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Abstract
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algebras. The dimensional reduction of the anti-self-duality equations leading to integrable

two-dimensional theories is briefly discussed in this framework.

This research was supported in part by the U.S. Department of Energy.

* Address after Sept.1 1990: Institute For Advanced Study, Olden Lane, Princeton, NJ
08540



1. Introduction

Recently [1] we proposed a five-dimensional theory, referred to as Ké&hler-
Chern-Simons theory (KCST), as a generalization to a 4 + 1 dimensional setting
of many features of three-dimensional Chern-Simons theory (3d CST) [2]. In this
paper, we give a more elaborate presentation of the theory as well as several new
results. The three-dimensional Chern-Simons theory, it is by now well known,
gives an intrinsically three-dimensional quantum field theoretic interpretation of
the Jones polynomials for links; the polynomials are essentially the correlation
functions of the Wilson loop operators for the links. 3d CST is also very closely
related to two-dimensional conformal field theory. In particular, 3d CST on
> X R, where ¥ is a Riemann surface, is an exactly solvable theory with a finite
dimensional Hilbert space which can be identified as the space of chiral blocks
of a rational conformal field theory. The relevant chiral algebra is the current
algebra of a Wess-Zumino-Witten (WZW) model, a Kac-Moody algebra, defined
on ¥ [3]. The construction of link invariants highlights the topological nature
of 3d CST. The current algebraic aspects are, however, related to the fact that
the reduced phase space is the space of flat gauge potentials on ¥ modulo gauge
transformations. The Narasimhan-Seshadri theorem [4] shows that, for gauge
group SU(N), this space is also the moduli space of stable, rank N holomorphic
vector bundles of Chern class zero over ¥; holomorphic gauge transformations
and chiral algebras are naturally defined in this case. It is as a generalization of

the current algebraic features that we introduced KCST.

The four dimensional manifold in KCST, the analogue of the Riemann sur-

face ¥ in 3d CST, is a K&hler manifold. The analogue of the Narasimhan-
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Seshadri theorem is Donaldson’s theorem [5] which relates the moduli space of
holomorphic vector bundles to instanton moduli spaces. The equations of mo-
tion of KCST are thus, not surprisingly, the anti-self-duality conditions in four
dimensions and the classical solutions are anti-self-dual instantons. Instantons
or anti-self-dual (ASD) gauge fields have also been of interest recently for differ-
ent but related reasons; this is in connection with integrable systems. There are
two connections between integrable systems and conformal field theories. First,
integrable theories describe a class of perturbations of conformal field theories
away from criticality [6]. Second, the Poisson bracket algebras associated with
certain integrable systems are classical analogues of the Virasoro algebra and the
Wy algebras (the chiral algebras for conformal field theories with higher spin
operators) [7]. The connection of ASD gauge theories with integrable systems
is that ASD gauge theories are conjectured [8] to provide a unified description
of all two-dimensional integrable systems. Systematic derivations of integrable
systems by gauge and dimensional reduction of ASD gauge theories have given
strong support to this conjecture [9],[10]. Virasoro and Wy symmetries emerge
as the residual gauge symmetry of the ansétze for gauge and dimensional reduc-
tion. By virtue of this idea that ASD gauge theories are “master” integrable
systems, and the known connection of integrable systems and conformal field
theory, it is natural to look at ASD gauge theories for an extension of conformal
field theoretic ideas to four dimensions. Quite apart from this, there are many
hints that a four-dimensional Kahler manifold may be the natural setting for the
study of Wy algebras [11]; in particular, the most appropriate description, from

a geometric point of view, of W, gravity in two dimensions may be in terms of
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ASD gravity on a four-dimensional K&hler manifold [12]. Thus it seems appro-
priate that we find a Lagrangian formulation of ASD gauge theory as a theory
defined on a Kéhler manifold, despite the fact that the notion of anti-self-duality

exists on any Riemannian manifold.

From all the above we have ample motivation for the study of ASD gauge
fields, especially in a Lagrangian and symplectic framework. We shall see that
some of the symmetries of ASD gauge theories, known at the level of equations
of motion, especially Backlund transformations, are realized as canonical trans-

formations within KCST.

This paper is organized as follows. In section 2, we discuss the action and
equations of motion of our theory. The (reduced) phase space is identified as the
moduli space of ASD instantons, obtained by reduction of the space of gauge po-
tentials on the Kahler manifold by the conditions of anti-self-duality. We discuss
briefly the Hamiltonian version of the theory, and identify the symplectic form
on the space of gauge potentials defined by the theory. In section 3 we discuss
some of the properties of this symplectic form, specifically its gauge invariance,
that it is an instance of the Donaldson u-map [13], and its evaluation for specific
instanton moduli spaces. We then look at the Poisson bracket algebra of our
theory, and particularly the algebra of the anti-self-duality constraints. Classical
and quantum symplectic reductions are discussed in section 4. We show that in-
finitesimal Backlund transformations are generated as canonical transformations
by the anti-self-duality constraints. At the quantum level, the wave functions
naturally involve a generalized form of the WZW action with an accompanying

Polyakov-Wiegmann type factorization property. We examine briefly the chiral
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algebra associated with this action. In section 5, we specialize to the case of R*
as our Kahler manifold; we show that the infinitesimal transformations found in
section 4 give the known “hidden symmetries” of the R* ASD equations. We dis-
cuss reduction of the ASD equations to integrable systems such as KdV, putting
known results into a unified framework, exploiting a critical insight from our the-
ory. In section 6, in addition to some concluding discussion, we mention higher

dimensional analogs of our theory.

2. Action, Equations of Motion and Phase Space

We define Kihler-Chern-Simons theory on a spacetime of form M* x R,
where M* is a four (real) dimensional Kihler manifold, with a Kihler form

denoted by w. The action is taken to be

i _
S:/‘ {——TdAAWH%AAAA@Aw+ﬂ«@+@Af) (2.1)
M4xR

™

A is the gauge potential; it is a locally defined 1-form on M* x R, with values
in the Lie algebra of the gauge group GG. We take GG to be a compact semisimple
Lie group; when needed we use a basis {T%} for the Lie algebra of G, with
Tr(T'T?) = —%5”. F denotes the field strength, F = dA + A A A; we use F
for the “magnetic field”, i.e. that part of F which is a 2-form on M*. & and
® are, respectively, locally defined, Lie algebra valued (2,0) and (0,2) forms on
M*, which are also 1-forms on R. Thus, if 2%, @ = 1,2 denote local complex

coordinates on M*, and t denotes the coordinate on R, then we can write locally

% Za,b:m Papdz® A dz°, Gab = —Ppa

| L r _ _
) 26,5:1,2 Papdz® N dz’, Pab = —Ppa

P = Adt, ¢

(2.2)

D= Adt, I
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The behavior of the fields in the theory under gauge transformations is given by

A— A* =yAu~t — duu™t

d — ¥ = udy? (2.3)

-3 =udu!
where u is a locally defined G-valued function on M* x R. By virtue of the
fact that w is closed, the action (2.1) is invariant under gauge transformations on
M* xR which are homotopic to the identity; in the case where M* is noncompact
or has a boundary, it may be necessary to impose the vanishing of F' at “infinity”
or on the boundary (of course, in such a case, to completely define the theory it is
necessary to give some boundary conditions, and we require that these should be
compatible with gauge invariance of ). Invariance of ¢** under homotopically
nontrivial gauge transformations can lead to quantization of k; we will discuss
this quantization from another point of view later in the paper.

In local complex coordinates we write w = % Jaadz® N\ dz®, and the Kahler
metric is given by ds? = guadz?dz®. We remind the reader that the components
of the Kéhler form can be derived from a Kéhler potential K, via w = i00K. On
a Kahler 4-manifold, the notions of self-dual and anti-self-dual 2-forms become
especially simple: a 2-form is anti-self-dual if it has no (2,0) or (0,2) part and its
(1,1) part is perpendicular to w (i.e. it vanishes upon taking the wedge product
of it with w).

The equations of motion of the theory from varying ®, ®, A; are
F2O = p02) — (2.4a)

FAw=0 (2.4b)
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and express the fact that for all ¢ the 2-form F on M?* is anti-self-dual, i.e.
that A,,A; is an instanton potential. The equations of motion from varying the

spatial components of A yield, in the gauge A; = 0,

k0Ae . e

E ot = —1g va(bba (240)
k aAa o . Ba -

E 8t = -Hg va¢ba (24d)

Here g% is defined by gyz9%* = 62, and we have denoted by V and V the gauge
covariant versions of @ and O respectively, so, for instance, Vaope = Oadpa +
[Aa, dpa]. Since V, V appear in the above equations acting, respectively, on (0,2)
and (2,0) forms, we could replace both of them by the gauge covariant version
of the exterior derivative d = @ + 0. Furthermore, since on a Kéhler manifold
the Christoffel symbols I'f; and I‘gc vanish we can consider V, V to be covariant
with respect to both gauge and coordinate transformations. We note that we

can write equations (2.4c,d) in coordinate independent form as, for instance,

E 0A1L0) o

o o i* Vo (2.4e)
k 9AOD R

Y =+i* Vo (2.4f)

where * denotes the usual Hodge star operator. Equations (2.4c,d) give us
the time evolution of the gauge potentials, or, rather, since the gauge poten-
tial is an instanton potential, and equations (2.4c,d) are gauge invariant under
t-independent gauge transformations (only these since we have fixed A; = 0
gauge), equations (2.4c,d) give us the time evolution of the moduli of the instan-
ton potential A,,Az. We clearly need to check that the time evolution (2.4c,d)
keeps us in the space of instanton potentials, and this will give us constraints on

¢, ¢. We will do this shortly.
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First we make some other observations relevant to the action (2.1). We have
not considered so far the equation of motion that could be obtained by varying the
Kahler form w, or, rather, varying the Kahler potential K. This is in line with
our comments in the introduction that our theory should be viewed as being
defined in a background Kéahler metric. The equation of motion obtained by
variation of K is satisfied automatically if the time derivatives of A,,A; are zero,
which, as we shall see shortly, is certainly the case when M* is compact without
boundary. Thus, although we use a metric expicitly, many of the properties of
the theory will be independent of the metric, i.e. “topological” within the class
of Kahler metrics.

The case where M* is hyperkihler merits some special comments. We then
have, in addition to the Kéhler form w, a closed (2,0) form w™ and a closed
(0,2) form w™, related to each other by complex conjugation. Writing w?® = w,

L=1(wr+w™), w? = L (wh —w™), equations (2.4a,b) may be written

N[ =

w
FAw =0, i=1,2,3 (2.5)

These, along with the equations 0A,/0t = 0Az/0t = 0, can be derived by

variation of the imaginary quaternionic action

k

4 M4%xR

S = Tr(ANdA+ 2ANANA) Awle; (2.6)

where e, = (1, ¢;) are a basis of quaternions. In this action we regard w* as fixed.
For the case M* = R?, the action (2.6) has the advantage over the action (2.1)
that it does not require one to pick a specific Kdhler structure (which breaks
SO(4) invariance). But imposing hyperkdhler structure may, in general, be too

restrictive. We note that we can also consider the action (2.6) for a Riemannian
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manifold M* which is endowed with quaternion-Kihler structure [14]; it would
then be necessary to use quaternionic quantization techniques [15].

We return now to consider the question of when the time evolution (2.4c,d)
keeps us within the space of instanton potentials. Computing the time derivative
of equation (2.4b) using equations (2.4c,d) we find no constraint on ¢ or ¢. But

taking the time derivative of F(39) =0, we find that ¢ must satisfy

V(+V) = 0 (2.7)

For M* compact, with no boundary, this implies straightaway that V¢ = 0, since

in this case we can write

| 1r@aveve) = [ Tr(@0) axT0) - IVelE 23)
where || || denotes the standard norm. Thus for M* compact with no boundary,

the time evolution is trivial and the equations of motion reduce to

F(270) — F(0s2) — 0

FAw=0 (2.9)

0A,  0As
ot ot

0

In fact it is possible to say a little more than this; for the case where M*? is
compact, without boundary, and has positive scalar curvature it has been shown
by Itoh [16], using a Bochner-type argument, that the dimension of the solution
space of (2.7) is zero. This result is of importance in computing the dimension
of the instanton moduli spaces for such manifolds, using the index of the twisted

Dolbeault complex. The complex dimension of the moduli space (if it is not
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empty) of g-instantons on such a manifold is [16] 4¢ — $dimG(x + 7), where
X is the Euler number and 7 is the signature of the manifold; furthermore the
moduli spaces have Kéhler structure [17]. These moduli spaces are exactly the
phase spaces for our theory (at least for M* compact, without boundary, and
with positive scalar curvature).

For more general M* one can have nontrivial solutions to (2.7). We shall
see below that changes in A0 of form *V¢ are generated canonically by the
action of F(0:2) (and similarly the action of F(2.0) generates changes in A1) of
the form *V¢). The equation F(*2) = 0 shows that such transformations may
be regarded as a different type of gauge symmetry. The time evolution of A, and
Az is flow along such gauge directions, and is still therefore trivial in a larger
sense.

Consider now the Hamiltonian version of the theory, treating the coordinate
t as time. The action (2.1) immediately gives the following first class constraints

on the canonical momenta
w4, =0 Ty =0 T3 =0 (2.10)
We can eliminate these constraints by choosing the gauge fixing constraints
Ay =0 $»=0 ¢=0 (2.11)
but we have to further impose the equations

ora, 0 Omy _ 0 org

ot ot ot (2.12)

as constraints, which give equations (2.4a,b). Time evolution is once again trivial.
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One more ingredient is necessary to complete the picture of the classical
phase space of the theory. The action (2.1) determines naturally a symplectic

2-form on the space A of all gauge potentials on M?,

0= L Tr(0ANJA) Nw (2.13)
41 M4

Here 6 denotes the exterior derivative on A, and we have suppressed the wedge
product between forms on A. So our theory essentially describes the symplectic
reduction of the space A, endowed with the symplectic form  of (2.13), by
F@0) F02) and F Aw. F Awis , with respect to the symplectic form €, the
generator of usual gauge transformations, as we shall see later, so (2.4b) is the

“Gauss law” of the theory.

3. Properties of the Symplectic Form and the Algebra of Constraints

2, being nondegenerate, cannot be gauge invariant on the full space A, but
the general theory of symplectic reductions [18] dictates that there should be
gauge invariance on the subset of A where the moment map arising from gauge
transformations vanishes, which is the set of potentials such that FF Aw = 0. Tt
is interesting to see this gauge invariance emerge explicitly, without appealing
to the general theory of symplectic reductions. Let us take the case where M*
is compact and without boundary first. The Lie algebra valued 1-form A is
only defined locally on M*, so to compute (2.13) we need to introduce a set of
patches on M*, and to sum the contributions to (2.13) from a set of patches
that exactly cover M?. Explicitly, let {B,} be a (sufficiently large) collection of

def

closed sets that cover M4, with B, N B, = 0B, N 0B, = 0B,,. Let A, represent
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the gauge potential on B); we are given a set of G-valued transition functions
hpq, one for each pair p,q such that p # ¢ and 0B, # 0 (these satisfy the usual
relations). On 0B,, we have A, = hquqhgql — dhpthqu; gauge transformations
act via A, — g,Apg, - dgpg, 1. where g, is a Lie group valued function on
B, and on 0B,, we have g, = hpnghzqu*. Under gauge transformations we
have 0A, — g,(6A,+Da, (g, '69p))g, ", where D4, denotes the gauge covariant
derivative. With all this one finds, after integration by parts and a few other

simple manipulations,

Z/ Tr(0A, NdA,) Nw — Z/ Tr(dA, NdA,) Aw
+26 (Z/B Tr((g, "69,)F(Ap)) /\w>

+ Z/ Tr 2(5A 1(Sgp) + (g;légp)DAp (g;légp)) A w

(3.1)

On the subspace of A where F' A w vanishes, the second term in this expression
is clearly zero. For the third term there are two contributions from 0B,,, which
is contained in both 0B, and 0B,, and these can be shown to cancel; thus this
term is also zero. This establishes gauge invariance. For noncompact manifolds,
or manifolds with boundary, it clearly is necessary to impose certain boundary

conditions to avoid contributions to the third term in (3.1).

* Gauge transformations are correctly defined as fiber-preserving automor-
phisms of the underlying principal bundle. The gauge potentials A, are obtained
from the bundle connection in terms of local trivializations. Gauge transforma-
tions can then be described in terms of local G-valued functions g, with the

prescribed overlap relation g, = hpqgqh,. -
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Despite the fact that 2 is not gauge invariant on the whole space A, it does
define a (non-trivial) element of the second cohomology H?(A/G), where G is

the group of gauge transformations. This follows from the fact that if we define

@'(A,9)= [ Tr((g™80)F(4) A (3:2)

(2! is the 1-form on A appearing in the second term in (3.1) above, and is in
some sense the obstruction to gauge invariance) then Q!(A4,g) obeys a cocycle

condition

QL (A, hg) = QL(A, g) + QL (A9, h) (3.3)

Furthermore, the cohomology class of Q2 in H?(A/G) depends only on the coho-

mology class of w in H?(M*). This is easily seen if we write {2 as

k _

Q:E Tr(FAF)Aw (3.4a)
where
F=(d+8)A+ANA (3.4b)
Then we have, for w — w + da,
Q—>Q+5{£/Tr(ﬁ/\ﬁ‘)/\a} (3.5)

Since [Tr(F A F) A ais a 1-form on .A/G, it follows that the cohomology class
of € is not changed. Actually, 2 is an example of the Donaldson map from
H?(M*) to H*(A/G). (This is the cohomology version of the Donaldson map,
as described in [13]. We have an extra factor 27k, since our {2 is derived from an

action, which is measured in units of 2m.)
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With this understanding we can now discuss the quantization of k, for the
case where M* is compact and without boundary. If k is an integer, then, as-
suming that w represents an integer cohomology class of M*, the requirement
that k is an integer is exactly the requirement that {2/27 represents an integer
cohomology class of A/G. (Being Kihler, M* has nontrivial homology 2-cycles;
this implies that 71 (G) is nonzero, which implies that there are nontrivial ho-
mology 2-cycles in \4/G.) The relevance of this to the quantum theory, is that
in a geometric quantization of our theory we construct a line bundle, called the
prequantum line bundle, on the phase space with curvature 2; sections of this
line bundle satisfying a certain polarization condition are the wave functions.
The existence of the prequantum line bundle requires that the integral of /27
over any nontrivial homology 2-cycle in the phase space should be an integer [19],
i.e. Q/2m must belong to an integral cohomology class, which, as stated above,
means k£ must be an integer. Let us see this explicitly in a specific example, say
M* = S? x §2. We consider a homology 2-cycle in A/G, parametrized by o, 7,
0 <o,7 <1, given by

Azt 2, 0,7) = —1dgg™? (3.6)

1 .2

where 2!, 22 are coordinates of one of the component S?’s of M4, and g(x*, 2*

70-)7
with g(x!,2%,0) = g(z',22,1) = 1, is a nontrivial element of 73(G) = Z. Inte-

gration of ) over this 2-cycle gives

/Q = 21kQ|g] /82 w (3.7)

where Q)[g] is the winding number of g, i.e.

Qlol = 35 [ Tridag ) (33)
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Since Q[g] and [ w are integers, k must be an integer. This example we have
given here is, since we essentially ignore the second component S? in M?* in
construction of the nontrivial 2-cycle in \A/G, a simple extension of an argument
that can be given for the quantization of k£ in three dimensional Chern-Simons
theory; for arbitrary M* we use the nontrivial homology 2-cycles in place of the
component S2’s of the example. For noncompact M* there is no quantization of
k.

Having now established various properties of ), we consider briefly the eval-
uation of 2 on specific instanton moduli spaces. For instanton solutions we have
F(©:2) = 0, allowing us to write locally A(®)) = —9UU !, where U is G€-valued.
It follows that on some patch B we can write A = UA'U~! — dUU~! where
A’ is a G Lie algebra valued (1,0) form, A’ = (UTU)'0(U'U). We have
6A =U(6A" — D',(U~16U))U"; comparing with (3.1) and using the fact that
if A is an instanton potential we must have F(A") Aw = 0, we deduce that the

contribution to () from the patch B is simply given by
Op :/ Tr(26A"(U'6U) + (U '6U)D 4/ (U '6U)) Aw (3.9)
dB

We see at once that ) can be calculated on an instanton moduli space by summing
contributions from surfaces of patches. Note that here, unlike in the calculation
leading to gauge invariance above, the contributions to € from boundaries of
neighboring patches do not in general cancel; adopting the patching notation from
earlier on in this section, it is easy to see that on 0B,, we have U, = hpeU,9pq,
where the g,,’s are some holomorphic GC matrices, depending on the moduli
of the instanton potential A. There is some freedom in choosing the matrices

Jpq, arising from the freedom in choice of the matrices U,, but it is insufficient
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freedom to set them all to the identity (if we could set them all to the identity
the sum of all the contributions of type (3.9) would vanish). More precisely, the
matrices gp, define a holomorphic vector bundle on M 4 and the freedom we
have in the choice of g,,’s means that a specific instanton solution determines
exactly an isomorphism class of holomorphic vector bundles. This is one part
of Donaldson’s theorem [5] that states that there is an isomorphism between
moduli of (irreducible) SU(N) instanton potentials on M* and moduli of (stable)

holomorphic rank-N vector bundles on M*.
We now turn to an examination of the Poisson bracket algebra of our theory.

The canonical Poisson brackets following from (2.13) for the components of A

(defined by writing A = (A dz® + ALdz?)T") are

2 W (z —y)

[Afz(x)ﬂ Aé(y)] = %ga&yj det(g) (3.10)

Here det(g) = det(gaa). The basic structure of the theory is the symplectic
reduction of A by the constraints FO0) FO2) F Aw, so central to the quanti-
zation procedure is the algebra of these functions. We introduce the following

generators

k k |
B@) =5 [ Tr@nF) = o [ aVe e F
_ k
= _—/Tr e AF) = 2 /dVg‘m Bt i (3.11)

G(o) = 5 / Tr(bwn F) = —% / 4V g agi F

where 0, ¢, are, respectively, Lie algebra valued (0,0),(2,0) and (0,2) forms

(which essentially serve as parameters for the transformations generated by F' A
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w, F0:2), F(Q’O)); the components of 6, ¢, ® are defined by
0=> 0T
=3 PLTidz" Ndz2, Py = —Pha (3.12)
F= 3 PuTdz N2 Ty =y
In equation (3.11) the volume element is given by dV = 1d*2zd*z det(g). We find

the following Poisson brackets of these generators with the components of A:

(G(0), Ay ()] = —(VO), () (G(0), Ay ()] = —(VO), ()
[E(®), Au()] =0 [B(9), A5 ()] = i(xVP)a(z)  (3.13)
[E(p), Ay ()] = —i(+Ve), (x) [E(¢), A5(x)] =0

These tell us the facts that we have cited previously, that F'Aw is the generator,
with respect to the symplectic form (2.13) on A, of gauge transformations, and
F0:2) F(20) are, respectively, the generators of transformations of the form

ALO L AL _ 4T
(3.14)
AOD  AOD 44 VE

The symplectic form (2.13) on A is Lie-invariant with respect to flows on A
generated by both these transformations and gauge transformations. The three
constraints of our theory are moment maps corresponding to these three sets of
transformations. This result generalizes both the observation of Donaldson [5]
that F' Aw is the moment map corresponding to gauge transformations, and also
the result [20] that the anti-self-dual equations on R* (or for that matter any
hyperkdhler manifold) can be obtained via a hyperkéhler reduction.

It remains to write down the algebra of the generators E(%), E(¢), G(6).
We obtain

[G(8), G(0)] = G(6 x 0') (3.16a)
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G(0). E(@)] = 0 ) (3160
G(0). ()] = B0 x ) (3160
B() E@) = 5 [ Tr@AV+Ty) (3.164)

Here 0 x §' = f9%039'*T% etc. E(p) and E(¢’), and E(¢) and E(¢') evidently
commute. We note that on compact M* without boundary, we can rewrite the
right hand side of (3.16d) using (2.8). The algebra (3.16) is clearly of central
importance in our theory. We should mention that while we obtained the sym-
plectic structure (2.13) from our action (2.1), it is also that natural symplectic
form to consider on A from the point of view of the connection of the moduli
space of instantons with the moduli space of holomorphic vector bundles via
Donaldson’s theorem mentioned above. We thus, independently from the point
of view of Kéhler-Chern-Simons theory, expect the algebra (3.10),(3.13),(3.16)
to play a significant role in the quantization of instantons, i.e. the construction
of line bundles over the moduli spaces of holomorphic vector bundles on M*.

In the quantum theory, A, E, E, G become operators, and the Poisson bracket
relations (3.10),(3.13),(3.16) are replaced by commutators. Notice that right
hand side of (3.16d) contains both the holomorphic and anti-holomorphic com-

ponents of A, and hence one has to take care with operator ordering in (3.16d).
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4. Symplectic Reductions, Classical and Quantum

The G(0), E(p) operators have a closed Poisson bracket algebra, given by
(3.16a,c). We attempt a two-stage (classical) symplectic reduction of A, first set-
ting E(p) (or equivalently F(92)) to zero, and then setting G(#) (or equivalently
F Aw) to zero. The E(p) = 0 subspace of A consists of potentials locally of the

form

(Ag, Ag) = (Ag, —0,UU™Y) (4.1)

where U is GC-valued. The flow on this subspace generated by E(y) is given by

U—-U
(4.2)
Ay — A=A, — i(*vgo)a

We need a gauge fixing condition that will restrict us to the orbit space of the

flow (4.2). We note that under an infinitesimal change of the form (4.2) we have
F20  p20) _ vV (4.3)

Thus it follows that provided there are no solutions to equation (2.7), the condi-
tion F(20) =0 (or equivalently F(%) = 0) will be a good gauge fixing condition.
Consistently with this, we note that if there are no solutions of (2.7), then the
right hand side of equation (3.16d) can be regarded as an invertible inner prod-
uct on the space of Lie algebra valued (2,0)-forms ¢; the invertibility of this
inner product is exactly the criterion for E(®) = 0 to be a good gauge fixing for
flows generated by E(y). We are of course, only considering infinitesimal flows
at this stage. Note that, even if there are no solutions to (2.7), the gauge fixing

F(20) = 0 could in principle suffer from a Gribov ambiguity. The solution to
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F(20) = 0 satisfying the appropriate reality conditions is
A, = (UNH19,UT (4.4)

The phase space after reduction by E(¢) is thus given by the space of U’s, U
being a locally defined GC-valued function. Gauge transformations act on this
space via U — gU.

Continuing with discussion of the case where equation (2.7) has no solutions,
let us proceed to the second stage reduction, by setting G(6) to zero and dividing

out by gauge transformations. The condition G(6) = 0 is easily seen to be
g**0z(J 10, J) =0 (4.5)

where J = UTU. J is gauge invariant. (4.5) gives the instanton equations in
the so-called J-formulation. The reduced phase space now (i.e. the solutions of
(4.5)) is the moduli space of instantons.

Consider now the case of manifolds where there are nontrivial solutions to
equation (2.7), and impose E(¢) = 0. Imposing E(%) = 0 will not be a good
gauge fixing for the flow generated by the E’s. More specifically, if A, solves
E = 0 then so will A/, defined by (4.2) provided V * Vi = 0. Another way to
view this is as follows: if V * Vi = 0, then locally we can write *V¢ = Vo for
some Lie algebra valued function o, and it is straightforward to check that for

such ¢ we have
[E(p), E(@)] = —iE(0 x ) (4.6)

So the flow generated by E(y) for these ¢ leaves the condition E = 0 invariant,

i.e. in the space E = 0, some of the flows generated by E are tangential to
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the subspace F = 0; in other words, whereas in the compact case £ = 0 was a
good gauge fixing for the symmetries generated by E on the space E = 0, in the
noncompact case there is an infinitesimal Gribov ambiguity.

Now instanton solutions are defined by £ = E = 0 and G = 0. From
what we have said above, for the first two conditions we have two solutions,
both with A; = —0,UU 1. If we take the first to be the “real” solution, i.e.
A, = (U")719,(UT), then the second is given by

Ay = (UNT'0u(U") = i(+ V)

= (U")10.(U") —i(Va), (4.7)

LhH oV
where VI = Ufe % (p and o are infinitesimal). If UT, U solves F Aw = 0,
then so will VT,U. Thus E-flow on the E = 0 subspace may be regarded as
generating new instanton solutions from old ones via solutions of V * V¢ = 0.
This will be made more precise for the case of R* in the next section. The new
solution will clearly not satisfy reality conditions; but we can also consider the
analogous E-flow on the space E = 0, which will use solutions of V * V& = 0 to
generate new instanton solutions. Taking the right combination of these flows we
can generate new real solutions from old real solutions. Here we shall just write
equations (4.7) in a more useful form. The quantities relevant for the condition

G=0are J=U'U and J = VIU. We find
(JroJ) — (JtoJ) =iU 1 (Vo)U (4.8)

Note that equation (4.8) implies that if .J satisfies (4.5) so does J' (use the identity
U~ talU) = U1 (Va)U). Thus (4.8) is an infinitesimal Bicklund transforma-

tion for (4.5).
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We now turn to the subject of quantum reductions. We can consider quan-
tization of our theory in two ways. We can quantize the whole space A, endowed
with the symplectic form 2, and then impose the constraints (2.4) by restricting
to the set of wave functions annihilated by the appropriate operators. Alterna-
tively, we can directly quantize the reduced phase space, i.e. the subset of A
defined by equations (2.4). We shall consider the first method, and at the end
of this section make some brief comments on the second method. For quantiz-
ing the space A, a natural choice of polarization for the wave functions is the
holomorphic polarization, i.e. the wave functions are functionals of AL with the

action of A® given by

; iy 2m ow
AU (AL) = ?gaam (4.9)
The scalar product is given by
(01[02) = [ e U Wadu(a) (4.10)

where dju(A) is the Liouville measure on A given by Q, and K is the Kihler
potential for €, i.e.
k

K = %/dVg Al AL (4.11)

We perform a first stage of reduction by requiring

E(p)T(AL) =0 (4.12)

This implies that the wavefunctions have support only on configurations for which
F©:2) = 0. For the simplest case, this means Az = —9;UU ! for some global G-
valued function U on M* (in this case, of course, the instanton number is zero).

We can now consider W’s to be functionals of U. The scalar product becomes

(1) = [0 D0 )0 (0) (413)
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where [dU] is defined as the product over M* of the Haar measure on G€. The

second stage of reduction is now performed by imposing gauge invariance, i.e.
GO)¥(U)=0 (4.14)

Using the definition of G(0) from (3.11) and (4.9), we see that this is equivalent

to
k _
U(e’U) = exp {—; / dVg““Tr(@aﬁ(?aUU_l)} U (U) (4.15)
for infinitesimal #. The solution to this is given by ¥ = e5(U) where
k _
SU)=— [ dvg*Tr(9,UdU "
( ) 27 /M4 g 7’( )
1k
[ Tr((UTtdU) A (UTNU) A (UTAAU)) Aw
127 M5

(4.16)
This is an analogue of the Wess-Zumino-Witten (WZW) action which appears in
the wave functions for three dimensional Chern-Simons theory. In this expression
M? is taken to be M? x [0, 1]; we identify one boundary component of M5 (say
A = 1, where ) is the coordinate on [0, 1]) with our space M*, and extend U
into M® in such a way that it tends to some fixed function Uy on the other
component of the boundary (A = 0). Depending on what M?* is, the set of
GC-valued functions on M4, i.e. the set of U’s, may fall into distinct homotopy
classes. Then we would need to specify a set of fixed functions Uy on A = 0, one
in each homotopy class, in order to define S(U), and we define the extension of
U into M? so that it tends to the appropriate Uy on A = 0. Note that (4.15) only
gives the behavior of the ¥’s under homotopically trivial gauge transformations.
The behavior of ¥‘s under homotopically non-trivial transformations can involve

additional phase factors (the same for all states), in a way analogous to the

f-vacua of QCD [21].
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Before we go on to look at (4.16) as an action, we note that in a more
general case than the one we have considered, when F(2) = (0 cannot be solved
in terms of a globally defined function U, but rather we have Az = —0,UU !
where U is only locally defined, we still expect a factor of the form e5(Y) in
the wave functions, where S is now some refined notion of the functional (4.16)
(to construct this we could exploit, for example, [22], where it is shown how to
construct the usual two dimensional WZW functional for a Riemann surface with
boundary). In the general case, the gauge invariance condition will not determine
a unique wave function either; the residual freedom has to do with the degrees
of freedom of the reduced phase space or moduli. The quantization of the latter
will complete the identification of the wave functions. We will not consider these
issues here (apart from some comments at the end of this section), but content
ourselves with some discussion of the functional (4.16) as an action.

(4.16) clearly can be used as an action for a field theory on any Kéhler

manifold M*. The action satisfies a Polyakov-Wiegmann type formula

S(UlUQ):S(U1)+S(U2)+F(U1,U2) (4.17&)
k : _ _
(U, Usp) = —;/ ) AV g**Tr(U; " (8.U1)(8aU2)Us ) (4.17b)

By use of this formula we see that the normalization integral in (4.13) will involve
eS(/). From (4.17) it is clear that the variational equation for S(J) is equation
(4.5). Thus we may think of S(J) as an action for anti-self-dual gauge theory

in the J-formulation*, something that has been sought in the past [23]. Note

* J in equation (4.5), of course, is not globally defined, but on the intersection

of patches we have J, = g;,q,]quq where g¢,, is holomorphic. From (4.17b) we
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that if we choose any parametrization for the group G, the action (4.16) can be
expressed as an integral over M* [24]; so for instance we can obtain Pohlmeyer’s
action [25] for Yang’s equations [26].

Equation (4.17) shows that the transformations U — hU, U — Uh, where
h is antiholomorphic and A is holomorphic, are gauge symmetries of the action
(4.16). (Obviously such symmetries also exist for S(J); this has been noticed
before at the level of the equations of motion.) In the case of the usual WZW
action, these are, of course, the Kac-Moody symmetries. One can then consider
a Hamiltonian quantization using the holomorphic coordinate z as the time coor-
dinate [24]. An analogous quantization can be carried out in our case, using, say,
21 as the time variable (of course, this procedure is only meaningful for four man-
ifolds for which one can define a time coordinate consistently, e.g. M* = X x R?,
where ¥ is a Riemann surface). The symplectic 2-form, on the space G®) of

G-valued functions of 29, Z1, Zo, given by (4.17) is then
. k _
0B = yo / d*zdzo det(g) g™ Tr (£04€ + 2£€(0,U)U 1) (4.18)

where ¢ = SUU~! is a 1-form on G®), and we suppress the wedge product

between forms on G(®). The basic current density of interest is

I= % det(g)g™ (0,U)U ! (4.19)

The Poisson bracket algebra of these quantities is determined from (4.18) to be
. . g k . g
[IZ(Z% 21, 22)7 r (Zév 217 Zé)] = fzjk[k (227 Z1, 22)5(3) (Z_Z,)_4_ det(g)galaaé(g)(z_zl)éw
s

(4.20)

see that S(U) is unaffected by multiplication on the left(right) by antiholomor-

phic(holomorphic) matrices. Thus S(J) can be defined for all instanton numbers.
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The antiholomorphic symmetries U — hU are generated by Q(Z1, Z2) = [ dzo1.
The algebra of @)’s is obtained from (4.20) as

k

vosig = =/
47r5 C(z,2) (4.21a)

[Q'(2), @ ()] = f7*Q*(2)6 (2 — 2') —
C(z,7) = / dzo det(g)g® 9262 (z — ) (4.21b)

This algebra is obviously similar to the Kac-Moody algebra. However it is very
limited in its utility in solving the theory defined by (4.16); this is because, unlike
its two dimensional analogue, the solution space of equation (4.5) is not given
just by some finite dimensional space of solutions, up to multiplication on the
left and right by antiholomorphic and holomorphic matrices respectively.

Finally in this section, we note that the quantization of the reduced phase
space can be carried out in a relatively straightforward way by calculating €2 on a
specific instanton moduli space. The Hilbert space will be characterized by k and
by ¢, the instanton number. As mentioned in section 2, the complex dimension
of the moduli space (on a suitable manifold) is 4¢ — 1dimG(x + 7); furthermore
the moduli space has finite volume, for compact M*. Thus the number of states
(dimension of the Hilbert space) will be finite. For noncompact M* this is not
the case.

It would be interesting to provide a specific example of the reduced phase
space quantization, but as far as we know, no one has succeeded in writing down
all anti-self-dual instantons for any compact Kahler manifold, for any value of ¢
for which instantons are known to exist, even for G = SU(2), which is the only
case we will consider in this paragraph. For the case of CP?, where all self-dual
1-instantons are known [27], there are no anti-self-dual 1-instantons [28], and the

complex dimension of the anti-self-dual g-instanton moduli space for ¢ > 2 is
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4q — 3. By virtue of Donaldson’s theorem relating moduli spaces of instantons
and moduli spaces of holomorphic vector bundles, we can identify at least the
topology of the 2-instanton moduli space, which must be isomorphic [17] to the

complement in CP? of the hypersurface
202122 + 2232425 — zozg — 222’3 — 2122 =0 (4.22)

Here z,..., 25 are homogeneous coordinates for CP°. For the case of the 4-
torus (S1)4, some anti-self-dual 1-instantons are known [29], and the complex
dimension of the g-instanton moduli space is 4¢g. The 1-instanton moduli space
is conjectured to be isomporphic to the product of a 4-torus and a K3 surface
[30]; if this is true, finding all 1-instantons on the torus would provide us with a
Kahler structure on a K3 surface. The closest we can get, for now, to an explicit
calculation, is to consider the evaluation of € for the subset of solutions of the R*
anti-self-dual equations that are S* g-instantons. The real dimensions of these
moduli spaces are well-known to be 8¢ — 3, which is odd, so {2 is degenerate
(which is not in contradiction with anything we have said). The evaluation for
1-instantons can be found in [1]; since we have shown above that  can be
calculated as a sum of surface terms, we suspect it is possible to compute 2 for

q > 1 explicitly, but have not, as of yet, succeeded in doing this.
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5. Analysis on R*

R* is an interesting example of M*, since as mentioned in the introduction,
the study of instantons on R* is relevant to the study of integrable systems. We
shall look at reductions to integrable systems shortly. Before this, however, we
explian how some of the general analysis of KCST can be carried farther in the
special case M*=R*.

Consider the (classical) symplectic reduction of A by E(¢) and G(6). Equa-
tion (2.7) now has solutions, or, equivalently, we can find Lie algebra valued

O-forms and (2,0) forms ¢ and ¢ such that
Vo= Vo (5.1)

The flow generated by E(y) for such ¢ will generate new instanton solutions

from old. Note that equation (5.1) implies

*V * Vo =0
(5.2)
*V * Vo =0

Thus both ¢ and o satisy the covariant Laplace equation. On R* we have a
covariantly constant (2,0) tensor €., and one can write @, = feqp; f and o
satisfy the same equation. So we might try choosing f to be a multiple of o, i.e.

we might look for solutions of (5.1) with
Pab = 2AT€qp (5.3)

where ) is a complex constant. (For a general hyperkihler manifold M* we might
look for solutions of (5.1) with ¢ = Aow™, in the notation of section 2.) From

the definition of VT in equation (4.7) we see that

J) =U e U ~1—-iUtoU (5.4)



29

Using (5.3),(5.4) we can rewrite (4.8)
T 10, T — T 10,0 = —\g®epa0a(J1T) (5.5)

This is exactly the form of the inifinitesimal Backlund transformations and the
associated infinite dimensional symmetry of the ASD equations on R* [31]. We
see these are indeed generated as canonical transformations by E(¢). One may
regard equation (4.7) as giving the analogue of the Backlund transformation on
a general Kihler manifold M*.

Equation (5.2a) is of course the same as (2.7); it is the variational equation
obtained by varying ||[V¢||?, the functional defined in (2.8). It is clear that the
only way we can have a solution to (5.2a) with V¢ nonvanishing, is to have a

nonzero surface integral of the form

/6M4 Tr(p A*Vp) (5.6)

(here P is the hermitean conjugate of ). The asymptotic behavior of J~1J’ on
R* will thus be non-trivial.

We now turn to the consideration of reductions of the ASD equations on
R* that give rise to integrable systems. In [9] Mason and Sparling showed that
in a certain reduction to two dimensions, the SL(2,C) ASD equations yielded
both the KdV and non-linear Schrédinger (NLS) equations, and these were (up
to gauge transformations) essentially the only reductions of this kind. In [10],
Bakas and Depireux, realised that the Mason-Sparling reduction to KdV could
be gauge transformed into a particularly simple form, and by taking an ansatz of
this form for larger gauge groups, found many more integrable equations arising

as dimensional reductions of the ASD equations. In the context of this paper, it
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would be appropriate to fully realise these reductions in a symplectic framework,
but we do not do this here. We shall, however, reconsider these reductions with
a particular insight from our work. In [9],[10] it is apparent that the equations
F(©2) =0 and F Aw = 0 play a different role from the equation F(>9 = 0. This
distinction is natural, of course, in our symplectic framework, and furthermore,
from our viewpoint it is more natural to gauge fix after imposing F(*-2) = 0 and
FAw = 0 (these are moment maps in our presentation). Following this procedure,
at least partially, we show that the Bakas-Depireux ansatze are actually gauge
choices; this increases the significance of their results substantially.

We introduce complex coordinates w, z on R*. We dimensionally reduce by
restriciting to potentials that in some gauge are independant of w. We clearly
still have the freedom to do gauge transformations that are independant of w,

under which we have

A@ — UAuj’lLil (57)

where u(w, z, ) is the gauge transformation matrix. Exploiting this freedom, we
can put Ay into a canonical form. For G = SL(N, C), the possible canonical
forms are just the possible Jordan normal forms for a traceless N x N matrix

function of the variables w, z, z. For SL(2, C) we have two possible forms

Aw:((l) 8) or /<;<(1) _01) (5.8)

and for SL(3,C) we have four possible forms

0 0 O 0 0 O k 0 0 k 0 0
As=1(1 0 O0},[1 0 O], 1 O or 0 A 0
0 0 O 0 1 0 0 0 —2k 0 0 —k—2A
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Here &, A are arbitrary functions of w, z, z. Each canonical form gives rise to a
different type of reduction: the two SL(2,C) choices give KdV and NLS type
equations, as found in [9]; equations based on the first two SL(3,C) choices
are considered in [10]. Each canonical form also has associated with it a set of

residual gauge transformations w, which leave it invariant; for the first SL(2, C)

w= (i (1)) (5.10)

for some function v of w, z,z. Thus for each reduction we will obtain a whole

form we can take

gauge equivalence class of integrable systems, and this is the notion of gauge
equivalence described in [32].

To proceed further let us look at a specific example; we will look at the first
SL(2,C) form, i.e. the KdV type reduction, but it is straightforward to work

out any particular example. We parametrize the remaining potentials suitably

Aw:(i _ba) AZ:<}l _ed) AZ:<? _hg) (5.11)

All the entries in these matrices are functions of w, z, Z. We will not exploit the
remaining gauge freedom at this juncture. Instead, we impose Figz = F,g+F,z =

0 in line with our comments above. The potentials then must take the form

wom (O ) a5 ) 4= (00)
(5.12)

where ez = 0. We see we are left with unfixed functions ¢, d, e, f,j with ez = 0. e
is unchanged by the residual gauge transformations, and it actually emerges that
any choice of e will give us an integrable system. The choice e = 0 gives a trivial

system, so we will look at e = 1. Having fixed e, we have four functions left, one
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of which corresponds to the gauge degree of freedom ~ of equation (5.10), and
the remaining three of which will be “almost fixed” by imposing F,, = 0 (these

equations do not fix e in any way). Under gauge transformation with u given by

(5.10), we find
¢c— =y +7(j. — fz — 2dj) +7*(j — dz)

d—d—~
(5.13)
f—=f+2vd—~* -7,

J—=J=
We consider three possible gauge choices, j = 0 (Mason-Sparling gauge), d = 0
(Bakas-Depireux gauge) and f = 0 (MKdV gauge). In these three gauges we
obtain, respectively, the following equations by imposing Fy,, = 0 (and making
suitable choices of integratiom coefficients):
(d)w = [302 + 2(d2) + (d2).0;1)(d2):

fu=1302 = f = 5£0.11f (5.14)

dy = 202 —d* — d.0, "d|d;
These are three dimensional versions [33] of the KAV, KdV and MKdV equations
respectively. Further reduction to two dimensions by imposing 9, = 0z, as in [9]
[10], yields the standard equations. For gauge group SL(N, C), for any N, in the
case when Ag is chosen in the canonical form with exactly one non-zero entry,
not on the leading diagonal, it is straightforward to define the gauge choice to
reproduce the ansétze in [10]. We note that, in addition to clarifying some issues
of gauge freedom in reductions of the ASD equations to integrable systems, we
also inherit from our work on the ASD equations a full understanding of the

hidden symmetries of the integrable systems we obtain (see also [34]).
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6. Concluding Remarks

The emergence of the anti-self-dual equations in the symplectic reduction of
the space of gauge potentials A by F(®2) and F Aw is perhaps the most important
feature of Kéhler-Chern-Simons theory. The algebra (3.10),(3.13),(3.16) of the
gauge potentials and the generators F(0-2) F(2.0) ' FAw plays a crucial role in this
picture. Within this framework, the previously known “hidden symmetries” of
the instanton equations, related to Backlund transformations, can be understood
as canonical transformations. Our discussion in section 5 shows that reduction
of Aby F(©2) and F Aw is also the most appropriate setting for the gauge and
dimensional reductions of ASD gauge fields leading to two-dimensional integrable
systems. In this context we expect the study of analogous reductions and subal-
gebras of (3.10),(3.13),(3.16) to shed light on how Virasoro and Wy symmetries
emerge, and the role they play, in two-dimensional integrable systems.

As an obvious generalization of what we have presented here, we can consider
a KCST theory on a Kihler manifold of arbitrary even (real) dimension M?29,

d > 2. The natural action to look at is

k _
S:/ {——TT(A/\dA—i—%A/\A/\A)/\wd_I+Tr((@+<1>)/\.7:)
M2dx R 4
(6.1)
where now ® and ® are, respectively, (d,d — 2) and (d — 2,d) forms on M?9, as

well as being 1-forms on R. The equations of motion (for suitable M?29) are just
F2O = p02) — (6.2a)

WwITLAF =0 (6.20)
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On R?4, these equations were studied, amongst others, as possible candidates
for the appropriate higher dimensional extension of the ASD equations [35]. The
main reason we have focused our attention in this paper on the d = 2 case, is
that for d > 2 it seems these equations of motion are not integrable on R?2<.
They cannot be written as consistency conditions for the integrability of a set
of linear equations [36], and in the J-formulation (obtained by solving (6.2a)
to write Az = —0,UU~Y, A, = (U")719,(UT), in which case (6.2b) becomes
9204 (J10,J) = 0, where J = UTU), the equation of motion fails the Painlevé
test [37]. Nevertheless, the set of solutions to (6.2) on an arbitrary Kahler man-
ifold M?? might well merit study; we are not aware of any work on the re-
lationship of the moduli spaces of solutions to (6.2) and the moduli spaces of
holomorphic vector bundles on M?24. In [9] it is shown that higher order equa-
tions in the KdV hierarchy can be obtained from equations (6.2) on R2¢, for
appropriate choices of d. Also we note that much of what we have said in this
paper goes through for the action (6.1); particularly, in the procedure of quanti-
zation we find the obvious extension to higher dimensions of the WZW functional

(4.16).

Certain remarks in the last paragraph also may help clarify the distinction
between 3d CST and KCST. The equations (6.2) on R? are completely solvable,
but on R* they are only “integrable”. The notion of integrability, for partial
differential equations, is a (currently) non-precise notion, which reflects a degree
of solvability, falling just short of the notion of complete solvability, which we
take to mean the ability to write down explicitly the most general solution. This

reinforces to us the possibility that KCST is the appropriate arena to discuss the
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host of phenomena now known that are generalizations, in one sense or another,

of conformal field theory.
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