact, to conjugate these forms with suitable u’s so that, if there are [ non-zero
entries, these lie in the bottom [ rows of the matrix. Thus we replace, at this

juncture, form Ag) of (4.4) by

0 0 O
A~ 0 0 0 (4.6)
1 0 0
and forms AL AL ALV of (4.5) by
0 0 0 O 0 0 0 O
a [0 0 0 0 a0 0 0 0
Ay = 0 0 0 O g’ = 1 0 0 O
1 0 0 0 01 00
0 0 0 0
v |00 00
Ay = 10 0 0 (4.7)
0 01 0

The fractional KdV hierarchies of Bakas and Depireux [9] are the hierarchies
obtained by taking an Ag that has one complete lower diagonal filled by 1’s,
with no other non-zero entries. It seems these hierarchies are related to the W
algebras. For N > 4 we see that these are not the only methods of reduction of
the SDYM equations corresponding to Ag’s with all zero eigenvalues; if we can
consistently solve SDYM with the choice ALY of (4.7), and this does not coincide

with any other reduction (which seems improbable), we will have an interesting
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new structure. The manipulations for any N = 4 calculation are long, but
accessible with the use of symbolic manipulators. This particular problem will
be investigated in a later paper.

Having chosen the forms of Az that we shall use, we consider the actual

reduction. We first impose (2.3b) which is just
[Ap, Az] =0 (4.8)

This equation will give simple algebraic constraints on the entries of A;. Equation
(4.8) also has another interpretation; the number of free entries in Az tells us
exactly the number of residual gauge degrees of freedom for our particular choice
of Ag. It is apparent that we have the residual gauge freedom to fix Az = 0;
we call this an MS gauge, since this was used in [8]. MS gauges in general seem
to be inconvenient for actual calculations, and of course we will not be able to
reproduce the Drinfeld-Sokolov picture. Instead we take the following approach:
we partially gauge fix A, taking it to be strictly lower triangular. The residual
gauge freedom after this will be exactly the intersection of the Borel subgroup of
the gauge group with the group of gauge transformations that leave A invariant.
The main need to partially gauge fix A; at this stage is to make the task of
imposing (2.3c) practical. We note that in addition to the trivial choice Az =0
(corresponding to the partition 1%V), there is, for each N, another choice of Ay
for which the residual gauge freedom will be the whole Borel subgroup; this is
the choice corresponding to the partition 2.1V~2,

0 0 ... 0
P
10 .. 0
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This choice of A gives the Drinfeld-Sokolov hierarchies.

We now make some comments on solving (2.3c), the next stage of the re-
duction. This will give us a variety of different types of relation, some of which
will be constraints on the entries of A,, and others that will give relations be-
tween entries of the different potentials (this will become clear in the SL(3, C)
examples to follow in the next section). It is the former that are particularly
significant. In the particular case of the BD fractional KdV type reduction, we
will be able to satisfy the relations of this type by choosing (A,);i+1 = 1 for
i=1,2,..,N—1, and (A,);; = 0 for j > i+ [. The key step in handling the
reductions is imposing these constraints on the entries of A, before exploiting
the residual gauge invariance, as without them it is very difficult to see how to

exploit the gauge invariance constructively.

The final step of the reduction that we discuss in generality is the fixing,
at this stage, of the residual gauge invariance. We specify, rather broadly, two
types of gauge choice. In a “KdV type gauge” we use the residual gauge freedom
to eliminate some of the remaining entries in A, starting from the top right of
the matrix. In an “MKdV type gauge” we start from the bottom left. There will
in general be a vast choice of gauges (even within these guidelines), and it will
be interesting to pick different gauges, and to work out the relevant Miura maps
between them, thereby finding different representations for the relevant W-type

algebras. For the Drinfeld-Sokolov hierarchies, i.e. the case (4.9), the notion of



KdV gauge is

0 1
0 0
0 0
A= : :
0 0
uUuN UN-1

—_

0

UN—-2

(c.f. (2.25)); the notion of MKdV gauge is

0
1

qs3
0
0

0
0
1

0
0
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0 0 O
0 0 O
1 0 O
: : (4.10)
0 0 1
UN—-3 ... U2 0
0 0
0 0
0 0
. (4.11)
gn—1 1
0  gn

with Zivzl ¢; = 0. For the Wi-related hierarchy, we will see in section 5 that

unfortunately this set of gauge choices is not large enough to find a Miura map

that gives the free field representation [16] of the algebra; it would be interesting

to see if this could be obtained from some more general gauge transformation.

5. SL(3,C)

This section is divided into two subsections, one for each of the two choices of

Az we make.

= o O
© o O
© o o

Imposing (2.3b) we find that A; must take the form

Az

J

(07

B

0 0
-26 0
)
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where «, 3,7, are arbitrary functions of w, z,z. We use some of the residual

gauge invariance of Az to choose

§=0 (5.2)

in accordance with our comments in section 4. The residual gauge invariance is

now exactly the Borel subgroup of SL(3, C), which we parametrize via

(5.3)

I = O
_ o O

1
€
¢

Here €, (,n are arbitrary functions. We parametrize the remaining potentials via

a b c b q r
Ay,=1d e f A, =|s t u (5.4)
g h —a-—e v w —-p-—t

(we are using v in two different ways now, but it should be obvious when it is
a matrix and when a single function). Imposing (2.3c) we find eight equations,

three of which take the form

rz =0
qz =T (5.5)
uz = —ar
We solve these by choosing
r=0 (5.6a)
g=u=1 (5.6b)

in accordance with the contents of section 4. There is some freedom we are
ignoring here, but other solutions of (5.5) could also be studied. We will make

no further arbitrary choices of this kind for this A, at least in KdV gauge.
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For reference we write down the remaining equations obtained from (2.3c) (after

making the choices in (5.6)):

a=ps—c
Y=({@+i)z—c
B=sz:—(pz—c)—f+(—t)(pz —¢) (5.7)

2ate=aw—B2p+t)—vys—vs+ [,

b=—8—~(p+2t) —w;+7,

The first three of these give the entries of A; in terms of the entries of A, and
the entries ¢, f of A,; the last two equations (after substituting for a, 3,7) give

two other entries of A, in terms of entries of A, and ¢, f.

It is hard to go further without a gauge choice, and we will first look at
KdV gauge, where we set p =t = v = 0 (it is straightforward to analyze the
gauge transformation relations to see that this is a valid gauge fixing). After
eliminating «a, 3, we find that we have ten equations (the last two of (5.7) and
eight from (2.3a)) determining v, w and the eight entries of A,,. We will not

write these down in full here; after some manipulations we find

c, = —wsz/3
(5.8)
fz = —02/3

Six of the other equations give a, b, e, d, g, h in terms of ¢, f, z, w. The remaining
two equations give the evolution of v,w, and we find, after eliminating all the

other variables (including e, f, using the 9! operator to solve (5.8)), that we
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can write them in the form:

3y = [—02 — 3v + wd, — v,0; v,

+ %[—28;L + 6v, — 2w? 4 6w,, + 6w,d, + 4w8§ + (Bv,, + 2w,,, — 2wwz)8z_1]w

3wy, = [20% — 2w — w,0, vz

+ [02 = 2w, — wd, — 3v — (2v, + w,,)0; |ws
(5.9)

We can read off from this a 2 X 2 matrix recursion operator for the Boussinesq
equation (it is not the usual recursion operator; we will explain this below). This

can be used to construct the entire N = 3 KdV hierarchy. First we try setting
v; =wz; =0 (5.10)

From (5.8) we see this means ¢, = f, = 0, and we will take ¢, f both to be

constants; in effect we just take (5.9) with vz = wz = 0 but

0, vz = =3f
(5.11)
8;1’102 = -3¢
We obtain the system
Wy = fw, + c(2v, + w,,)
(5.12)

Vy = fvz + C(_Uzz - %wzzz + %wwz)

which reproduces, up to some trivial rescalings, equations (4.3),(4.4) in the second
paper of [9]. For f = 1,¢ = 0 we obtain the » = 1 equation in the N = 3 KdV
hierarchy, and for f = 0,c = 1 we have the r = 2 equation. In the latter case we

can eliminate v to get a second order in time evolution equation for w,

Wy = —3Wazzs + %(w2)zz (5.13)

z
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We note that (5.12) (for f = 0,c=1) is not the only possible first order system
that leads to (5.13); for instance we could also have

Wy = Uy
(5.14)

This is the form used by Olver in [26]. It is related to our form by the simple
substitutions ¥ = 2v + w,,w = w. Rewriting (5.9) in terms of w, v we obtain:
3y, = [02 — 0 — Lw,0; Yo,
— 3[30 + 2007 '|w;
30, = —2[30 4+ 00, 'o;
— 207 +40* — 5wd? — 1240,0, — J,. + (40, — 0,.)0] ]z
From this we can read off the usual recursion operator, as given in [26].

The next step in the analysis of (5.9) is to see what we obtain when we set

Wz = Wy
(5.15)
Vz = Uy
We obtain the system
3ww = Wyzzz T+ 2vzzz - 4(’LU’U)Z - (w2)zz
ng = _2wzzzzz - 3Uzzzz + 6wwzzz + 12wzwzz - 4w2wz + G(MUZ)Z - 6(U2)Z
(5.16)

This is the same (up to some trivial rescalings) as equations (26),(27) in the first
paper of [9]; it is the » = 4 equation in the N = 3 KdV hierarchy. It is apparent
how to proceed to get higher order equations in the hierarchy: for instance for

r =5 we would take (5.9) and impose

ws = (2v+w,),

(5.17)

Vz = (_Uz - %wzz + %wQ)z
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In [9], the » = 5 equation could not be obtained from SL(3,C) SDYM. By this
stage we understand in general the findings of [9]: it is clear that if we take
our reduction scheme and impose further reduction by “0z = 0”7 we will obtain
the r < N equations of the Nth KdV hierarchy, and if we impose the reduction
“0;—0, = 0” we will obtain the r = N +1 equation. Larger r cannot be obtained,
it would seem, by a “simple” reduction to two dimensions.

Let us proceed to look at the current example in MKdV gauge. In this
gauge we choose s = v = w = 0 as the gauge fixing (this requires the existence
of a solution to a certain nonlinear second order ODE, which we will assume),
and it is easy to verify from equations (5.7) and (2.3a) in this gauge that we can
consistently set d = g = h = 0 too. We are left with ten equations (five from
(5.7) and five from (2.3a)) determining the ten quantities «, 3,7, a, b, e, f, g, p, t.
Handling these equations is tricky, so we will present the strategy for attack,
which will be of use in MKdV gauges in other examples. The five equations of

(5.7) can be rewritten

a=ps;—c (5.18a)
y=(p+t):—c (5.18b)
B+f=—-a,+alp-1) (5.18¢)
2 +e=03, — B(2p+1) (5.184)
b+ 0 =".—(p+2t) (5.18¢)

and the five equations from (2.3a) are

Puw = Q. (5.18f)
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ty = e, (5.189)
a—e=b,+b(p—t) (5.18h)
b—f=c,+c2p+1t) (5.181)

2¢+a=f, + f(2t+p) (5.185)

Equations (a),(b) give a, in terms of p,t,c. Using these, equations (c),(e),(i)
give b, f in terms of p,t, ¢, 3, and also give one consistency condition for p,t,c.
Using the formulae found for b, f, equations (d),(h),(j) give a, e in terms p, t, ¢, 3,
and a further consistency condition for p,t, ¢, 3. Thus we are left with equations
(f) and (g) for the evolution of p,t, the right hand sides of which we can write
in terms of p,t,c, 3; we also have the two consistency condtions. It turns out
that the consistency conditions can be solved for ¢, 3 using the 9! operator;

explicitly they are

3c, = ((2p + t)z - (p2 +ip+ tQ))Z
(5.19)
3(B—te+tps). = (tz — (2t + p)t. — tp(t + p)).

It is possible to work out the analogue of (5.9), giving the time derivatives of
p, t in terms of some operators acting on ps, ts. The result is very long (compare
the length of equations (5.19) to their analogues in KdV gauge, equations (5.8)!)
and not very illuminating. So here we shall just obtain the » = 1 and r = 2
equations of the hierarchy in this gauge, which we do by taking all the functions

to be independent of Z. Equations (5.19) become simply

c, =0
(5.20)
Bz =ct,
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which we solve by taking ¢ constant and

B=ct—pu (5.21)

where p is a constant. The evolution equations yield

3pw = 3up. + c[(p + 2t).. + (p* — 2tp — 2%).]
(5.22)
3ty = 3ut, +c[—(2p +1),. + (2 — 2tp — 2p?),]

This is the MKdV version of (5.12); choosing ¢ = 0, = 1 gives the r = 1
equation, and choosing ¢ = 1, u = 0 gives the » = 2 equation.
We conclude this section by giving the Miura map between MKdV and KdV

gauges for this case, which just requires finding a u of form (5.3) such that

0 1 0 p 1 0
00 1|=ul0 t 1 ut —uu? (5.23)
v w 0 0 0 —p—t

is consistent. We deduce that if p,t satisfies the MKdV equation for our case,

then we can find a v, w that satisfies the KdV equation, given by

U= Pzz — PPz + plz — pH(p + 1)
(5.24)
w=p*—2p, —t, +t(p+1)
This relates solutions of (5.12) and solutions of (5.22) if we identify p = f (it

is apparent that under the relevant gauge transformation from MKdV gauge to

KdV gauge c is left unchanged).

o = O
= o o
© O O

Imposing (2.3b) we find that A; must take the form

A, = (5.25)

R O
Q oo
o oo
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where «a, # are arbitrary functions. This also informs us that the gauge transfor-

mations that leave Az invariant have the form

1 0 0
u=|~v 1 0 (5.26)
o v 1

where 7, are arbitrary functions. All such u’s lie in the Borel subgroup so we
need no further gauge fixing at this stage. We parametrize A,,, A, as in equation

(5.4). Imposing (2.3c) gives, amongst other conditions, the constraints

rz = 0
u; = —ar —c (5.27)
gz =ar+c

We see we can therefore impose on A, the constraints » = 1 and u = —¢q, which

we shall do. Looking at gauge transformations, and using our general philosophy
for KAV gauges outlined in section 4, we find we can use the two parameter gauge
invariance to set ¢ = 0 and to set p = et where € is any constant. This explains
the choice of the ansatz (5.1) in the second paper of [9]. We can choose € as we
wish; under a gauge transformation taking € — ¢’ we find s,¢,w are invariant
and v/ = v+ (1 + e+ €)(e — €)t? — (e — €)t,. In [9] the choice e = —1/2 is
used, which simplifies certain details of the calculations. The evolution equations
(for t, s, w,v) that we obtain depend on the choice of €, but for gauge invariance
reasons we should expect them to depend on v, € only through the gauge invariant
combination v + (€ + €2)t? — et,. This can be checked, through some arduous
calculations not fixing the parameter e. We will fix ¢ = 0, without any loss of
generality.

We have six remaining conditions from (2.3c) and eight conditions from

(2.3a) which determine «, 3, ¢, u, v, w and the eight entries of A,,. It is straight-
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forward but very lengthy to manipulate the equations. Two crucial “consistency
conditions” emerge:
3b, = —(v+t,+12);
(5.28)
3¢, = —(s+w)z
In the course of the manipulations it becomes apparent that it is helpful to

replace the variable v by a new variable z = v + 1% — %tz. Note that this not just
a gauge transformation (which, since we have chosen ¢ = 0 amounts to choosing
a new variable v — €' (1+¢)t2 +¢€t,). We obtain the following system of evolution

equations:
Btw=—3(s+w)ts+ (s —w).s —t(s+w): — .0, (s +w):

38w =it.us + Sttos + Jtuts + St7t; — 3xt; — 3ss;
— 528;1(3 +w); — x5 — 3tz — (%tz + 3t2 — x)@;lxg
(5.29)
Bwy =5t,.: — St — Jtuts + 37t — Sat; — 3ww;
—w, 0 (s +w)s + 3,5 — twz — (3t, — 37 + )0 x5

3Ty =2 (w — 8),tz — (s —w)tos + 2(S+ W) sz + St(s —w),s

—2z(s+w)z — xzﬁz_l(s +w)z — %(w + 8)xz — %(w + 5)282_1:135

From these equations, as usual, a recursion operator, here a 4 X 4 matrix, can be
read off. From (5.29) the entire hierarchy can be reproduced in the now usual
manner. First we impose t; = s, = w; = 2, = 0; we take 8, !(s+w); and 9, 'z

as constants to obtain
Bty = A, + pu(s —w)

35w = As, + pu(3t, +3t° — )
(5.30)
3wy = M, + p(dt, — 3t° + z)

3Ty = AT, + ,u(%(s + w)z)
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Here A\, o are constants. Taking A = 1, 4 = 0 we obtain the trivial » = 1 flow,
and taking A\ = 0, = 1 we obtain the r = 2 flow (as in the second paper of
[9], equation (5.12)). Reducing (5.29) instead by taking t; = t,,s5 = s,,ws =
w,,Ts; = x, we find the r = 4 flow

Bty =(s—w),, —t(s+w), —

Nt

(s+w)t, — (s —w)x
35y = a2 — x,, — 3t2x — 3(tx), + %tzzz + %ttzz + %(tZ)Q + %(t‘q')z — (4s 4+ w)s,

3ww = _1‘2 + xzz —I— 3t21‘ - 3(tx)z + %tZZZ - Qttzz -

5 (t.)? + %(tg)z — (4w + s)w,

[

($+w)yzs — %(m(s + w))z + 3t(s —w)ss —

L Ne)

(s —w)ts, — 3t,(s —w)y
(5.31)

N[

3Ty =

This agrees with equations (5.16)-(5.19) in the second paper of [9]. Finally let
us reduce (5.29) by imposing
it =858—w
8z = %tz—l—St2 -
(5.32)

wgzgtz—3t2+x

(s +w),

N[

(i.e. imposing the » = 2 flow in the Z, z plane); we find then the r = 5 flow in
the w, z plane:

3ty = (3% —22), — 2(s* — w?)

350 = (5 — 2w),, — 6t3(s +w) + 22(s + w) — 6tw, — 3(s + w)t,
(5.33)
3wy, = (25 —w),, + 6t3(s + w) — 22(s + w) — 6ts, — 3(s + w)t,

3Ty = St,., + 6(t7), — 6(zt), + 2(ws), — 2(w* + 5%,
This was found in the third paper of [9] (equation (26)). However, it was only
derived after taking the lower flows and finding the relevant bihamiltonian struc-

ture. Here we have derived it using only data from the SDYM equations. (We
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emphasize again that imposing equation (5.32) as a reduction is ad hoc; we are
just showing how to use the recursion operator, which is the object we have found
from SDYM). It is worth mentioning that if we define ¥ = s+w, A = s —w then

(5.29) can be written in the form

tw -0 —3A 3% —3(td+t,)

g Zw | _ %A —3(2t0+1t,)  3(8%+3t* —x) —§(328+2zz)
Ay | | 32 =3(8% +3t2 —z) §(2t8+tz) —2(3A0 +2A.,)
Zay —3td  —3(3TO+X.) —3(3A0+A.) 2(30°—220—z.)

0 0 1 0N "/t
0 0 0 320 IF
-1 0 0 0 A
0 20 0 0 s
(5.34)

What we have done here is factorize the recursion operator R in the manner
R = @2@1_1 where ©1, ©5 are local anti-self-adjoint operators. In general for a
bihamiltonian system the recursion operator can be factored in this manner, and
the two operators O, ©5 give the two hamiltonian structures. The factorization
above reproduces the bihamiltonian structure given for this hierarchy in [9]; al-
though such a factorization is not algorithmic, in the above case it could easily
be guessed, and it is to be hoped that in other examples it might be too. (We
did not mention this factorization in our work on the standard KdV equation
in section 3, or our work on the N = 3 KdV in section (5.1) as it is standard,
see for example [26]. MKdV equations are in general not bihamiltonian in the
usual sense but it is still possible to factorize the recursion operator into two
anti-self-adjoint operators, one of which is local, and gives the one hamiltonian
structure that exists, and the other of which is nonlocal.)

We now have to tackle the problem of finding the notion of MKdV gauge

for this choice of A;. Recall that the matrix A,, after imposing the appropriate
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constraints from (2.3c) had the form

q 1

t —q (5.35)
w —p-—t

A, =

SENV- IS

We have a two parameter gauge invariance, which we used in KdV gauge to
set p = ¢ = 0. The most natural guess for an MKdV gauge is to use the
gauge invariance to set v and one linear combination of s and w (say s — w for
definiteness) to zero (it is straightforward to check that this is possible). Let us
do this; we could then find an MKdV equation for the remaining four functions
P, q,s,t. For any solution of this MKdV we will have a solution of the equation

(5.29) given by
t'=q*+t

/

sSS=qp—t)+s—q. — ¢
(5.36)
w' =q(p+2t)+s—q, +¢°

' =p(p+t)+p. —2¢°t — ¢*
This is all very well, but it does not, it seems, give us the free field representation
of the W# algebra. The (second) Poisson bracket algebra associated with system
(5.29) is the W2 algebra, where v is the Virasoro generator, ¢ is the spin 1 opera-
tor, and s, w are the bosonic spin 3/2 operators (in general in SDYM reductions,
as explained in [9], the entries on the same diagonal have the same spin, with
the spin increasing as we go from top right to bottom left of the matrix). The
free field representation [16] of the W3 algebra has two bosonic scalars and two
bosonic spin 1/2 operators. In our MKdV gauge, there will be operators of three
different spins, since we have unfixed entries on three different diagonals. How-
ever, we note that there is a remarkable similarity between equation (5.36) and

the free field representation of W2, given for instance in [9], equations (5.2)-(5.6).
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Now, we can consider for our system a more general gauge transformation which
does not leave Az invariant, but that lets us set v = w = s =0 in A, if we relax
the condition that identified the (2,3) entry of A, with minus the (1,2) entry.
Then we have a form for A, which has two entries on each of two diagonals, but
it can be quickly be seen from the relevant Miura map that this will at best give
us a representation for W# in terms of two spin 1 and two spin 1/2 operators.
Thus we have a puzzle to understand the correct notion of MKdV gauge for this
hierarchy (should this be resolved, it would help us face the question of the free

field representation for the W]l\, algebras in general, an interesting open problem).

6. Concluding Remarks

There is little that needs to be said in conclusion to the work above; the work
presented is just to be considered a start of the task of systematically reducing
the SDYM equations, and even for SL(2, C) we have not been exhaustive in our
study, but made a particular “choice” when it was called for. The examples of
section 5 have shown us the power of looking at integrable systems as reductions
of SDYM, and the prediction we have made, on the existence of integrable sys-
tems for all classes of Az, may well afford the most powerful tool yet for the
classification of integrable systems, and certainly can provide us with many new
examples.

As we have said now many times, we have, in our work, rendered the question
of finding complete hierarchies within SDYM almost unnecessary, as we seem to
have an algorithmic approach to finding the recursion operators associated with

these hierarchies. The question still remains though as to whether there exists a
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reduction of SDYM to two dimensions which yields all the equations of a given
hierarchy. In [9] a method of finding all the equations of the KdV hierarchies
is proposed, but to find equations of the Nth KdV hierarchy for r > N + 1 it
is necessary to work with a larger gauge group than SL(N,C). Using gauge
group SL(M N, C) it should be possible to obtain all equations of the N — KdV
hierarchy for » < M N + 1. While this is a valid solution to the problem raised
above, it is far more desirable to have a solution using only N x N matrices, and
we certainly cannot rule out that such a solution might exist. We also should
note that in [8], Mason and Sparling find a way to obtain every equation of the
N = 2 KdV and NLS hierarchies by reduction from a certain higher dimensional
analogue of the SDYM equations; for details on higher dimensional analogues of
SDYM see [27].

One facet of this problem that seems not to have been considered in the lit-
erature is the fact, pointed out in section 2, that there actually exists a hierarchy

of the SDYM equations, i.e. the generalization of equation (2.11a)
M, = L"M; n=1,23,4,.. (6.1)

(L is defined in (2.11b)). It is possible to show that for SL(2, C) this does indeed
reproduce the KdV and NLS hierarchies for suitable ansatze for the matrix M.

For NLS, the simpler of the two cases, the appropriate ansatz for M is
B 0 /Beikﬂ)
M= (g lun %) 6:2)

where 3 is a complex function of w, z, Z, and k is a real constant. A straightfor-

ward calculation shows that equations (6.1) for this ansatz require

B = [0~ 1007 Ret5)] 5. (6:3)
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and we recognize in this the recursion operator of NLS raised to the nth power.
This result is obviously interesting in its own right, but it may possibly be ex-
plained within the framework of [10]; in [10] we showed that on the subspace of
gauge potentials defined by (2.3b) and (2.3c) there is a large gauge symmetry
(generated by the two constraints (2.3b), (2.3c)). Imposing any further con-
straint (such as (2.3a) or (6.1)) to further restrict this space will still leave us
with a space with some residual symmetry which we can identify, and this is one

of the notions of integrability.

Whether the idea in the last paragraph should prove accurate or not, the
idea of the SDYM equations as a “master integrable system” should not only
help us find and classify integrable systems, but also understand better the idea
of integrability. Integrable systems have already many applications in diverse
branches of physics; but these are in general not in fundamental areas. We
are used to the idea of symmetry playing an important role in determining the
fundamental interactions, and it is to be hoped, even expected, that the beautiful
hidden symmetries associated with integrable systems will find a home in this

arena too.

Note Added in Proof

As this paper was nearing completion I recieved a number of articles of
relevance to this work, which I have not had time to digest or refer to in the
text. I have already mentioned [17]: in this paper a number of “new” hierarchies
related to the Lie group SL(3, C) are found, which are presumably the hierarchies

associated with the choices of Ay in (4.4) for nonzero x, A. Checking this should
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be straightforward.

In [28], a detailed study of the hierarchy associated with the W2 algebra
is undertaken. The relationship of this hierarchy with the standard Boussinesq
hierarchy (postualted in [9], and also examined in [17]) is clarified, and a version
of the Miura map, which we have sought in section 5.2, is presented. Whether this
is the final answer to the questions we raised in section 5.2 is unclear; moreover,
the map given in [28] is derived exploiting the relationship of the Boussinesq
and W3 hierarchies, and still needs to be interpreted as a gauge transformation.
[28] also contains some material showing that in general there will be certain
relationships between all the W}, hierarchies for a given N.

In [29] and [30] different ways of constraining the SL(N) Wess-Zumino-
Witten model are considered. It is well-known that the SL(N) WZW model can
be constrained to give a Toda theory with a W symmetry [31]. It seems that
there are other ways to constrain the WZW model, and specifically in [29] it is
shown that there are distinct ways to do this for every embedding of SL(2) in
SL(N), and such embeddings are classified precisely by partitions of N. This
would seem to give extra strength to our hypothesis that there exists a gener-
alization of Wy for every partition of N into integers, a result that emerged so
simply in section 4. It seems of some interest to determine what physical theories

are described by these algebras.
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