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Abstract. Consider a three-point difference scheme

−h−2∆(2)yn + qn(h)yn = fn(h), n ∈ Z = {0,±1,±2, . . .} (1)

where h ∈ (0, h0], h0 is a given positive number,

∆(2)yn = yn+1 − 2yn + yn−1, f(h)
def
= {fn(h)}n∈Z ∈ Lp(h), p ∈ [1,∞),

Lp(h) = {f(h) : ‖f(h)‖Lp(h) < ∞}, ‖f(h)‖p

Lp(h) =
∑

n∈Z

|fn(h)|ph.

Assume that the sequence q(h)
def
= {qn(h)}n∈Z satisfies the a priori condition

0 ≤ qn(h) < ∞ ∀ n ∈ Z, ∀ h ∈ (0, h0].

We obtain criteria for the stability of scheme (1) in Lp(h), p ∈ [1,∞).

1. Introduction

In this paper we continue the study started in [4],[5],[3],[2]. We consider a difference

scheme

−h−2∆(2)yn + qn(h)yn = fn(h), n ∈ Z = {0,±1,±2, . . . , } (1.1)

where h ∈ (0, h0], h0 is a given positive number, f(h)
def
= {fn(h)}n∈Z ∈ Lp(h), p ∈ [1,∞)

(for p = ∞ see [2]),

Lp(h) = {f(h) : ‖f(h)‖Lp(h) < ∞}, ‖f(h)‖p
Lp(h) =

∑

n∈Z

|fn(h)|ph.

Throughout the sequel, it is assumed that the sequence q(h)
def
= {qn(h)}n∈Z satisfies the

a priori condition

0 ≤ qn(h) < ∞ ∀ n ∈ Z, ∀ h ∈ (0, h0]. (1.2)
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Our main goal is to describe the class of sequences q(h) such that the difference scheme

(1.1) is stable in the space Lp(h), p ∈ [1,∞) (see [10, Ch.5, §12], or, equivalently, such that

the equation (1.1) is correctly solvable in Lp(h) regardless of h ∈ (0, h0] (see [12, Ch.II, §3,

no3; Ch.II, §4, no2]). The latter statement requires that we study conditions necessary and

sufficient for the validity of the following assertions:

I) for every h ∈ (0, h0] and for any sequence f(h) ∈ Lp(h), p ∈ [1,∞), there is a unique

solution to (1.1) y(h)
def
= {yn(h)}n∈Z ∈ Lp(h).

II) for every h ∈ (0, h0] and for any sequence f(h) ∈ Lp(h), p ∈ [1,∞) the solution

y(h) ∈ Lp(h) of (1.1) satisfies the inequality

‖y(h)‖Lp(h) ≤ c(p)‖f(h)‖Lp(h) (1.3)

with an absolute constant c(p) ∈ (0,∞).

Here by a solution to (1.1) we mean any sequence y(h) = {yn(h)}n∈Z satisfying equality

(1.1) for all n ∈ Z. We impose no additional requirement to q(h) (see, for example, Definition

2.2 in Section 2). Thus validity or non-validity of I) – II) only depends on the properties of

the sequence q(h). Note that under condition (1.4):

0 < ε ≤ qn(h) < ∞ ∀ n ∈ Z, ∀ h ∈ (0, h0] (1.4)

which is stronger than (1.2), the difference scheme (1.1) becomes stable in Lp(h) for all

p ∈ [1,∞] (see [4], [2]). Therefore the problem on validity of I) – II) only arises when the

sequence q(h) is not separated from zero for n ∈ Z, h ∈ (0, h0]. In the latter case the study

of the properties of the solution y(h) ∈ Lp(h) of (1.1) is much more difficult (see [3], [2]).

Perhaps this is the main reason why the problem of stablity of (1.1) in Lp(h), p ∈ [1,∞)

was studied under some additional assumptions, as, for example, in [3].

In this paper, we show, among other things, that additional assumptions in [3] are irrele-

vant and the problem of stability of (1.1) in Lp(h), p ∈ [1,∞) can be reduced to a problem

which has already been studied in [3] (see Section 3). We now briefly describe our main re-

sults. Our main statement (Theorem 3.1) contains a criterion for the validity of I) – II) and

is expressed in terms of a certain auxiliary sequence {dn(h)}n∈Z . The sequence {dn(h)}n∈Z

is an average characteristic of the sequence {qn(h)}n∈Z , and for given n ∈ Z and h ∈ (0, h0],

it may not be directly expressed in terms of the values of qn(h). Such a form of a criterion

of stability of (1.1) may be inconvenient for applications, and therefore we complete Theo-

rem 3.1 by equivalent Theorems 3.2 and 3.3. These assertions can be formulated in terms
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of {qn(n)}n∈Z which is more reasonable for the investigation of concrete difference schemes.

Note that Theorems 3.2 and 3.3 are easy consequences of our main Theorem 3.1. (Recall

that Theorem 3.1, in turn, easily follows from the main result of [3]) (see Theorem 2.3 in

Section 2). Nevertheless, we state them as theorems because they contain possible new ap-

proaches to the study of the difference scheme (1.1) which differ from those suggested in

Theorem 3.1. For example, in Section 7 we consider a basic variant of uses of the application

of Theorem 3.2 (see [5], [2] for applications of Theorem 3.1 to concrete difference schemes).

Namely, we consider the problem of numerical inversion of the equation

−y′′(x) + q(x)y(x) = f(x), x ∈ R (1.5)

where f(x) ∈ Lp(R), p ∈ [1,∞] and

0 ≤ q(x) ∈ Lloc
1 (R), x ∈ R. (1.6)

(Equation (1.5), together with condition (1.6), is denoted below (1.5) – (1.6).) In connection

with (1.5) – (1.6), in Section 7 we study a standard difference scheme (1.1) with

qn(h) =
1

2h

∫ xn+h

xn−h

q(t)dt, xn = nh, n ∈ Z, h ∈ (0, 1]. (1.7)

(Such a scheme is denoted (1.1) – (1.7).)

Using Theorem 3.2, we show (see Theorem 3.4) that the difference scheme (1.1) – (1.7)

is stable in Lp(h), p ∈ [1,∞] if and only if the initial equation (1.5) – (1.6) is correctly

solvable in Lp(R). Usually, it is not so hard to check the latter condition (see [6] and

Theorem 2.4 in Section 2), and we thus get a definite answer to the question of stability of

(1.1) – (1.7) by studying the properties of the coefficient q(x) of the initial differential problem

(1.5) – (1.6). Thus, from the point of “stability”, the standard difference scheme (1.1) – (1.7)

turned out to be an ideal model for (1.5) – (1.6) and certainly deserves special attention.

Therefore, the study of (1.1) – (1.7) will be continued in our forthcoming paper. In partic-

ular, our primary goal is to study the problem on covergence of the solution of (1.1) – (1.7)

in the nodes xn, n ∈ Z to the solution of (1.5) – (1.6) as h → 0. We believe that the results

of this paper will be used to solve the latter problem.

2. Preliminaries

Throughout the sequel the letter c stands for absolute positive constants which are not

essential for exposition and may differ even within a single chain of calculations. We denote
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by h an arbitrary number from the segment (0, h0]. We assume that condition (1.2) holds

without special mentioning.

Lemma 2.1. [4] Suppose that for every n ∈ Z, we have

n
∑

k=−∞

qk(h) > 0,

∞
∑

k=n

qk(h) > 0. (2.1)

Then there exists a fundametnal system of solutions (FSS) {u(h), v(h)} def
= {un(h), vn(h)}n∈Z

of equation (2.2):

h−2∆(2)zn = qn(h)zn, n ∈ Z (2.2)

such that the solutions u(h), v(h) satisfy the relation

0 < un+1(h) ≤ un(h), vn+1(h) ≥ vn(h) > 0, n ∈ Z

vn+1(h)un(h) − vn(h)un+1(h) = h,

un(h) = vn(h)
∞
∑

k=n

h

vk(h)vk+1(h)
, n ∈ Z

lim
n→−∞

vn(h)

un(h)
= lim

n→∞

un(h)

vn(h)
= 0

lim
n→−∞

un(h) = lim
n→∞

vn(h) = ∞.

(2.3)

Throughout this section we assume that (2.1) holds. Denote by Gn,m(h) the difference

Green function corresponding to equation (1.1):

Gn,m(h) =











un(h)vm(h) if n ≥ m

, n, m ∈ Z

um(h)vn(h) if n ≤ m

(2.4)

ρ(h) = Gn,m(h)
∣

∣

n=m
= un(h)vn(h), n ∈ Z.

Theorem 2.1. [4] Let n, m ∈ Z and n 6= m. Then the Green function Gn,m(h) admits a

representation of the Davies-Harrell type (see [7]):

Gn,m(h) =
√

ρn(h)ρm(h) ·















m−1
∏

k=n

[

1 + uk(h)
uk+1(h)

h
ρk(h)

]−1/2

, n < m

n−1
∏

k=m

[

1 + uk(h)
uk+1(h)

h
ρk(h)

]−1/2

, n > m
(2.5)
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Consider auxiliary sequences {ℓn(h)}n∈Z and {dn(h)}n∈Z ;

ℓn(h) =











0, if qn(h)h2 ≥ 1

min
j≥0

{

j : j ·
n+j
∑

k=n−j

qk(h)h2 ≥ 1

}

, if qn(h)h2 < 1
(2.6)

dn(h) =

{

h
1+qn(h)h2 , if ℓn(h) = 0

ℓn(h)h, if ℓn(h) 6= 0
(2.7)

These sequences were introduced in [1] and used in [5], [4], [3], [2]. Below we state various

properties of the FSS {u(h), v(h)} of equation (2.2) and of the Green function Gn,m(h) in

terms of ℓn(h) and dn(h).

Lemma 2.2. [3] For every n ∈ Z, we have

c−1 ≤ vk(h)

vn(h)
,

uk(h)

un(h)
≤ c for |k − n| ≤

[

ℓn(h)

2

]

. (2.8)

Theorem 2.2. [5] For every n ∈ Z we have

8−1dn(h) ≤ ρn(h) = un(h)vn(h) ≤ 16dn(h). (2.9)

Denote Z ′ = Z \ 0 = {±1,±2, . . . }, [m, p] = {m, m + 1, . . . , p} for m < p, [m, p] = p for

m = p and m, p ∈ Z. We call the sets [m, p], m ≤ p segments.

Definition 2.1. [3] Let n ∈ Z be given. A system of segments ∆s = [∆−
s , ∆+

s ], ∆−
s ≤ ∆+

s

and ∆−
s , ∆+

s ∈ Z, s ∈ Z ′ is called a Z(n)-covering of Z if the following conditions hold:

1) ∆s ∩ ∆′
s = ∅ for s 6= s′;

2)
−1
⋃

s=−∞

∆s = (. . . , n − 2, n − 1],
∞
⋃

s=1

= [n + 1, n + 2, . . . ).

Remark 1. The segments of a Z(n)-covering of Z do not contain the point n.

Lemma 2.3. [3] For every n ∈ Z there is a sequence {ks}s∈Z′ such that one can form a

Z(n)-covering of Z from the segments {∆̃s, ∆̃
′
s}s∈Z′. Here

1) ∆̃s = ∆̃′
s = [ks, ks] = ks if ℓks

(h) ∈ {0, 1},
2) ∆̃s = [ks − [2−1ℓks

(h)] + 1, ks + [2−1ℓks
(h)]] if ℓks

(h) ≥ 2,

∆̃′
s = [ks − [2−1ℓks

(h)], ks + [2−1ℓks
(h)]] if ℓks

≥ 2.

Lemma 2.4. [3] Suppose that segments {∆s}s∈Z′ form a Z(n)-covering from Lemma 2.3.

Then for any s ∈ Z ′ we have

Ts(h)
def
=
∏

k∈∆s

(

1 +
uk(h)

uk+1(h)

h

ρk(h)

)

≥ γ−1, γ−1 =
50

49
. (2.10)
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Lemma 2.5. [4] Let f(h) = {fn(h)}n∈Z be a sequence such that the series

yn(h)
def
= (Gf)n(h)

def
=
∑

m∈Z

Gn,m(h)fm(h)h, n ∈ Z (2.11)

absolutely converges for every n ∈ Z. Then the sequence y(h) = {yn(h)}n∈Z is a solution to

equation (1.1).

Lemma 2.6. [3] Denote

H = sup
h∈(0,h0]

sup
n∈Z

∑

m∈Z

Gn,m(h)h (2.12)

A = sup
h∈(0,h0]

sup
n∈Z

dn(h). (2.13)

Then

H ≤ cA(A + h0). (2.14)

Lemma 2.7. [2] Suppose that inequalities (2.1) hold and A < ∞ (see (2.13)). Then for

every n ∈ Z we have the following estimates (see (2.7)):

c−1dn(h) ≤
∑

m∈Z

Gn,m(h)h ≤ c
√

dn(h). (2.15)

Definition 2.2. We say that the inverse problem for equation (1.1) is regular in the space

Lp(h), p ∈ [1,∞) if together with statements I) – II) (see §2), the following statement also

holds:

III) for every h ∈ (0, h0] and for any f(h) ∈ Lp(h), p ∈ [1,∞), the solution y(h) ∈ Lp(h) of

equation (1.1) admits representation (2.11).

Theorem 2.3. [3] Suppose that condition (2.1) holds. For p ∈ [1,∞), the inversion problem

for equation (1.1) is regular in the space Lp(h) if and only if A < ∞ (see (2.13)).

We also need one result from [6]. Consider equation (1.5) assuming that (1.6) holds.

Below by a solution of (1.5) we mean any function y(x) such that y(x), y′(x) ∈ AC loc(R)

and equality (1.5) holds almost everywhere in R. We say that equation (1.5) is correctly

solvable in a given space Lp(R), p ∈ [1,∞] if for any function f(x) ∈ Lp(x), there is a unique

solution y(x) ∈ Lp(R) to (1.5) and the following inequality holds:

‖y(x)‖p ≤ c(p)‖f(x)‖p, ∀ f(x) ∈ Lp(R)

where c(p) ∈ (0,∞) is an absolute constant.
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Theorem 2.4. [6] Let p ∈ [1,∞] be given. Equation (1.5) is correctly solvable in Lp(R) if

and only there is a ∈ (0,∞) such that q0(a) > 0. Here

q0(a) = inf
x∈R

∫ x+a

x−a

q(t)dt. (2.16)

3. Statement of Results

Below we present three equivalent statements: Theorems 3.1, 3.2 and 3.3. Each of these

assertions contains a criterion for stability of the difference scheme (1.1) in Lp(h), p ∈ [1,∞).

Theorem 3.1 is intended for investigation of general properties of the solution of equation

(1.1) (see, for example, the proof of Corollary 3.1.1 in Section 4), and Theorems 3.2 and

3.3 are more convenient as practical criteria for checking stability of concrete difference

schemes (see, for example, the proof of Theorem 3.4 in Section 7). Note that for the sake of

completeness, we also include the case p = ∞. The proofs for p = ∞ can be found in [2].

Theorem 3.1. For every p ∈ [1,∞] the difference scheme (1.1) is stable in Lp(h) if and

only if condition (2.1) holds and A < ∞ (see (2.13)). In particular, one of the following

assertions holds:

A) The difference scheme (1.1) is stable in Lp(h) for all p ∈ [1,∞]

B) For all p ∈ [1,∞] the difference scheme (1.1) is non-stable in Lp(h).

In addition, in case A), for any sequence f(h) ∈ Lp(h), p ∈ [1,∞], the solution y(h) ∈
Lp(h) of (1.1) admits representation (2.11).

Corollary 3.1.1. Suppose that the difference scheme (1.1) is stable in Lp(h), p ∈ [1,∞].

Then for every right-hand side f(h) ∈ Lp(h), the solution y(h) ∈ Lp(h) of (1.1) satisfies the

following inequalities:

‖q(h)1/py(h)‖Lp(h) ≤ c‖f(h)‖Lp(h), (3.1)

‖r(h)y(h)‖Lp(h) ≤ c‖f(h)‖Lp(h). (3.2)

Here r(h) = {dn(h)−1/2}n∈Z (see (2.7)). In addition, for p = 1 we have

‖∆(2)y(h)‖L1(h) + ‖q(h)y(h)‖L1(h) ≤ 3‖f(h)‖L1(h). (3.3)

Here ∆(2)y(h) = {∆(2)yn(h)}n∈Z .
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Remarks. In case (1.4) estimate (3.3) was obtained in [11]. Inequality (3.3) means that for

f(h) ∈ L1(h) a stable difference scheme (1.1) can be decomposed into summands which are

uniformly bounded in L1(h). A problem on decomposability of difference equations appeared

as an analogue of the corresponding problem for a differential operator which was first studied

in [8], [9].

Theorem 3.2. For any p ∈ [1,∞] the difference scheme (1.1) is stable in Lp(h) if and only

if there is an absolute positive constant c0 such that c0h
−1
0 ≥ 1 and B > 0. Here

B = inf
h∈(0,h0]

inf
n∈Z

n+k0(h)
∑

k=n−k0(h)

qk(h)h, k0(h) = [c0h
−1] (3.4)

Theorem 3.3. For any p ∈ [1,∞], the difference scheme (1.1) is stable in Lp(h) if and only

if there is an absolute positive constant c0 such that c0h
−1
0 ≥ 1 and S > 0. Here

S = inf
h∈(0,h0]

inf
n∈Z

1

2k0(h) + 1

n+k0(h)
∑

k=n−k0(h)

qk(h), k0(h) = [c0h
−1]. (3.5)

Corollary 3.3.1. If for at least one h ∈ (0, h0] any of the following equalities

lim
n→−∞

qn(h) = 0, lim
n→∞

qn(h) = 0, (3.6)

holds, then the difference scheme (1.1) is non-stable in Lp(h) for any p ∈ [1,∞].

In particular, the difference scheme (1.1) is non-stable in Lp(h) for any p ∈ [1,∞] if for at

least one h ∈ (0, h0], any of the following inequalities holds:

0
∑

n=−∞

qn(h) < ∞,
∞
∑

n=0

qn(h) < ∞. (3.7)

From Theorem 3.3 it follows that if (1.4) holds, then for every c0 (such that c0h
−1
0 ≥ 1) the

following inequalities hold:

S = inf
h∈[0,h0]

inf
n∈Z

1

2k0(h) + 1

n+k0(h)
∑

k=n−k0(h)

qk(h) ≥ inf
h∈(0,h0]

inf
n∈Z

1

2k0(h) + 1

n+k0(h)
∑

k=n−k0(h)

ε = ε > 0,

and therefore in this case the difference scheme (1.1) is stable in Lp(h), p ∈ [1,∞]. The proof

of this assertion and short and transparent because using Theorem 3.3 shows its efficiency

(compare with the proof of the same result in [4] independent of Theorem 3.3. The next the-

orem establishes a relationship between the difference scheme (1.1) – (1.7) and the equations

(1.5) – (1.6).
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Theorem 3.4. For any p ∈ [1,∞] the difference scheme (1.1) – (1.7) is stable in Lp(h) if

and only if equation (1.5) with condition (1.6) is correctly solvable in Lp(R).

4. Proof the First Stability Criterion

In this section we prove Theorem 3.1.

Proof of Theorem 3.1. Necessity.

Suppose that for some p ∈ [1,∞) the difference scheme (1.1) is stable in Lp(h). Let us

show that inequalities (2.1) hold. Assume the contrary. For example, assume that there

exist n ∈ Z and h1 ∈ (0, h0] such that

∞
∑

n=n0

qk(h1) = 0. (4.1)

Then, in view of (1.2), we obtain

qn(h1) = 0 for n ≥ n0. (4.2)

Let us show that equalities (4.2) contradict assertions I) – II) from Section 1. Without loss

of generality, we may (and shall) assume that n0 = −3. Let m0 be a sufficiently large natural

number. For any arbitrary natural number m ≥ m0, consider the sequence y(m) = {y(m)
n }n∈Z

where

y(m)
n =











h2
1, if n = 0

h2
1 + (n − 1)h4

1, if n = 1, 2, . . . , m

0, if n /∈ {0, 1, 2, . . . , m}
(4.3)

From (4.2) and (4.3) it immediately follows that equalities (1.1) hold for h = h1 and fn(h) =

f
(m)
n where

f (m)
n =







































−1, if n = −1

1, if n = 0

−h2
1, if n = 1

1 + mh2
1, if n = m

−1 − (m − 1)h2
1, if n = m + 1

0, if n /∈ {−1, 0, 1, m, m + 1}, n ∈ Z

(4.4)

Let f (m) = {f (m)
n }n∈Z . Since m ≥ m0 ≫ 1, from (4.4) it follows that

‖f (m)‖p
Lp(h1) = {2 + h2p

1 + (1 + mh2
1)

p + [1 + (m − 1)h2
1]

p}h1 ≤ c(h0)m
ph2p+1

1 . (4.5)

By (4.5), we have f (m) ∈ Lp(h1) and therefore, according to I) (see Section 1), for h = h1 in

the space Lp(h1), there exists a unique solution to (1.1) with f(h1) = f (m). Since by (4.3)



10 N.A. CHERNYAVSKAYA, L.A. SHUSTER, J. SCHIFF

we have y(m) ∈ Lp(h1), the sequence y(m) coincides with this solution. Note that for any

m ≥ m0 ≫ 1, we have an obvious estimate

‖y(m)‖p
Lp(h1)

=

{

2hp
1 +

m
∑

n=2

[h2
1 + (n − 1)h4

1]
p

}

h1 ≥ c(p)h4p+1
1 mp+1. (4.6)

Now, using (1.3), (4.6) and (4.5), we get

c(p)h4p+1
1 mp+1 ≤ ‖y(m)‖p

Lp(h1)
≤ c‖f (m)‖p

Lp(h1)
≤ c(h0)h

2p+1
1 mp

⇒ h2p
1 ≤ cm−1, ∀ m ≥ m0 ≫ 1 ⇒ h1 = 0,

a contradiction.

Hence inequalities (2.1) hold, as required. Let us now show that condition (2.1) and

assertions I) – II) (see Section 1) imply assertion III) from Definition 2.2. Let f(h) =

{fn(h)}n∈Z ∈ Lp(h) and y(h) = {yn(h)}n∈Z be the unique solution of (1.1) in Lp(h), and let

{u(h), v(h)} be a FSS of (2.2) with properties (2.3). Let us multiply the equalities

−∆(2)yk(h) + qk(h)yk(h)h2 = fk(h)h2, k ∈ Z

by vk(h) and add up for k ∈ [m, n], m ≤ n.

n
∑

k=m

fk(h)vk(h)h2 = −
n
∑

k=m

(∆(2)yk)vk(h) +

n
∑

k=m

qk(h)vk(h)yk(h)h2

= −
n
∑

k=m

yk∆
(2)vk(h) +

n
∑

k=m

qk(h)vk(h)yk(h)h2 + ynvn+1(h)

− yn+1vn(h) + ymvm−1(h) − vmym−1(h)

=

n
∑

k=m

[−∆(2)vk(h) + qk(h)vk(h)h2]yk + ynvn+1(h) − yn+1vn(h)

+ ymvm−1(h) − vmym−1

⇒ ynvn+1(h) − yn+1vn(h) + ymvm−1(h) − vmym−1

=
n
∑

k=m

fk(h)vk(h)h2, m ≤ n.

(4.7)

Since y(h) ∈ Lp(h), we conclude that ym → 0 as m → −∞. Then from (2.3) it follows that

the left-hand side of (4.7) tends to ynvn+1(h) − yn+1vn(h) as m → −∞. Hence the sum in

the right-hand side of (4.7) has a limit as m → −∞, and we obtain

ynvn+1(h) − yn+1vn(h) =
n
∑

k=−∞

vk(h)fk(h)h2, n ∈ Z. (4.8)
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Similarly, we verify equality (4.9):

yn+1un(h) − un+1(h)yn =
∞
∑

k=n+1

uk(h)fk(h)h2, n ∈ Z. (4.9)

Let us now multiply (4.8) and (4.9) by un(h) and vn(h), respectively, and add up the

resulting equalities. Then (2.3) implies

un(h)[ynvn+1(h) − yn+1vn(h)] + vn(h)[yn+1(h)un(h) − un+1(h)yn]

= yn[vn+1(h)un(h) − vn(h)un+1(h)] = ynh =
∑

k∈Z

Gn,k(h)fk(h)h2.

After cancelling h ∈ (0, h0] in the last equality, we obtain the needed representation:

yn = yn(h) =
∑

m∈Z

Gn,m(h)fm(h)h, n ∈ Z. (4.10)

Thus we conclude that conditions (2.1) hold, and the inversion problem for (1.1) is regular

in Lp(h) for some p ∈ [1,∞) (see Definition 2.2). Then by Theorem 2.3 we have A < ∞, as

required.

Proof of Theorem 3.1. Sufficiency.

The main assertion of the theorem immediately follows from Theorem 2.3. Moreover,

since the conditions obtained for the stability of the scheme (1.1) in Lp(h) do not depend on

p ∈ [1,∞) and are exact, we obtain the alternative given in A) and B) (see Theorem 3.1).

Finally, in case A) we have the representation (4.10) (see above) which concludes the proof

of all the assertions of Theorem 3.1.

Proof of Corollary 3.1.1. If a difference scheme is stable, then the inequalities (2.1) and

A < ∞ hold (see (2.13)). Then inequalities (3.1) and (3.3) follows from Theorem 2.3 (see

[3]). Let us check inequality (3.2). We need the following lemma.

Lemma 4.1. Suppose that inequalities (2.1) hold. Then

c−1 ≤ dk(h)

dn(h)
≤ c for |k − n| ≤

[

ℓn(h)

2

]

, n ∈ Z. (4.11)

If, in addition, A < ∞ (see (2.13)), then

sup
h∈(0,h0]

sup
n∈Z

∑

m∈Z

1
√

dm(h)
Gn,m(h)h < ∞. (4.12)
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Proof. Estimates (4.11) were obtained in [3]. To prove the second inequality, we divide the

sum in (4.12) into three summands:

∑

m∈Z

1
√

dm(h)
Gn,m(h)h =

n−1
∑

m=−∞

1
√

dm(h)
Gn,m(h)h

+
Gn,n(h)
√

dn(h)
+

∞
∑

m=n+1

1
√

dm(h)
Gn,m(h)h := S

(n)
1 (h) + S

(n)
2 (h) + S

(n)
3 (h).

Let us estimate S
(n)
k (h), k = 1, 3 separately. First, from (2.9), it follows that

S
(n)
2 (h) =

Gn,n(h)h
√

dn(h)
=

ρn(h)h
√

dn(h)
≤ c
√

dn(h)h ≤ c
√

Ah0.

The sums S
(n)
1 and S

(n)
2 (h) can be estimated in the same way, so we only consider, say,

S
(n)
3 (h). In the following, we use Lemmas 2.1, 2.3, 2.4, inequalities (2.9), (4.11), and formula

(2.4):

S
(h)
3 (h) =

∞
∑

m=n+1

Gn,m(h)h
√

dm(h)
=

∞
∑

s=1

∑

k∈∆s

Gn,k(h)h
√

dk(h)

≤ c
∞
∑

s=1

1
√

d∆−

s
(h)

Gn,∆−

s
(h)

(

∑

k∈∆s

1

)

h = c
vn(h)un+1(h)h
√

dn+1(h)

+ c
∞
∑

s=2

√

ρn(h)ρ∆−

s
(h)

d∆−

s
(h)

s−1
∏

i=1

∏

k∈∆i

[

1 +
uk(h)

uk+1h)

h

ρk(h)

]−1/2(

2

[

ℓks
(h)

2

]

+ 1

)

h

≤ c
ρn+1(h)h
√

dn+1(h)
+ c
√

dn(h)

∞
∑

s=2

s−1
∏

i=1

Ts(h)−1/2(ℓks
(h)h + h)

≤ c
√

dn+1(h)h + c
√

dn(h)
∞
∑

s=2

(dks
(h) + h)γ

s−1

2 ≤ c
√

Ah0 + c
√

A(A + h0)
∞
∑

s=2

γ
s−1

2

= c < ∞.

In the following, to prove inequalities (3.2), we use Hölder’s inequality, estimates (4.12)

and (2.15), the symmetry of the Green function Gn,m(h), and the theorem on the change of
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summation order for multiple series with non-negative terms ([13, Ch.I,§6.2]):

∥

∥

∥

∥

1

r(h)
y(h)

∥

∥

∥

∥

p

Lp(h)

=
∑

n∈Z

1

rn(h)p
|yn(h)|ph

=
∑

n∈Z

1

rn(h)p

∣

∣

∣

∣

∣

∑

m∈Z

Gn,m(h)fm(h)h

∣

∣

∣

∣

∣

p

h

≤
∑

n∈Z

1

rn(h)p

[

∑

m∈Z

Gn,m(h)h

]p/p′ [
∑

m∈Z

Gn,m(h)|fm(h)|ph
]

h

≤ c
∑

n∈Z

1
√

dn(h)

[

∑

m∈Z

Gn,m(h)|fm(h)|ph
]

h

= c
∑

m∈Z

|fm(h)|p
[

∑

n∈Z

1
√

dn(h)
Gn,m(h)h

]

h

≤ c
∑

m∈Z

|fm(h)|ph = c‖f(h)‖p
Lp(h).

5. Proof of the Second Stability Criterion

In this section we prove Theorem 3.2.

Proof of Theorem 3.2. Necessity.

Suppose that the difference scheme (1.1) is stable in Lp(h), p ∈ [1,∞]. Then, by Theo-

rem 3.1, condition (2.1) holds, and therefore the sequences {ℓn(h)}n∈Z and {dn(h)}n∈Z (see

(2.6) – (2.7)) are well defined. For arbitrary n ∈ Z and h ∈ (0, h0], we have two possibilities:

1) ℓn(h) 6= 0

2) ℓn(h) = 0.

First consider case 1). Since by Theorem 3.1 we have A < ∞ (see (2.13)), from (2.7) it

follows that

dn(h) = ℓn(h)h ≤ A < ∞ ⇒ ℓn(h) ≤ c0h
−1. (5.1)

We choose the constant in (5.1) so that c0h
−1
0 ≥ 1, and set k0(h) = [c0h

−1]. Clearly, k0(h) ≥ 1

because c0h
−1 ≥ c0h

−1
0 ≥ 1. Therefore (5.1) implies

ℓn(h) ≤ k0(h) ≤ c0h
−1, k0(h)h ≤ c0. (5.2)
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Now, using (5.1) and (2.6), we get

c0

n+k0(h)
∑

k=n−k0(h)

qk(h)h = c0h
−1

n+k0(h)
∑

k=n−k0(h)

qk(h)h2

≥ ℓn(h)

n+ℓn(h)
∑

k=n−ℓn(h)

qk(h)h2 ≥ 1 ⇒
n+k0(h)
∑

k=n−k0(h)

qk(h)h ≥ c−1
0 .

(5.3)

In the case 2), with the same choice of k0(h), we obtain (see (2.6)):

n+k0(h)
∑

k=n−k0(h)

qk(h)h2 ≥ qn(h)h2 ≥ 1

⇒
n+k0(h)
∑

k=n−k0(h)

qk(h)h ≥ c0

h
· 1

c0
≥ c0

h0
· 1

c0
≥ c−1

0 .

This immediately implies that B > 0 (see (3.4)).

Proof of Theorem 3.2. Sufficiency.

Let c0 be a constant such that c0h
−1
0 ≥ 1 and B > 0 (see (3.4)). If necessary, let us take

a larger c0 in order to obtain the inequality c0B ≥ 1. Then, clearly, inequalities (2.1) hold,

and for all n ∈ Z and h ∈ (0, h0] the functions ℓn(h) and dn(h) (see (2.6) – (2.7)) are defined.

Furthermore, for k0(h) = [c0h
−1] we have

n+k0(h)
∑

k=n−k0(h)

qk(h)h ≥ B ≥ 1

c0
, n ∈ Z, h ∈ (0, h0]. (5.4)

Clearly, k0(h) ≥ 1 because c0h
−1 ≥ c0h

−1
0 ≥ 1. Therefore, 2k0(h) ≥ c0h

−1, and we get

2k0(h)

n+2k0(h)
∑

k=n−2k0(h)

qk(h)h2 = 2
[c0

h

]

n+2k0(h)
∑

k=n−2k0(h)

qk(h)h2

≥ c0

h

n+k0(h)
∑

k=n−k0(h)

qk(h)h2 = c0

n+k0(h)
∑

k=n−k0(h)

qk(h) ≥ c0B ≥ 1.

(5.5)

From (5.5), it follows that if qk(h)h2 < 1, then ℓn(h) ≤ 2k0(h) (see (2.6)), and therefore

dn(h) = ℓn(h)h ≤ 2[c0h
−1]h ≤ 2c0. Moreover, if qn(h)h2 ≥ 1 then (see (2.7)):

dn(h) =
h

1 + qn(h)h2
≤ h

2
< h0.

Hence A < ∞ (see (2.13)), and it remains to refer to Theorem 3.1.
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6. Proof of the Third Stability Criterion

In this section we prove Theorem 3.3.

Proof of Theorem 3.1. Necessity.

Suppose that the difference scheme (1.1) is stable in Lp(h), p ∈ [1,∞]. By Theorem 3.2,

there is a constant c0 such that c0h
−1
0 ≥ 1, and for all n ∈ Z and h ∈ (0, h0] we have (see

(3.4)):

Bn(h)
def
=

n+k0(h)
∑

k=n−k0(h)

qk(h)h ≥ B > 0 for k0(h) = [c0h
−1]. (6.1)

Since c0h
−1 ≥ c0h

−1
0 ≥ 1, we get k0(h) ≥ 1 and also c0k0(h)−1 ≥ h. Then from (6.1), for all

n ∈ Z and h ∈ (0, h0], it follows that

0 < B ≤ Bn(h) ≤ c0

k0(h)

n+k0(h)
∑

k=n−k0(h)

qk(h) ≤ 3c0





1

2k0(h) + 1

n+k0(h)
∑

k=n−k0(h)

qn(h)



 .

Hence S ≥ (3c0)
−1B > 0, as required (see (3.5)).

Proof of Theorem 3.1. Sufficiency.

Suppose that there is a constant c0 such that c0h
−1
0 ≥ 1 and for all n ∈ Z and h ∈ (0, h0],

the following inequality holds:

Sn(h)
def
=

1

2k0(h) + 1

n+k0(h)
∑

k=n−k0(h)

qk(h) ≥ S > 0, k0(h) = [c0h
−1]. (6.2)

Since 2k0(h) ≥ c0h
−1, from (6.2) it follows (see (6.1)) that

0 < S ≤ Sn(h) ≤ 1

2k0(h)

n+k0(h)
∑

k=n−k0(h)

qk(h) ≤ 1

c0

n+k0(h)
∑

k=n−k0(h)

qk(h)h

=
1

c0

Bn(h) ⇒ Bn(h) ≥ c0S ⇒ B > 0 (see (3.4)).

It remains to refer to Theorem 3.2.

Proof of Corollary 3.3.1. Suppose that for some h1 ∈ (0, h0], say, the second equality of (3.6)

holds. Then for a given ε > 0, there exists n0(ε) such that qn(h1) ≤ ε for any n ≥ h0(ε). Fix

some c0 such that c0h
−1
0 ≥ 1, and set k0(h1) = [c0h

−1
1 ]. With such a choice of c0 and k0(h1),
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for any n ≥ n0(ε) + k0(h1), we have (see (6.2)):

Sn(h1) =
1

2k0(h1) + 1

n+k0(h1)
∑

k=n−k0(h1)

qk(h1) ≤
ε

2k0(h1) + 1

n+k0(h1)
∑

k=n−k0(h1)

1 = ε. (6.3)

From (6.3), it follows that

inf
n∈Z

Sn(h1) = 0 ⇒ S = inf
h∈(0,h0]

inf
n∈Z

Sn(h) = 0.

It remains to refer to Theorem 3.3.

7. Main Example

In this section we prove Theorem 3.4.

Proof of Theorem 3.1. Necessity.

Suppose that equations (1.5) – (1.6) is correctly solvable in Lp(R), p ∈ [1,∞]. Then by

Theorem 2.4, there exist a > 0 and ε > 0 such that
∫ x+a

x−a

q(t)dt ≥ ε > 0, ∀ x ∈ R. (7.1)

Without loss of generality, we may (and shall) assume a ≥ 1. Consider the difference scheme

(1.1) – (1.7) with h0 = 1. Let c0 = 2a, k0(h) = [2ah−1]. Then, clearly, k0(h) ≥ ah−1, and

therefore for any n ∈ Z, we get (see (6.1)):

2Bn(h) = 2

n+k0(h)
∑

k=n−k0(h)

qk(h)h =

n+k0(h)
∑

k=n−k0(h)

∫ xk+h

xk−h

q(t)dt

≥
∫ xn+k0(h)h

xn−k0(h)h

q(t)dt ≥
∫ xn+a

xn−a

q(t)dt ≥ ε > 0.

Hence B > 0 (see (3.4)), and by Theorem 3.2 we conclude that the difference scheme (1.1) –

(1.7) is stable in Lp(h), p ∈ [1,∞].

Proof of Theorem 3.4. Sufficiency.

Let h0 = 1, and let the difference scheme (1.1) – (1.7) be stable in Lp(h), p ∈ [1,∞]. Then

there exist c0 = c0h
−1
0 ≥ 1 and ε > 0 such that

n+k0(h)
∑

k=n−k0(h)

qk(h)h ≥ ε for k0(h) = [c0h
−1], h ∈ (0, 1]. (7.2)
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From (7.2), taking into account (1.7), it follows that

ε ≤
n+k0(h)
∑

k=n−k0(h)

qk(h)h =
1

2

n+k0(h)
∑

k=n−k0(h)

∫ xk+h

xk−h

q(t)dt

≤
∫ xn+k0(h)h

xn−k0(h)h

q(t)dt ≤
∫ xn+c0

xn−c0

q(t)dt, n ∈ Z.

Thus for xn = nh, h ∈ (0, 1] and for any n ∈ Z, we have
∫ xn+c0

xn−c0

q(t)dt ≥ ε > 0. (7.3)

Then for any x ∈ (xn − h, xn + h) and any n ∈ Z, h ∈ (0, 1], we get
∫ x+2c0

x−2c0

q(t)dt ≥
∫ xn+c0

xn−c0

q(t)dt ≥ ε > 0. (7.4)

From (7.4) it follows that q0(2c0) > 0 (see (2.16)), and by Theorem 2.4, we conclude that

equations (1.5) – (1.6) is correctly solvable in Lp(R), p ∈ [1,∞].
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