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Abstract

Following a proposal of Burzlaff [Phys.Rev.D 24 (1981) 546], we find solutions of the

classical equations of motion of an abelian Higgs model on hyperbolic space, and thereby

obtain a series of non-self-dual classical solutions of four-dimensional SU(3) gauge theory.

The lowest value of the action for these solutions is roughly 3.3 times the standard instanton

action.
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1.Introduction

There has been some recent interest in finding finite action, non-self-dual classical

solutions in (Euclidean) four dimensional non-abelian gauge theory (on flat space), in the

wake of the proof of Sibner, Sibner and Uhlenbeck [1] that such objects do indeed exist for

gauge group SU(2). For many years after the discovery [2] and subsequent development

[3] of the instanton solutions in gauge theories, it was an open question as to whether these

were the only finite action solutions (this is often known in the literature as the Atiyah-

Jones conjecture, see [4]). Some progress in this direction was made by Bourguignon and

Lawson [5], who proved (for certain gauge groups) that the only local minima of the Yang-

Mills functional were given by instantons, so other solutions would have to correspond to

saddle points. Furthermore, in [6] Taubes proved that in the two dimensional abelian Higgs

theory with critical coupling, both in flat and in hyperbolic space, the only finite action

solutions of the equations of motion were given by the solutions of the relevant self-duality

equations; this result, in hyperbolic space, implied the non-existence of finite action, non-

self-dual solutions in four dimensional SU(2) gauge theory with “cylindrical symmetry”,

as introduced by Witten [7]. We now realise that this result cannot be generalized as

we might have hoped. In addition to the proof of existence of finite action, non-self-dual

solutions for group SU(2) [1], a set of such solutions has been explicitly constructed by

Sadun and Segert [8], following a proposal of Bor and Montgomery [9].

The significance of the non-self-dual solutions, to both physics and mathematics, is

currently not clear. In physics, despite the fact that the non-self-dual solutions correspond

to saddle points, and not minima, of the Yang-Mills functional, to do a correct semi-

classical approximation by a saddle point evaluation of the path integral, it is certainly

necessary to include a contribution due to non-self-dual solutions, and if it should be the

case that there is a non-self-dual solution with action lower than the instanton action (this

question is currently open, and of substantial importance), then such a contribution would

even dominate. Unfortunately, it is questionable whether the semi-classical approximation
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can give a reliable picture of quantized gauge theories; it has been argued that in four

dimensional gauge theory small quantum fluctuations around classical solutions can not

be responsible for confinement, unlike in certain lower dimensional theories. But it may

still be possible to extract some physics from the semi-classical approach. A first step in

such a direction would be to obtain a good understanding of the full set of non-self-dual

solutions and their properties.

In this paper, we pursue an old idea, due to Burzlaff [10], for obtaining a non-self-dual,

“cylindrically symmetric” solution for gauge group SU(3). If we write R4 = R×R3, and

identify some SU(2) (or SO(3)) subgroup of SU(3), with generators that we will denote

T i, then we can look at the set of SU(3) gauge potentials which are invariant under the

action of the group generated by the sum of the T i’s and the generators of rotations on the

R3 factor of R4 (we choose the T i’s and the R3 rotation generators to satisfy the same

commutation relations). We call such potentials “cylindrically symmetric” (in analogy to

the standard notion of cylindrical symmetry in R3, which involves writing R3 = R × R2

and requiring rotational symmetry on the R2 factor). Such potentials will be specified

by a number of functions of two variables, the coordinate on the R factor of R4 (which

we will denote x), and the radial coordinate of the R3 factor (which we will denote y).

Clearly the equations of motion for such cylindrically symmetric potentials (if they are

consistent) will reduce to equations on the space {(x, y) : y ≥ 0}. In [10] Burzlaff gave

an ansatz for a cylindrically symmetric SU(3) potential that would give a finite action,

non-self-dual solution, with vanishing topological charge density, for every finite action

solution of the equations of motion in a particular two dimensional abelian Higgs model

in hyperbolic space (which is just the space {(x, y) : y > 0}, equipped with a certain

metric). Most of this paper is, therefore, devoted to the study of the abelian Higgs model

in hyperbolic space with arbitrary couplings; using the ball model for hyperbolic space, we

argue that there should exist radially symmetric vortex solutions for a range of values of

the coupling constants. For the couplings of Burzlaff we find solutions by straightforward
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numerical techniques. We also perform numerical experiments for other couplings; it seems

quite possible that the same model, with different couplings, may emerge when examining

other ansätze for non-self-dual solutions. We make some brief comments on the resulting

non-self-dual solutions we have found.

2.Hyperbolic Vortices

The standard two dimensional abelian Higgs model on a spacetime with (Euclidean)

metric gµν is given by the action

S =

∫

d2x
√

g

(

κ

2
gµνDµφDνφ +

µ

4
gµµ′

gνν′

FµνFµ′ν′ +
λ

8
(|φ|2 − 1)2

)

(1)

Here φ is a complex scalar field, Aµ is an abelian gauge potential, Fµν = ∂µAν − ∂νAµ is

the field strength, and D denotes a covariant derivative, Dµφ = (∂µ − iAµ)φ. κ, λ and µ

are coupling constants; since classically an overall factor in the action is irrelevant, we can

without loss of generality set κ = 1. For the case of flat space (gµν = δµν) we can make

a scale transformation xµ → ξxµ, Aµ → Aµ/ξ to set µ to 1, to be left with one physical

parameter λ.

For the case of flat space, the above action has been thoroughly studied. Since for

finite action we need |φ| → 1 at infinity, we can define, for finite action configurations, an

integer-valued topological invariant, the vorticity

n =
1

2π

∫

circle at ∞

d arg φ (2)

Furthermore, for finiteness of the scalar field kinetic energy term in the action, it follows

that if φ → eiχ at infinity, then Aµ must tend to the pure gauge configuration ∂µχ towards

infinity. From this follows the flux-vorticity relation

n =
1

2π

∫

d2xF12 (3)

For further analysis it is convenient to separate the cases λ = 1 and λ 6= 1. For λ = 1

it is possible to find solutions to the second-order equations of motion by solving a first-

order set of equations, the “self-duality” or “Bogomolnyi” equations [11,12]. One can
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establish the existence of a radially symmetric solution of these equations with arbitrary

vorticity n, and then, by use of an index theorem, one can show that there is in fact a

2|n|−parameter family of solutions with vorticity n [13]. More precisely, Taubes has shown

that the parameter space of n−vortex solutions is exactly R2|n| [14]. The action for all

n−vortex solutions is the same, S = |n|π, and it is convenient to consider an n−vortex

solution, for n > 0 (n < 0) as a superposition of |n| 1−vortices ((−1)−vortices) at |n|

arbitrary points on the plane. Finally, as mentioned in the introduction, Taubes [6] has

shown that, for λ = 1, the solutions of the self-duality equations give all finite action

solutions of the equations of motion.

For λ 6= 1, one has to attack the equations of motion directly. In [15] it was established

that there is a radially symmetric solution to the equations of motion for any vorticity n,

for (apparently) arbitrary λ, but [11] that for λ > 1, n > 1 these solutions were unstable

(i.e. did not correspond to minima of the action). A detailed numerical study by Jacobs

and Rebbi [16] revealed that for λ > (<)1 the action for the radially symmetric 2-vortex

was greater (less) than twice that for the 1-vortex and thus the solutions with n > 1 were

unstable (stable). Their results show convincingly that for λ 6= 1 there are no solutions of

the equations of motion corresponding to two 1-vortices at some non-zero, finite separation;

for λ > (<)1 the vortices will repel (attract). It seems reasonable to suggest from this

that the only solutions of the equations of motion for λ 6= 1 are the radially symmetric

ones, but for our purposes it is only important to note that as we go away from “critical”

coupling, the radially symmetric solutions of the equations of motion do persist. Another

result of [16] that we will see reproduced for hyperbolic vortices is that the action for the

1-vortex is an increasing function of λ.

We now turn to the hyperbolic case. There are several useful representations of

hyperbolic space; in [7] and [10], hyperbolic space appears naturally in the upper half

plane model, {(x, y) : y > 0} with metric gµν = δµν/y2. But in this model there is no

concept of radial symmetry, so it is much easier for our purposes to work with the ball
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model, {(x1, x2) : r =
√

(x1)2 + (x2)2 < R} with the metric gµν = δµν/h where

h =
(R2 − r2)2

4R2
(4)

Here R is an arbitrary parameter. The two models of hyperbolic space are related by the

conformal transformation

x1 + ix2 = R

(

iR − (x + iy)

iR + (x + iy)

)

(5)

We note that the point (0, R) in the upper half plane model maps to the origin in the ball

model. Using the ball model, our action is simply

S =

∫

r<R

d2x

(

1

2
DµφDµφ +

hµ

4
FµνFµν +

λ

8h
(|φ|2 − 1)2

)

(6)

A scaling transformation here, xµ → ξxµ, Aµ → Aµ/ξ, R → ξR cannot be used to remove

one of the parameters λ, µ (though it does show us that the choice of R is arbitrary). So

in the hyperbolic abelian Higgs model we have two coupling constants.

Another difference between the hyperbolic and flat space cases is that we cannot, in

the hyperbolic case, write down an immediate flux-vorticity relation, simply by finiteness

of the action arguments. We can still define vorticity, as since h → 0 as r → R, we need

|φ| → 1 as r → R; we therefore define

n =
1

2π

∫

circle r=R

d arg φ (7)

Unlike the flat case though, we have no finiteness reason to insist that |Dφ| → 0 as we

approach the spacetime boundary. However, to make our theory well-defined we need to

specify some specific behavior for the fields at the boundary, and, specifically, we would

like to choose behavior such that the surface term, that appears when we vary the action to

obtain equations of motion, vanishes. For this, the obvious condition to impose is |Dφ| → 0

as r → R; the solutions we obtain are consistent with this. We then have the flux-vorticity

relation (3).
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We approach the action (6) as we do in the flat case. It is first useful to establish

when we can write a set of self-duality equations. Using the identity

DµφDµφ = |(D1 ± iD2)φ|2 ± |φ|2F12 ± i
(

∂1(φD2φ) − ∂2(φD1φ)
)

(8)

we can integrate by parts to write the action

S =
1

2

∫

r<R

d2x

(

|(D1 ± iD2)φ|2 +

(

√

hµF12 ±
1

2
√

hµ
(|φ|2 − 1)

)2

± F12

)

(9)

provided λµ = 1, which is the condition for self-duality. In this case we can at once write

down the self-dual equations

(D1 ± iD2)φ = 0

F12 ±
λ

2h
(|φ|2 − 1) = 0

(10)

Here, and in all that follows, the upper sign is appropriate for positive n, and the lower

sign for negative n.) If we write φ = feiω, we can solve the first of these to obtain

Aµ = ±ǫµν∂ν ln f + ∂µω (11)

and the other equation yields a single equation for f (ω is just the gauge degree of freedom),

which we can write in the form

∇2 ln

(

λf2

h

)

=

(

λf2

h

)

+

(

2 − λ

h

)

(12)

In writing this we have exploited the fact that ∇2 lnh = −2/h. We see straight away that

the case λ = 2, µ = 1/2 is very special; in this case we obtain the Liouville equation,

an integrable equation. This is the case that Witten considered in [7], where he found

explicitly 2|n| solutions of vorticity n. For general λ, however, Painlevé analysis suggests

that (12) is not integrable [17]. For later reference let us write down the equations for

a radially symmetric solution to the self-duality equations; the appropriate ansatz for a

radially symmetric n-vortex is

φ = f(r)einθ (13)
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where θ is the usual polar coordinate. Equation (11) gives

Aµ = −nǫµνxν

a(r)

r2

a(r) = 1 − rf ′

|n|f

(14)

and the second of equations (10) tells us

|n|a′

r
=

λ

2h
(1 − f2) (15)

or, equivalently, f must satisfy equation (12), which reduces to

(ln f)′′ +
(ln f)′

r
=

λ

2h
(f2 − 1) (16)

For the integrable case, λ = 2, we can write down the solutions to this equation satisfying

the necessary boundary conditions

f = p

(

(r/R) − (R/r)

(r/R)p − (R/r)p

)

(17)

where p = |n| + 1. It is straightforward to check that these solutions have the following

asymptotic behaviors; near r = 0

f(r) ∼ p

(

r

R

)|n|

a(r) ∼ 2

p − 1

(

r

R

)2
(18)

and near r = R

1 − f(r) ∼ p2 − 1

6

(

1 − r

R

)2

1 − a(r) ∼ (p − 1)2(p + 1)

3

(

1 − r

R

)

(19)

We will later be able to use these as a check for the asymptotic behaviors for general λ, µ.

Let us now look at the action (6) for arbitary λ, µ. The equations of motion are

DµDµφ +
λφ

2h
(1 − |φ|2) = 0

µ∂ν(hFµν) +
i

2
(φDµφ − φDµφ) = 0

(20)
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We look for a radially symmetric n−vortex solution in the form

φ = f(r)einθ

Aµ = −nǫµνxν

a(r)

r2

(21)

The equations of motion reduce to

f ′′ +
f ′

r
− n2f(1 − a)2

r2
+

λf

2h
(1 − f2) = 0

a′′ −
(

1

r
− h′

h

)

a′ +
f2

µh
(1 − a) = 0

(22)

(Note that these reduce to equations (2.18) in ref [16] if we set h = 1, and suitably redefine

coupling constants.) At this point it is useful to introduce the variable t = r/R to eliminate

the constant R from the problem. Using a dot to denote differentiation with respect to t,

we obtain

f̈ +
ḟ

t
− n2f(1 − a)2

t2
+

2λ

(1 − t2)2
(1 − f2) = 0

ä −
(

1

t
+

4t

1 − t2

)

ȧ +
4f2

µ(1 − t2)2
(1 − a) = 0

(23)

It is straightforward to compute the action density for the ansatz (21), and we obtain

S = 2π

∫

1

0

dtE(t)

E(t) =
tḟ2

2
+

n2f2(1 − a)2

2t
+

µn2(1 − t2)2ȧ2

8t
+

λt(1 − f2)2

2(1 − t2)2

(24)

We need to analyze the system (23) with the requisite boundary conditions. The first

step is to write Frobenius-type expansions for the solutions of (23) near the points t = 0

and t = 1, both of which are singular points of (23). We obtain the following results: near

t = 0 the nonsingular solutions of (23) have form

f = At|n|
(

1 +

∞
∑

q=1

fqt
2q

)

a = Bt2
(

1 +

∞
∑

q=1

aqt
2q

)

(25)
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Here A, B are some unspecified constants, and the fq’s and aq’s are constants determined by

A, B. It is possible to write a recursion relation for fq, aq in terms of A, B, f1, a1, ...., fq−1, aq−1,

but here we just give the first few coefficients explicitly

f1 = −
(

Bn2 + λ

2(|n| + 1)

)

f2 =
1

8(|n| + 2)

(

(Bn2 + λ)2

|n| + 1
− 4λ + n2B(B − 2) +

(

2λ +
n2

µ

)

A2δ|n|1

)

a1 = 1 − A2

2µ
δ|n|1

a2 = 1 − A2

6µB
δ|n|2 −

A2

6µB

(

4 − B − Bn2 + λ

|n| + 1

)

δ|n|1

(26)

Near t = 1 we find that solutions of (23) with f(1), a(1) finite are given by series

1 − f = α(1 − t)ζ

(

1 +
∞
∑

q=1

gq(1 − t)q

)

1 − a = β(1 − t)d

(

1 +

∞
∑

q=1

bq(1 − t)q

)

(27)

Here α, β are arbitrary constants, the gq’s and bq’s are defined by a recursion relation, and

ζ, d are given as the positive roots of

λ = ζ(ζ − 1)

1

µ
= d(d + 1)

(28)

Equations (28) are very pleasing. For Witten’s case [7], λ = 2 and µ = 1/2, so we have

ζ = 2 and d = 1. For Burzlaff’s case [10], λ = 2 and µ = 1/6, so we have ζ = 2 and d = 2.

Uhlenbeck [18] has shown that any solution of the Yang-Mills equations on R4 with finite

action can be obtained (in a suitable gauge) from a smooth gauge field on S4; thus if we

are to obtain finite-action solutions of the Yang-Mills equations from either the Witten or

Burzlaff ansätze, we need the coefficients ζ and d to be integers, and we see they are.

To summarize our problem, we see that we need to find solutions of (23), with f, a

given by (25) (for some A, B) near t = 0, and by (27) (for some α, β) near t = 1. Intuitively

this problem is solvable; essentially we just need to choose A, B, α, β in such a way that

10



f, a, ḟ , ȧ are continuous. We use a straightforward numerical method to actually solve the

problem. For a specific A, B we use the power series (25) with the coefficients (26) to

obtain f, a up to t = 0.002. We then use the Runge-Kutta method (introducing extra

dependent functions g = ḟ , b = ȧ to obtain a first order system), with a step length of

10−5, to integrate up to t = 1. All work was performed with double precision arithmetic.

There is an inherent instability as we approach t = 1, corresponding, roughly speaking,

to the negative roots d, ζ of equations (28). For generic A, B the functions f, a will be

unbounded as we approach t = 1. We label the functions f, a arising from the numerical

integration with a “+” if they are monotonically nondecreasing, and with a “−” otherwise.

Thus we can plot two curves in the A, B−plane corresponding to the values of A, B where

f and a change from “+” to “−” behavior. The critical values of A, B required for the

vortex solution, Acrit, Bcrit, will be at the intersection of these two curves. Plots of the

curves in the A, B−plane are shown in figure 1 for n = 1 for the Witten case λ = 2,

µ = 1/2, and similar plots are found for n = 2, 3, 4. We obtain the results

Acrit = |n| + 1

Bcrit =
2

|n|
(29)

as expected from (18).

In general we find we require very accurate values of Acrit, Bcrit (accuracy of about

one part in 109) to obtain “reasonable” vortex solutions. There is a useful method of

checking the “reasonableness” of a vortex solution; the action density E(t) defined in (24)

is linear in t for t ≈ 0, and for t ≈ 1 goes as (1 − t)2z, where

z = min(d, ζ − 1) (30)

In general, because of the instability at t = 1, we will find the numerical E(t) has a slight

“tail”, that is, instead of tending to zero in the expected way at t = 1, it will, after a

point, display a slight increase. We have aimed to obtain Acrit, Bcrit to an accuracy such
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that this “tail” affects the numerical approximation to the action by less than one part

in 103. The algorithm performs correctly, to well within the required accuracy, for the

Witten case.

It remains to give some results. First we check a self-dual case, λ = 6, µ = 1/6. For

any self-dual case, it is easy to check that for the n−vortex

Bcrit =
λ

|n|
S = π|n|

(31)

We reproduce these results accurately, and we find the values for Acrit given in table 1.

(Note that while we quote Acrit values to the accuracy necessary to make our numerical

algorithm produce reasonable vortex solutions, it is possible that the Acrit of our numerical

procedure is only the same as the real Acrit to a lower degree of accuracy.) In figure 2 we

display the curves in the A, B−plane for this case, for n = 1, and in figure 3 we display the

functions f, a for n = 1, 2, 3, 4 for both the Witten case and this case: note the difference

in the behaviors at t = 1.

Now we move to the Burzlaff case, λ = 2, µ = 1/6. We obtain the results in table

2. The A, B−plane plot, for n = 1, is shown in figure 4 and f, a plots, for n = 1, 2, 3, 4,

are in figure 5. The A, B−plane plot shows an interesting feature: the curve marking the

change of behavior of f apparently has a cusp at (Acrit, Bcrit). This feature is reproduced

for higher n, and we have found this feature in general for λµ < 1 (but it seems that the

curve straightens as λµ ր 1, and we have not noticed a cusp in plots for λµ > 1). One

proviso is in order here: our numerical algorithm is not necessarily reliable anywhere but

exactly at the vortex solution.

Finally we present results for 1− and 2−vortices for λ = 2 and a range of values of

µ. The results are summarized in table 3, where the superfix on Acrit etc. denotes the

value of n. The main result here is that for λµ < 1 (λµ > 1) it seems that the 2−vortex

is stable (unstable) against decay into two 1−vortices. This, and the fact that the action

is an increasing function of λµ are in accordance with the flat space results.
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3.Non-Self-Dual SU(3) Yang-Mills Solutions

We feel no need to reproduce verbatim the analysis of Burzlaff [10], save for one

point that requires a little clarification. Witten’s ansatz [7] for cylindrically symmetric

SU(2) gauge fields can be embedded into SU(3) in two distinct ways. One uses the the

SU(2) subalgebra of SU(3) with the generators σi = (λ1/2, λ2/2, λ3/2) and the other uses

the SU(2) subalgebra with generators Ei = (λ7,−λ5, λ2) (Here the λa’s are the usual

Gell-Mann matrices). Both σi and Ei satisfy the SU(2) commutation relation

[T i, T j] = iǫijkT k (32)

but we have different trace formulae

Tr(σiσj) = 1

2
δij

Tr(EiEj) = 2δij
(33)

Because of this difference, when we use the Ei’s for the embedding we obtain the hyperbolic

space action (6) with λ = 2, µ = 1/2, with a prefactor of 32π, as compared to a prefactor of

8π which we obtain when using the σi’s. Burzlaff’s construction for non-self-dual solutions

gives the action (6) with λ = 2, µ = 1/6, with a prefactor of 32π.

Having stated this we can at once give the main result of this paper: we have non-

self-dual SU(3) solutions with action given by 64π2 times the figures in the last column of

table 2. This is in units where the standard instanton action is 8π2, so the lowest action

of our solutions is roughly 3.3 times the instanton action. We would speculate that there

exists a solution of the type we have looked at for any n, and we see that the action for

the “n−solution” is less than n times the action of the basic solution. The asymptotic

behavior for large n is clearly of interest. We note that the solution for n = 4 is almost as

low as only three times the n = 1 action. The lowest action for a non-self-dual solution in

SU(2) found by Sadun and Segert [8] is roughly 5.4 times the instanton action. In SU(4)

gauge theory, it is clear that we can find a non-self-dual solution with action twice that

of the instanton: we pick two commuting SU(2) subalgebras and consider the potential

which is composed of an instanton in one SU(2) and an anti-instanton in the other SU(2).
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Let us investigate just briefly the geometry of our solutions. To do this we must revert

to the upper half plane model of hyperbolic space. In section 2 we introduced Cartesian

coordinates (x, y) on hyperbolic space in the upper half plane model, and (x1, x2) on

hyperbolic space in the ball model, and we also used polar coordinates (r, θ) on the ball

model. Let us now introduce polar coordinates (ρ, φ) on the upper half plane model

(0 < ρ < ∞, 0 < φ < π) via

ρ =
√

x2 + y2

φ = tan−1(y/x)
(34)

ρ is the standard radial coordinate of R4 (that is, if the R4 coordinates are (y1, y2, y3, y4),

then ρ =
√

(y1)2 + (y2)2 + (y3)2 + (y4)2). The action density of our solutions can be

expressed in the ball model as a function of r alone, but in the upper half plane model it

is a function of the two variables ρ, φ. Explicitly we have, for the Yang-Mills action,

Y M = 32π

∫ R

0

∫

2π

0

d

(

r

R

)

dθ E(r/R)

= 32π

∫ ∞

0

∫ π

0

d

(

ρ

R

)

dφ JE(r/R)

(35)

where J is the necessary Jacobian

J =
s

t

(

1

1 + s2 + 2s sinφ

)2

(36)

where we have written t = r/R, as before, and we have introduced s = ρ/R. In terms of

ρ, φ, we have

t =
r

R
=

√

1 − 4s sinφ

1 + s2 + 2s sinφ
(37)

The functions E(t) for our solutions, with n = 1, 2, 3, 4 are displayed in figure 6; as men-

tioned above, for t ≈ 1, E(t) behaves as a multiple of (1 − t)2. This completes all the

necessary information to work out the large ρ behavior of the action density, that is the

integrand of (the second part of) (35). We find that the action density drops off (for fixed

φ) as (ρ/R)−5. This is identical to the behavior of the standard instanton, except of course

we must remember that our solutions do not have full “spherical” symmetry in R4. The
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reproduction of the instanton result here is essentially due to the fact that the parameter

z of equation (30) is the same for the Witten case and the Burzlaff case. We note that

our solutions, like standard instantons, have a scale parameter R associated with them.

It seems, in fact, that there is an eight parameter family of our solutions (for each n), as

opposed to a five parameter family for the standard instanton: we have in addition to the

usual “center” and “scale” parameters, three extra parameters associated with the choice

of the time axis, which we use to define the cylindrical symmetry. Possible subtleties could

arise in this naive counting, however, due to gauge transformations. We can also consider

the effect of the full conformal group on our solutions: applying special conformal transfor-

mations to our eight parameter family could generate up to a twelve parameter family of

solutions (compare [19]); the form of the potentials for the solutions thus generated would,

it seems, be messy, and the task of checking that these solutions are not gauge equivalent

might be very tricky.

In conclusion, we just mention a few more points worthy of study, in addition to the

various points that have been mentioned in passing above. It is important to examine

the stability of our solutions as solutions of the Yang-Mills equations (as solutions of the

hyperbolic abelian Higgs model it seems they correspond to genuine minima of the action).

By virtue of the results of [5] they do not correspond to minima of the action functional, but

to saddle points, and it is of interest to count (if it is finite) the number of small variations

away from the solutions that reduce the action functional. Intuitively, the objects that

we have found are potentially of more relevance to physics if this number is low. Another

question that could produce interesting results is to generalize Burzlaff’s ansatz to larger

groups, using other SU(2) embeddings, to see if we can obtain hyperbolic abelian Higgs

models with other couplings. We expect the couplings to be such that the numbers ζ,d

defined by equation (28) are integers.
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Table 2: Vortex solution data for λ = 2, µ = 1/6

Table 3: 1− and 2−vortex solution data for λ = 2 and various values of µ
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Figure Captions

Figure 1: A, B−plane plot for λ = 2, µ = 1/2, n = 1. (The label “+−” denotes that the

function f has “+” behavior and the function a has “−” behavior in the marked

region; the other labels are defined similarly.)

Figure 2: A, B−plane plot for λ = 6, µ = 1/6, n = 1.

Figure 3: (a) f(t) plots for λ = 2, µ = 1/2, n = 1, 2, 3, 4.

(b) a(t) plots for λ = 2, µ = 1/2, n = 1, 2, 3, 4.

(c) f(t) plots for λ = 6, µ = 1/6, n = 1, 2, 3, 4.

(d) a(t) plots for λ = 6, µ = 1/6, n = 1, 2, 3, 4.

Figure 4: A, B−plane plot for λ = 2, µ = 1/6, n = 1.

Figure 5: (a) f(t) plots for λ = 2, µ = 1/6, n = 1, 2, 3, 4.

(b) a(t) plots for λ = 2, µ = 1/6, n = 1, 2, 3, 4.

Figure 6: E(t) plots for λ = 2, µ = 1/6, n = 1, 2, 3, 4.
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Tables

n Acrit

1 3.13728895
2 6.80933129
3 12.40261138
4 20.30221717

Table 1: Acrit values for λ = µ−1 = 6

n Acrit Bcrit S/2π
1 2.32258782 4.55248618 0.412
2 4.18191496 2.18876301 0.783
3 6.57417323 1.43867781 1.145
4 9.51117487 1.07160765 1.504

Table 2: Vortex solution data for λ = 2, µ = 1/6

µ A1

crit B1

crit A2

crit B2

crit S1/2π S2/2π
1/6 2.3225878 4.5524862 4.1819150 2.1887630 0.412 0.783
0.4 2.0546757 2.3706522 3.1859077 1.1771755 0.481 0.954
0.5 2.0000000 2.0000000 3.0000000 1.0000000 0.500 1.000

0.75 1.9131831 1.4605004 2.7169828 0.7383847 0.534 1.085
1.0 1.8607006 1.1626815 2.5531907 0.5917803 0.557 1.145
1.5 1.7984541 0.8362130 2.3661313 0.4290016 0.589 1.227
5.0 1.6807265 0.2949309 2.0341395 0.1535178 0.665 1.421

Table 3: 1− and 2−vortex solution data

for λ = 2 and various values of µ
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