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Abstract. We consider a difference equation

−h−2∆(2)yn + qn(h)yn = fn(h), n ∈ Z = {0,±1,±2, . . .}, (1)

where h ∈ (0, h0], h0 is a fixed positive number,

∆(2)yn = yn+1 − 2yn + yn−1, n ∈ Z; f = {fn(h)}n∈Z ∈ Lp(h), p ∈ [1,∞),

Lp(h) = {f : ‖f‖Lp(h) < ∞}, ‖f‖p

Lp(h) =
∑

n∈Z

|fn(h)|ph, and

0 ≤ qn(h) < ∞,

n
∑

k=−∞

qk(h) > 0,

∞
∑

k=n

qk(h) > 0, n ∈ Z.

We obtain necessary and sufficient conditions under which assertions I) - II) hold together:
I) for a given p ∈ [1,∞), for any f ∈ Lp(h), (1) has a unique solution

y = {yn(h)}n∈Z ∈ Lp(h) (regardless of h), and y = (Gf)(h)
def
= {(Gf)n(h)}n∈Z ,

(Gf)n(h) =
∑

m∈Z

Gn,m(h)fm(h)h, n ∈ Z.

II) ‖y‖Lp(h) ≤ c(p)‖f‖Lp(h) for any f ∈ Lp(h).
Here c(p) is an absolute positive constant, {Gn,m(h)}n,m∈Z is the difference Green
function corresponding to (1).

1. Introduction

In this paper, we consider a difference Sturm-Liouville equation (three-point difference

scheme)

−h−2∆(2)yn + qn(h)yn = fn(h), n ∈ Z = {0,±1,±2, . . .}, (1.1)

where here and throughout the paper h ∈ (0, h0], h0 is a fixed positive number,
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∆(2)yn = yn+1 − 2yn + yn−1, n ∈ Z, f
def
= {fn(h)}n∈Z ∈ Lp(h), p ∈ [1,∞),

Lp(h)
def
= {f : ‖f‖Lp(h) <∞}, ‖f‖p

Lp(h) =
∑

n∈Z

|fn(h)|ph,

0 ≤ qn(h) <∞, n ∈ Z, h ∈ (0, h0]. (1.2)

Our goal is to study conditions under which certain properties of the inversion of (1.1) do

not depend on h. To be more precise, our main result (Theorem 1.1 below) is a criterion for

I) – III) to hold together:

I) for a given p ∈ [1,∞), for any sequence f ∈ Lp(h), (1.1) has a unique solution y ∈ Lp(h)

(regardless of h),

II) for any h, for any sequence f ∈ Lp(h), the solution y ∈ Lp(h) of (1.1) satisfies the

inequality

‖y‖Lp(h) ≤ c(p)‖f‖Lp(h) (1.3)

where cp is an absolute positive constant;

III) for any h, for any sequence f ∈ Lp(h), the solution y ∈ Lp(h) of (1.1) admits the

following representation:

y
def
= (Gf)(h)

def
= {(Gf)n(h)}n∈Z , (Gf)n(h) =

∑

m∈Z

Gn,m(h)fm(h)h. (1.4)

Here {Gn,m(h)}n,m∈Z is the difference Green function corresponding to (1.1):

Gn,m(h) =

{

un(h)vm(h), n ≥ m

um(h)vn(h), n ≤ m
(1.5)

and {un(h), vn(h)}n∈Z is a special fundamental system of solutions of the equation (see §2)

h−2∆(2)zn = qn(h)zn, n ∈ Z. (1.6)

Definition 1.1. [6, 7] If I) – III) hold, we say that the inversion problem for (1.1) is regular

in Lp(h).

It is known that the inversion problem for (1.1) is regular in Lp(h), p ∈ [1,∞) provided

qn(h) ≥ ε > 0 for n ∈ Z, h ∈ (0, h0] (1.7)

(see [6, 7], the case p = ∞ is studied in [9]).

Thus the question whether I) – III) hold remains open for those equations (1.1) whose

potential q = {qn(h)}n∈Z is not separated from zero in the sense of (1.7) (for example, if q

is an oscillating sequence). We study this problem in the present paper.
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Let us now formulate our main result, Theorem 1.1. In Theorem 1.1 we assume that the

sequence q = {qn(h)}n∈Z satisfies, in addition to (1.2), another condition (1.8)
n
∑

k=−∞

qk(h) > 0,

∞
∑

k=n

qk(h) > 0, for any n ∈ Z. (1.8)

Note that the combined requirement (1.2) and (1.8) is satisfied, for example, for all non-

negative oscillating sequences {qn(h)}n∈Z which are not identically zero at ±∞. In addition

to condition (1.8), we also need auxiliary sequences ℓn(h)n∈Z and {dn(h)}n∈Z which are

well-defined provided (1.2) and (1.8) hold:

ℓn(h) =











0 if qn(h)h2 ≥ 1

min
j≥0

{

j : j
n+j
∑

s=n−j

qs(h)h
2 ≥ 1

}

, if qn(h)h2 < 1
(1.9)

dn(h) =

{

h(1 + qn(h)h2)−1 if ℓn(h) = 0

ℓn(h)h, if ℓn(h) 6= 0
(1.10)

The sequences ℓn(h)n∈Z and {dn(h)}n∈Z were first used in [1].

Theorem 1.1. Let p ∈ [1,∞). Under conditions (1.2) and (1.8), the inversion problem of

(1.1) in Lp(h) is regular if and only if

A(q) <∞, A(q)
def
= sup

h∈(0,h0]

sup
n∈Z

dn(h). (1.11)

Corollary 1.1.1. Suppose that the inversion problem for (1.1) is regular in Lp(h). Then the

solution y = {yn(h)}n∈Z of (1.1) (see (1.4)) satisfies the inequality

‖q1/py‖Lp(h) =

(

∑

m∈Z

qm(h)|ym(h)|ph

)1/p

≤ c(p)A(q)1/p′‖f‖Lp(h). (1.12)

Here c(p) is an absolute positive constant. In particular, for p = 1 the solution of (1.1)

satisfies the following estimate:

‖h−2∆(2)y‖L1(h) + ‖qy‖L1(h) ≤ 3‖f‖L1(h), f ∈ L1(h), ∆(2)y
def
= {∆(2)yn}n∈Z . (1.13)

Remark. For qn(h) ≥ ε > 0, n ∈ Z, h ∈ (0, h0], estimate (1.13) was obtained in [12].

Condition (1.11) does not contain q = {qn(n)}n∈Z explicitly and therefore some expla-

nation is necessary. It is convenient to begin with possible applications of Theorem 1.1.

It is known that a difference scheme (1.1) satisfying only I) – II) (and not I) – III) as in

Definition 1.1) is said to be stable in Lp(h). To study conditions for stability is one of the

main problems of a priori analysis of concrete difference schemes (see, for example, [11]).
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Note that if the inversion problem of (1.1) in Lp(h) p ∈ [1,∞) is regular, then the difference

scheme (1.1) is automatically stable. Hence Theorem 1.1 can be used as a sufficient con-

dition ensuring stability of a given difference scheme (see [7] for such examples). However,

the main application of Theorem 1.1 is that it can be used for obtaining various forms of

stability criteria of the difference scheme (1.1). In particular, this method is used for proving

equivalent theorems, Theorems 1.2 and 1.3 (the proof will be given in our forthcoming paper

[2], see [9] for the case p = ∞). In these theorems, condition (1.2) is assumed to hold without

special mention.

Theorem 1.2. For any p ∈ [1,∞], the difference scheme (1.1) is stable in Lp(h) if and only

if condition (1.8) and inequality A(q) < ∞ hold (see (1.11)). In particular, one of the two

following assertions holds:

α) the difference scheme (1.1) is stable in Lp(h) for all p ∈ [1,∞];

β) for all p ∈ [1,∞] the difference scheme (1.1) is non-stable in Lp(h).

Moreover, in the case α) for any sequence f ∈ Lp(h), p ∈ [1,∞] the solution y ∈ Lp(h) of

equation (1.1) admits representation (1.4).

Thus, we see that Theorem 1.1 is an assertion close to the unconditional criterion of Theo-

rem 1.2. In particular, the “sufficiency part” of Theorem 1.2 is an immediate consequence of

Theorem 1.1. In addition, Theorem 1.1 allows one to overcome all the technical difficulties

arising in the proof of the “necessary” part of Theorem 1.2 (see [2]). Note that the con-

ditions of Theorem 1.2 are more suited for studying conditions of schemes (1.1) of general

form rather than for checking stability of concrete difference schemes ([7]). For applications,

it is more convenient to use Theorem 1.3 where the meaning of condition (1.11) is finally

clarified.

Theorem 1.3. For any p ∈ [1,∞], the difference scheme (1.1) is stable in Lp(h) if and only

if there is an absolute positive constant c0 such that c0h
−1
0 ≥ 1 and B > 0. Here

B = inf
h∈(0,h0]

inf
n∈z

n+k0(h)
∑

k=n−k0(h)

qk(h)h, k0(h)
def
=
[c0

h

]

. (1.14)

Thus, under condition (1.8), the complicated requirement (1.11) is equivalent to condition

(1.14) which is simple and convenient for applications. For more details on (1.11), see [2].
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Additional remarks. This work is based on statements from [6, 7]. It can be viewed as a

natural continuation of [1, 3, 4, 5, 8, 12]. Here we strengthen and repeatedly use methods

and tools from these works.

2. Preliminaries

Throughout the sequel we denote by c absolute positive constants whose values are not

essential for exposition and which may differ even within a single chain of calculations. We

also always assume that conditions (1.2) and (1.8) are satisfied.

Theorem 2.1. [6] There is a FSS {un(h), vn(h)}n∈Z of equation (1.6) such that for n ∈ Z,

h ∈ (0, h0]:

0 < un+1(h) ≤ un(h), vn+1(h) ≥ vn(h) > 0,

vn+1(h)un(h) − un+1(h)vn(h) = h, un(h) = vn(h)
∞
∑

k=n

h

vk(h)vk+1(h)
. (2.1)

Moreover,

lim
n→−∞

vn(h)

un(h)
= 0, lim

n→∞

un(h)

vn(h)
= 0.

Theorem 2.2. [6] For p ∈ [1,∞), the inversion problem for (1.1) is regular in Lp(h) if

H <∞, H
def
= sup

h∈(0,h0]

sup
n∈Z

∑

m∈Z

Gn,m(h)h. (2.2)

Theorem 2.3. [6] Let ρn(h) = un(h)vn(h), n ∈ Z. For n,m ∈ Z and n 6= m, the Green

function Gn,m(h) (see (1.5)) admits a representation of Davies-Harrell type (see [10]):

Gn,m(h) =















√

ρn(h)ρm(h)
m−1
∏

k=n

[

1 + uk(h)
uk+1(h)

h
ρk(h)

]−1/2

, n < m

√

ρn(h)ρm(h)
n−1
∏

k=m

[

1 + uk(h)
uk+1(h)

h
ρk(h)

]−1/2

, n > m.

(2.3)

Theorem 2.4. [7] For n ∈ Z, one has the following inequalities (see (1.9) – (1.10):

8−1dn(h) ≤ ρn(h) ≤ 16dn(h), h ∈ (0, h0]. (2.4)

Note that technical assertions from [7] which are required for the proofs are given where

needed.

3. Necessary conditions for regularity of the inversion problem

In this section, we prove the “necessary” part of Theorem 1.1. We need some auxiliary

assertions.
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Lemma 3.1. [1] For every n ∈ Z, h ∈ (0, h0], the following inequalities hold (see (1.9)):

ℓn(h) − 1 ≤ ℓn+1(h) ≤ ℓn(h) + 1, ℓn(h) − 1 ≤ ℓn−1(h) ≤ ℓn(h) + 1. (3.1)

Remark. Lemma 3.1 (as well as some other auxiliary assertions of this paper) was obtained

in [1] under the assumption qn(h) ≥ ε > 0 for all n ∈ Z, h ∈ (0, h0]. The paper [1] was never

published in its detailed form, and Lemma 3.1 was not included in the text. In the sequel,

references to [1] indicate that the corresponding assertions were used for the proof of results

of [1].

Proof. The inequalities for ℓn+1(h) and ℓn−1(h) from (3.1) are verified in the same way;

therefore, we only prove the estimates for ℓn+1(h). To prove the upper estimate from (3.1),

we consider two separate cases: 1) ℓn+1(h) = 0; 2) ℓn+1(h) 6= 0.

1) If ℓn+1(h) = 0 ⇒ ℓn+1(h) = 0 < 1 ≤ 1 + ℓn(h) since ℓn(h) ≥ 0 for n ∈ Z.

2) Let ℓn+1(h) 6= 0. Denote

Pj(n) = j

n+j
∑

k=n−j

qk(h)h
2, j ≥ 1, h ∈ (0, h0]. (3.2)

In (3.2), j := j0 = ℓn(h) + 1. Consider two separate cases: 2a) ℓn(h) = 0; 2b) ℓn(h) 6= 0.

2a) If ℓn(h) = 0, then by (3.2) and (1.9) for j = j0 = 1, we obtain

Pj0(n+ 1) =

n+1+j0
∑

k=n+1−j0

qk(h)h
2 =

n+2
∑

k=n

qk(h)h
2 ≥ qn(h)h2 ≥ 1.

Therefore, ℓn+1(h) ≤ j0 = ℓn(h) + 1.

2b) If ℓn(h) 6= 0, then

Pj0(n+ 1) = (ℓn(h) + 1)

n+ℓn(h)+2
∑

k=n−ℓn(h)

qk(h)h
2 ≥ ℓn(h)

n+ℓn(h)
∑

k=n−ℓn(h)

qk(h)h
2 ≥ 1,

and then ℓn+1(h) ≤ j0 = ℓn(h) + 1 in view of (1.9), as required.

Let us now check the lower estimate from (3.1). If ℓn(h) ∈ {0, 1}, then ℓn(h) − 1 ≤ 0 ≤

ℓn+1(h) since ℓn+1(h) ≥ 0 for n ∈ Z, h ∈ (0, h0]. For ℓn(h) ≥ 2, consider two separate cases:

α) ℓn(h) > 2; β) ℓn(h) = 2.

α) If ℓn(h) > 2, then for j = j0 = 2, by (1.9) we obtain

Pj0(n) = 2

n+2
∑

k=n−2

qk(h)h
2 < 1 ⇒ qn+1(h)h

2 < 1.
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Hence ℓn+1(h) is defined by the lower row of (1.9). Let j = j0 = ℓn(h) − 2. Here j0 ≥ 1 and

Pj0(n + 1) = (ℓn(h) − 2)

n+ℓn(h)−1
∑

k=n−ℓn(h)+3

qk(h)h
2 ≤ (ℓn(h) − 1)

n+ℓn(h)−1
∑

k=n−ℓn(h)+1

qk(h)h
2 < 1.

Hence ℓn+1(h) > ℓn(h) − 2 in view of (1.9), i.e., ℓn+1(h) ≥ ℓn(h) − 1.

β) If ℓn(h) = 2, from (1.9) it follows that

P1(n) =

n+1
∑

k=n−1

qk(h)h
2 < 1 ⇒ qn+1(h)h

2 < 1.

Hence, as above, ℓn+1(h) ≥ 1, i.e., ℓn+1(h) ≥ 1 = 2 − 1 = ℓn(h) − 1.

Lemma 3.2. [1] For every n ∈ Z, the following inequalities hold:

2−1dn(h) ≤ dm(h) ≤ 3 · 2−1dn(h) if |m− n|h ≤ 2−1dn(h), m ∈ Z. (3.3)

Proof. Consider two separate cases: 1) ℓn(h) ≥ 2; 2) ℓn(h) < 2.

1) If ℓn(h) ≥ 2 ⇒ dn(h) = ℓn(h)h, and the requirement on m in (3.3) is of the form

|m− n|h ≤ 2−1ℓn(h)h⇒ n− 2−1ℓn(h) ≤ m ≤ n + 2−1ℓn(h), m ∈ Z. (3.4)

Let, for example, m = n+ k, 0 ≤ k ≤ [2−1ℓn(h)]. We use (3.1). Let us add inequalities (3.5)

and (3.6) for s = 1, k :

ℓn+s(h) ≤ ℓn+s−1(h) + 1, s = 1, 2, . . . , k (3.5)

ℓn+s(h) ≥ ℓn+s−1(h) − 1, s = 1, 2, . . . , k. (3.6)

We obtain (3.7) and (3.8):

ℓn+k(h) ≤ ℓn(h) + k ≤ ℓn(h) + [2−1ℓn(h)], k = 1, 2, . . . , [2−1ℓn(h)], (3.7)

ℓn+k(h) ≥ ℓn(h) − k ≥ ℓn(h) − [2−1ℓn(h)], k = 1, 2, . . . , [2−1ℓn(h)], (3.8)

and, finally, (3.9) and (3.10):

ℓn(h) − [2−1ℓn(h)] ≤ ℓm(h) ≤ ℓn(h) + [2−1ℓn(h)], (3.9)

for |m− n| ≤
1

2
ℓn(h), m ∈ Z,

2−1ℓn(h) ≤ ℓm(h) ≤ 3 · 2−1ℓn(h), for |m− n| ≤
1

2
ℓn(h), m ∈ Z. (3.10)

Since ℓn(h) ≥ 2, one has ℓm(h) ≥ 1, in view of (3.10) and dm(h) = ℓm(h)h (see (1.9)).

Therefore, (3.10) implies (3.3):

2−1ℓn(h)h = 2−1dn(h) ≤ ℓm(h)h = dm(h) ≤ 3. · 2−1ℓn(h)h = 3 · 2−1dn(h).
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The case m = n− k, k = 0, [2−1ℓn(h)] can be considered in a similar way.

2) Let ℓn(h) < 2. Consider two separate cases: 2a) ℓn(h) = 1; 2b) ℓn(h) = 0.

2a) If ℓn(h) = 1, then dn(h) = ℓn(h)h = h (see (1.9)) ⇒ |n−m|h ≤ 2−1dn(h) = 2−1h ⇒

m = n and the assertion is obvious.

2b) If ℓn(h) = 0 ⇒ dn(h) = h[1 + qn(h)h2]−1 ≤ h
2

(see (1.9)). Hence, as in 2a), m = n;

and the assertion is obvious.

Lemma 3.3. [7] For n ∈ Z, j ≥ 1, a FSS {un(h), vn(h)}n∈Z of equation (1.6) satisfies the

following equalities:

j(vn+1(h) − vn(h)) = vn(h) − vn−j(h) +

j−1
∑

s=0

s
∑

k=0

qn−k(h)vn−k(h)h
2, (3.11)

j(un−1(h) − un(h)) = un(h) − un+j(h) +

j−1
∑

s=0

s
∑

k=0

qn+k(h)un+k(h)h
2. (3.12)

Lemma 3.4. A FSS {un(h), vn(h)}n∈Z of (1.6) satisfies the following inequalities:

j(vn+1(h) − vn(h)) ≤ vn(h)[1 + j

n+j−1
∑

k=n−j+1

qk(h)h
2], j ≥ 1, (3.13)

j(un−1(h) − un(h)) ≤ un(h)[1 + j

n+j−1
∑

k=n−j+1

qk(h)h
2], j ≥ 1. (3.14)

Proof. From (2.1) and (3.11), it follows that

j(vn+1(h) − vn(h)) ≤ vn(h) + vn(h)

j−1
∑

s=0

s
∑

k=0

qn−k(h)h
2

= vn(h)[1 + jqn(h)h2 + (j − 1)qn−1(h)h
2 + · · ·+ qn−j+1(h)h

2]

≤ vn(h)

[

1 + j

n+j−1
∑

k=n−j+1

qk(h)h
2

]

.

The case (3.14) can be considered in a similar way.

Lemma 3.5. Let n ∈ Z and ℓn(h) ≥ 1. Then

vn+1(h) ≤ (1 + 4ℓn(h)−1)vn(h), (3.15)

un−1(h) ≤ (1 + 4ℓn(h)−1)un(h), (3.16)
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Proof. Both estimates are proved in the same way. Let us verify, say, (3.15). Consider two

separate cases: 1) ℓn(h) ≥ 2; 2) ℓn(h) = 1.

1) In (3.13), j := ℓn(h) − 1. Then by (1.9) we get

(ℓn(h) − 1)[vn+1(h) − vn(h)] ≤ vn(h)



1 + (ℓn(h) − 1)

n+ℓn(h)−2
∑

k=n−ℓn(h)+2

qk(h)h
2





≤ vn(h)



1 + (ℓn(h) − 1)

n+ℓn(h)−1
∑

k=n−ℓn(h)+1

qk(h)h
2



 ≤ 2vn(h).

Since ℓn(h) − 1 ≥ 2−1ℓn(h), this implies

2−1ℓn(h)[vn+1(h) − vn(h)] ≤ 2vn(h) ⇒ vn+1(h) ≤ (1 + 4ℓn(h)
−1)vn(h).

2) Since ℓn(h) = 1, one has qn(h)h2 < 1 (see (1.9)). Then from (2.1)) it follows that

vn+1(h) − vn(h) = vn(h) − vn−1(h) + qn(h)h2vn(h) ≤ (1 + qn(h)h2)vn(h) ≤ 2vn(h).

Therefore,

vn+1(h) ≤ 3vn(h) = (1 + 2ℓn(h)−1)vn(h) ≤ (1 + 4ℓn(h)−1)vn(h).

Lemma 3.6. Let n ∈ Z. If ℓn(h) ≥ 2, then

vn+[2−1ℓn(h)]+1(h) ≤ exp(8)vn(h), (3.17)

un−[2−1ℓn(h)]−1(h) ≤ exp(8)un(h), (3.18)

vn(h) ≤ exp(8)vn−[2−1ℓn(h)](h), (3.19)

un(h) ≤ exp(8)un+[2−1ℓn(h)](h). (3.20)

Proof. Inequalities (3.17) – (3.20) are checked in the same way. Let us prove, say, (3.17).

Note that ℓk(h) ≥ 1 if

k = n, n+ 1, . . . , n+ [2−1ℓn(h)], ℓn(h) ≥ 2. (3.21)

Indeed, Lemma 3.1 gives for such k

ℓk(h) ≥ min{ℓp(h) : p ∈ [n, n+ 1, . . . , n+ [2−1ℓn(h)]} ≥ ℓn(h) − [2−1ℓn(h)]

≥ 2[2−1ℓn(h)] − [2−1ℓn(h)] = [2−1ℓn(h)] ≥ 1.
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In addition, dn(h) = ℓn(h)h because ℓn(h) ≥ 2, and therefore from (3.3) it follows that

2−1ℓn(h) ≤ ℓk(h) ≤ 3 · 2−1ℓn(h), k = n− [2−1ℓn(h)], n+ [2−1ℓn(h)]. (3.22)

For the same k as in (3.22), we obtain using (3.21), (3.15) and (3.22) that

vk+1(h) ≤ (1 + 4ℓ−1
k (h))vk(h) ≤ (1 + 8ℓ−1

n (h))vk(h). (3.23)

Let us multiply inequalities (3.22) over k = n, n + 1, . . . , n+ [2−1ℓn(h)] :

vn+[2−1ℓn(h)]+1(h) ≤ (1 + 8ℓn(h)−1)[2−1ℓn(h)]+1vn(h)

≤ (1 + 8ℓn(h)−1)2−1ℓn(h)+1vn(h) ≤ (1 + 8ℓn(h)−1)ℓn(h)vn(h)

=
[

(1 + 8ℓn(h)−1)8−1ℓn(h)
]8

vn(h) ≤ exp(8)vn(h).

Corollary 3.6.1. Let n ∈ Z. If ℓn(h) ≥ 2, then

α−1vn(h) ≤ vk(h) ≤ αvn(h), k = n− [2−1ℓn(h)], n+ [2−1ℓn(h)], α = exp(8), (3.24)

α−1un(h) ≤ uk(h) ≤ αun(h), k = n− [2−1ℓn(h)], n+ [2−1ℓn(h)]. (3.25)

Proof. Estimates (3.24) – (3.25) follow from Lemma 3.6 and (2.1).

Proof of Theorem 1.1. Necessity. We have to show that if I) – III) hold, then A(q) <∞ (see

§1). Let

A0(h) = sup
n∈Z

{dn(h) : ℓn(h) = 0}, h ∈ (0, h0]

A1(h) = sup
n∈Z

{dn(h) : ℓn(h) = 1}, h ∈ (0, h0]

A2(h) = sup
n∈Z

{dn(h) : ℓn(h) ≥ 2}, h ∈ (0, h0].

Since for ℓn(h) = 0 and ℓn(h) = 1 we have, respectively,

dn(h) = h[1 + qn(h)h2]−1 ≤ h ≤ h0; dn(h) = h ≤ h0,

it follows that max{A0(h), A1(h)} ≤ h0 for h ∈ (0, h0] and A(q) < ∞ if Ã(q) < ∞,

Ã(q)
def
= sup

h∈(0,h0]

A2(h).

Let us show that Ã(q) <∞, provided I) – III) hold. Fix h ∈ (0, h0], and let Z2(h) = {n ∈

Z : ℓn(h) ≥ 2}. For n ∈ Z2(h) set f (n) = {f
(n)
i }i∈Z

f
(n)
i =

{

1, if |i− n| ≤ [2−1ℓn(h)]

0, if |i− n| > [2−1ℓn(h)].
(3.26)
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Since I) – III) hold, equation (1.1) with (3.26) on the right-hand side has a unique solution

y(n) = {y
(n)
i (h)}i∈Z in Lp(h), and it is determined by formula (1.4), i.e.,

y
(n)
i (h) = ui(h)

i
∑

m=−∞

vm(h)f (n)
m (h)h+ vi(h)

∞
∑

i=m+1

um(h)f (n)
m (h)h, i ∈ Z. (3.27)

Let i ∈ n− [2−1ℓn(h)], n+ [2−1ℓn(h)]. In the following estimate we use (3.27), (3.26), (3.24)-

(3.25), (2.4) and (1.10):

y
(n)
i (h) ≥ ui(h)

i
∑

m=n−[2−1ℓn(h)]

vm(h)f (n)
m (h)h+ vi(h)

n+[2−1ℓn(h)]
∑

m=i+1

um(h)f (n)
m (h)h

= ui(h)

i
∑

m=n−[2−1ℓn(h)]

vm(h)h+ vi(h)

n+[2−1ℓn(n)]
∑

m=i+1

um(h)h

≥ c−1un(h)vn(h)

n+[2−1ℓn(h)]
∑

m=n−[2−1ℓn(h)]

h = c−1ρn(h)(2[2−1ℓn(h)] + 1)h

≥ c−1dn(h)(ℓn(h)h) = c−1dn(h)2.

(3.28)

Below we use (1.3), (3.28) and (3.26):

∞ > sup
h∈(0,h0]

‖G‖p
Lp(h)→Lp(h) = sup

h∈(0,h0]

sup
06=f∈Lp(h)

‖Gf‖p
Lp(h)

‖f‖p
Lp(h)

≥ sup
h∈(0,h0]

sup
n∈Z2(h)

‖y(n)‖p
Lp(h)

‖f (n)‖p
Lp(h)

= sup
h∈(0,h0]

sup
n∈Z2(h)

∞
∑

i=−∞

|y
(n)
i (h)|p · h

(2[2−1ℓn(h)] + 1)h

≥ sup
h∈(0,h0]

sup
n∈Z2(h)

1

2[2−1ℓn(h)] + 1

n+[2−1ℓn(n)]
∑

i=n−[2−1ℓn(h)]

|y
(n)
i (h)|p

≥ c−1 sup
h∈(0,h0]

sup
n∈Z2(h)

dn(h)2p

2[2−1ℓn(h)] + 1

n+[2−1ℓn(h)]
∑

i=n−[2−1ℓn(h)]

1 = c−1 sup
h∈(0,h0]

sup
n∈Z2(h)

d2p
n (h).

4. Sufficient conditions for regularity of the inversion problem

In this section, we prove the “sufficient” part of Theorem 1.1. We need some auxiliary

assertions.

Lemma 4.1. Consider the function

ψn(h) = n− [2−1ℓn(h)], n ∈ Z, h ∈ (0, h0]. (4.1)
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For n ∈ Z, h ∈ (0, h0] one has

ψn(h) ≤ ψn+1(h) ≤ ψn(h) + 2, (4.2)

ψn(h) − 2 ≤ ψn−1(h) ≤ ψn(h). (4.3)

Proof. From (3.1) for n ∈ Z, h ∈ (0, h0], it follows that

[2−1(ℓn(h) − 1)] ≤ [2−1ℓn+1(h)] ≤ [2−1(ℓn(h) + 1)], (4.4)

[2−1(ℓn(h) − 1)] ≤ [2−1ℓn−1(h)] ≤ [2−1(ℓn(h) + 1)]. (4.5)

For k = 0, 1, 2, . . . , we consider two separate cases: 1) ℓn(h) = 2k; 2) ℓn(h) = 2k + 1.

1) If ℓn(h) = 2k then ψn(h) = n − k, [2−1(ℓn(h) − 1)] = k − 1, [2−1(ℓn(h) + 1)] = k.

Together with (4.4) – (4.5), this implies (4.6), and (4.6) implies (4.7):

[2−1ℓn(h)] − 1 = k − 1 = [2−1(ℓn(h) − 1)] ≤ [2−1ℓn±1(h)] ≤ [2−1(ℓn(h) + 1)] = k, (4.6)

[2−1ℓn(h)] − 1 ≤ [2−1ℓn±1(h)] ≤ [2−1ℓn(h)]. (4.7)

2) In this case ψn(h) = n−k, [2−1(ℓn(h)−1)] = k, [2−1(ℓn(h)+1)] = k+1. Together with

(4.4) – (4.5), this implies (4.8):

[2−1ℓn(h)] − 1 = k − 1 ≤ k = [2−1(ℓn(h) − 1)] ≤ [2−1ℓn±1(h)]

≤ [2−1(ℓn(h) + 1)] = k + 1 = [2−1ℓn(h)] + 1.
(4.8)

We thus have obtained the common conclusion of 1) – 2):

[2−1ℓn(h)] − 1 ≤ [2−1ℓn±1(h)] ≤ [2−1ℓn(h)] + 1, n ∈ Z, h ∈ (0, h0]. (4.9)

From (4.9), for n ∈ Z, h ∈ (0, h0], we derive (4.2) and (4.3):

ψn(h) + 2 = n− [2−1ℓn(h)] + 2 = (n+ 1) − ([2−1ℓn(h)] − 1) ≥ n+ 1 − [2−1ℓn+1(h)]

= ψn+1(h) ≥ n+ 1 − ([2−1ℓn(h)] + 1) = n− [2−1ℓn(h)] = ψn(h),

ψn(h) = n− [2−1ℓn(h)] = (n− 1) − ([2−1ℓn(h)] − 1) ≥ n− 1 − [2−1ℓn−1(h)]

= ψn−1(h) ≥ n− 1 − ([2−1ℓn(h)] + 1) = n− [2−1ℓn(h)] − 2 = ψn(h) − 2.

Lemma 4.2. For every j ∈ Z there is n ∈ Z such that

j − 1 ≤ ψn(h) ≤ j. (4.10)
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Proof. Consider the function mj(h) :

mj(h) = inf
n≥j

{n : n ∈ Z, ψn(h) ≥ j}, h ∈ (0, h0]. (4.11)

Let us verify that mj(h) is well defined, i.e., for every j ∈ Z there exists n ∈ Z such that

n ≥ j and ψn(h) ≥ j. Assume the contrary. Then there is j0 ∈ Z such that ψn(h) < j0 for

any n ≥ j0. If for n ≥ j0 the value ℓn(h) is bounded, this is impossible because in this case

ψn(h) → ∞ as n→ ∞. Let now ℓn(h) → ∞ as n→ ∞. Then for n≫ 1, (1.9) implies

(ℓn(h) − 1)

n+ℓn(h)−1
∑

k=n−ℓn(h)+1

qk(h)h
2 < 1. (4.12)

But n− ℓn(h) + 1 ≤ n− [2−1ℓn(h)] ≤ j0 and therefore from (4.12), it follows that

(ℓn(h) − 1)

n+ℓn(h)−1
∑

k=j0

qk(h)h
2 < 1. (4.13)

Then the condition ℓn(h) → ∞ as n→ ∞, and requirement (1.2) and (1.8) contradicts (4.13),

as required. Let us now return to (4.10). Consider three separate cases: 1) ψmj(h)(h) = j;

2) ψmj (h)(h) = j + 1, 3) ψmj(h)(h) ≥ j + 2. Clearly, in the case 1) we have (4.10), and the

lemma is proved. Let us verify that case 3) cannot occur. Indeed, if ψmj (h)(h) ≥ j + 2 then

by Lemma 4.1 we get

ψmj (h)−1(h) ≥ ψmj (h)(h) − 2 ≥ j + 2 − 2 = j.

On the other hand, by definition (4.11) we have ψmj(h)−1(h) ≤ j− 1, contradiction. We now

turn to case 2): ψmj(h)(h) = j+ 1. By Lemma 4.1, ψmj (h)−1(h) ≥ ψmj (h)(h)− 2 = j+ 1− 2 =

j−1. Using definition (4.11) once again, we get ψmj(h)−1(h) ≤ j−1. Hence ψmj (h)−1 = j−1,

and the lemma is proved.

Throughout the sequel we denote Z ′ = Z \ 0 = {±1,±2, . . . }, [m, p] =

{m,m + 1, . . . , p} for m < p; [m, p] = {m} for m = p, and m, p ∈ Z. The sets [m, p],

m ≤ p will be called segments.

Definition 4.1. [1] Let n ∈ Z be given. A system of segments ∆s = [∆−
s ,∆

+
s ],

∆−
s ≤ ∆+

s ,∆
−
s and ∆+

s ∈ Z, s ∈ Z ′ is called a Z(n)-covering of Z if the following con-

ditions hold:

1) ∆s ∩ ∆s′ = ∅ for s 6= s′,

2)
−1
⋃

s=−∞

∆s = (. . . , n− 2, n− 1],
∞
⋃

s=1

∆s = [n + 1, n+ 2, . . . ).

Remark. The segments of a Z(n)-covering do not contain the point n.
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Lemma 4.3. For every n ∈ Z there exists a sequence {ks}s∈Z′ such that one can form a

Z(n)-covering of Z from the segments {∆̃s, ∆̃
′
s}s∈Z′ where

1) ∆̃s = ∆̃′
s = [ks, ks] = {ks} if ℓks

(h) ∈ {0, 1},

2) ∆̃s = [ks − [2−1ℓks
(h)] + 1, ks + [2−1ℓks

(h)]] if ℓks
(h) ≥ 2

∆̃′
s = [ks − [2−1ℓks

(h)], ks + [2−1ℓks
(h)]] if ℓks

(h) ≥ 2.

Proof. Let us contruct the segments ∆1,∆2, . . . of a Z(n)-covering of Z. (The segments

∆−1,∆−2, . . . can be constructed in a similar way). Let n ∈ Z be given. Consider three

separate cases: 1) ℓn+1(h) = 0; 2) ℓn+1(h) = 1; 3) ℓn+1(h) ≥ 2.

1) If ℓn+1(h) = 0 then k1 := n+ 1, ∆1 := k1.

2) If ℓn+1(h) = 1 then k1 := n+ 1, ∆1 := k1.

3) If ℓn+1(h) ≥ 2 then by Lemma 4.2, there is a point k1 ∈ Z such that k1 ≥ n and

n ≤ ψk1
(h) = k1 − [2−1ℓk1

(h)] ≤ n + 1.

Then, if ψk1
(h) = n, we set ∆k1

:= k1 − [2−1ℓk1
(h)] + 1, k1 + [2−1ℓk1

(h)]]. If ψk1
(h) = n+ 1,

we set ∆k1
:= [k1 − [2−1ℓk1

(h)], k1 + [2−1ℓk1
(h)]].

Thus we have constructed the first term of the sequence {ks}
∞
s=1 (the number k1) and the

first segment ∆1 of a Z(n)-covering of Z. Suppose that km and ∆m, m ≥ 1 are constructed.

In order to construct km+1 and ∆m+1, one then has to make the same operations with the

number ∆+
m as we made with the number n when constructing k1 and ∆1, etc.

Remark. Assertions similar to Lemmas 4.1 – 4.3 were used in [1].

Lemma 4.4. Let the segments {∆s}s∈Z′ form a Z(n)-covering of Z. Then for every s ∈ Z ′

one has

Ts(h)
def
=
∏

k∈∆s

(

1 +
uk(h)

uk+1(h)

h

ρk(h)

)

≥ γ−1, γ−1 =
50

49
. (4.14)

Proof. According to Lemma 4.3, we consider three separate cases: 1) ℓks
(h) = 0; 2) ℓks

(h) = 1;

3) ℓks
(h) ≥ 2.

1) If ℓks
(h) = 0, then by definition (4.14), (2.1), (1.10) and (2.4), we get

Ts(h) = 1 +
uks

(h)

uks+1(h)

h

ρks
(h)

≥ 1 +
h

ρks
(h)

≥ 1 +
h

16dks
(h)

= 1 +
1 + qks

(h)h2

16
≥

9

8
≥

50

49
.

2) If ℓks
(h) = 1, then we proceed as in 1) and obtain

Ts(h) = 1 +
uks

(h)

uks+1(h)

h

ρks
(h)

≥ 1 +
h

16ℓks
(h)h

=
17

16
>

50

49
.
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3) If ℓks
(h) ≥ 2, then we proceed as in 1) and use, in addition, Lemma 3.2. We get

Ts(h) =
∏

k∈∆s

(

1 +
uk(h)

uk+1(h)

h

ρk(h)

)

≥
∏

k∈∆s

(

1 +
h

ρk(h)

)

≥
∏

k∈∆s

(

1 +
h

16dk(h)

)

≥
∏

k∈∆s

(

1 +
h

16
·
2

3
·

1

dks
(h)

)

≥

(

1 +
h

24dks
(h)

)2[2−1ℓks (h)]

≥

(

1 +
1

24ℓks
(h)

)ℓks(h)−1

≥
48

49

(

1 +
1

24ℓks
(h)

)ℓks (h)

≥
48

49

(

1 +
ℓks

(h)

24ℓks
(h)

)

=
50

49
.

Corollary 4.4.1. Let A(q) < ∞ (see (1.11), γ = 49
50
, and suppose that for some n ∈ Z the

segments {∆s}s∈Z form a Z(n)-covering of Z. Then (see (1.5) and (2.3))

Gn,∆−
s
(h) ≤ 16A(q)γ

s−1

2 , s = 1, 2, . . . (4.15)

Gn,∆+
s
(h) ≤ 16A(q)γ

|s|−1

2 , s = −1,−2, . . . (4.16)

Proof. Both inequalities are proved in the same way. Let us establish, say, (4.15). Consider

two cases: 1) s = 1; 2) s ≥ 2.

1) For s = 1 we get

Gn,∆−
1
(h) = vn(h)un+1(h) ≤ vn(h)un(h) = ρn(h) ≤ 16A(q).

2) If s ≥ 2, then ∆−
s ≥ n+ 1, and by (2.3) and (4.14) we get

Gn,∆−
s
(h) =

√

ρn(h)ρ∆−
s
(h)

∆−
s −1
∏

k=n

[

1 +
uk(h)

uk+1(h)

h

ρk(h)

]−1/2

≤ 16A(q)

s−1
∏

i=1

∏

k∈∆i

[

1 +
uk(h)

uk+1(h)

h

ρk(h)

]−1/2

= 16A(q)

s−1
∏

i=1

Ti(h)
−1/2

≤ 16A(q)γ
s−1

2 .

Proof of Theorem 1.1. Sufficiency. It suffices to show that (1.11)) implies (2.2). For fixed

n ∈ Z and h ∈ (0, h0], we consider the sum

Hn(h) =
∞
∑

m=−∞

Gn,m(h)h =
n−1
∑

m=−∞

Gn,m(h)h+Gn,n(h)h+
∞
∑

m=n+1

Gn,m(h)h. (4.17)
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By (2.4) and (1.11), we get

Gn,n(h) = ρn(h)h ≤ 16dn(h)h ≤ 16A(q)h0,

and therefore it remains to estimate the sums in (4.17). The estimates for both sums are

proved in the same way, so we only consider the second sum. Below we use a Z(n)-covering

of Z, (4.15), (2.3), (2.1) and (1.10):
∞
∑

m=n+1

Gn,m(h)h =
∞
∑

s=1

∑

k∈∆s

Gn,k(h)h ≤
∞
∑

s=1

Gn,∆−
s
(h)

(

∑

k∈∆s

1

)

h

≤ cA(q)

∞
∑

s=1

(ℓs(h) + 1)hγ
s−1

2 ≤ cA(q)[A(q) + h0].

5. Consequences of the main result

In this section, we prove Corollary 1.1.1.

Proof of Corollary 1.1.1. We need the following lemma.

Lemma 5.1. [6] One has
∑

m∈Z

qm(h)Gn,m(h)h ≤ 1, n ∈ Z. (5.1)

Suppose that assertions I) – III) from §1 hold. Let f ∈ Lp(h), p ∈ [1,∞), and let y be

the solution of (1.1) (see (1.4)). In the proof of (1.10) presented below, we use Hölder’s

inequality, (5.1), symmetry of Gn,m(h) and a well-known theorem on changing the order of

summation for multiple series [13, Ch.I, §6.2]:

‖q1/py‖Lp(h) =

(

∑

n∈Z

qn(h)|yn(h)|
ph

)1/p

=

[

∑

n∈Z

qn(h)

∣

∣

∣

∣

∣

∑

m∈Z

Gn,m(h)fm(h)h

∣

∣

∣

∣

∣

p

h

]1/p

≤







∑

n∈Z

qn(h)

(

∑

m∈Z

Gn,m(h)h

)p/p′ (
∑

m∈Z

Gn,m(h)|fm(h)|ph

)

h







1/p

≤ cA(q)1/p′

[

∑

m∈Z

|fm(h)|p

(

∑

n∈Z

qn(h)Gn,m(h)h

)

h

]1/p

≤ cA(q)1/p′‖f‖Lp(h).

Estimate (1.13) then follows from the triangle inequality.



REGULARITY OF THE INVERSION PROBLEM 17

References

[1] A.T. Bubabaev and L.A. Shuster, On the theory of the Sturm-Liouville difference equations, Soviet
Math. Dokl. 40 (1990), no.3, 525-528.

[2] N. Chernyavskaya, J. Schiff and L. Shuster, Regularity of the inversion problem for the Sturm-Liouville

difference equation. IV. Stability conditions for a three-point difference scheme with non-negative coef-

ficients, J. of Difference Equations and Applications, to appear.
[3] N. Chernyavskaya and L. Shuster, Estimates for the Green function of a general Sturm-Liouville operator

and their application, Proc. Amer. Math. Soc. 127 (1999), no.5, 1413-1426.
[4] N. Chernyavskaya and L. Shuster, Regularity of the inversion problem for the Sturm-Liouville equation

in the spaces Lp, Methods and Application of Analysis 7 (1994), no.1, 65-84.
[5] N. Chernyavskaya and L. Shuster, Estimates for the Green’s function of the Sturm-Liouville operator,

J. Diff. Eq. 111 (1994), no.2, 410-421.
[6] N. Chernyavskaya and L. Shuster, Regularity of the inversion problem for the Sturm-Liouville difference

equation. I. Representation of the Davies-Harrell type for the Green difference functions, J. Math. Anal.
and Appl. 246 (2000), no.1, 150-163.

[7] N. Chernyavskaya and L. Shuster, Regularity of the inversion problem for the Sturm-Liouville difference

equation. II. Two-sided estimates for the diagonal value of the Green function, J. Math. Anal. and Appl.
254 (2001), no.1, 371-384.

[8] N. Chernyavskaya and L. Shuster, A criterion for correct solvability of the Sturm-Liouville equation in

the space Lp(R), Proc. Amer. Math. Soc. 130 (2001), no.4, 1043-1054.
[9] N. Chernyavskaya, Stability and absolute stability of a three-point difference scheme, Computers and

Mathematics with Applications 45 (2003),1181-1194.
[10] E.B. Davies and E.M. Harrell, Conformally flat Riemannian metrics, Schrödinger operator and semi-

classical approximation, J. Diff. Eq. 66 (1987), no.2, 165-188.
[11] S.K. Godunov and V.S. Ryabenkii, Theory of Difference Schemes, North Holland, Amsterdam, 1964.
[12] M.O. Otelbaev, Coercive estimates for difference schemes, Trudy Math. Inst. An. SSSR 181 (1988),

241-249.
[13] C.C. Titchmarsh, The Theory of Functions, Oxford, 1932.


