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Abstract

A five dimensional field theory is introduced which is an analogue of three dimensional
Chern-Simons theory. The reduced phase space in the theory is a moduli space of instan-
tons in four dimensional Kuclidean gauge theory, with a symplectic structure induced by

the Donaldson p-map. Issues related to quantization are discussed.
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In this letter we discuss a five-dimensional field theory which generalizes certain fea-
tures of the three-dimensional Chern-Simons theory (3d CST) which has recently attracted
considerable interest [1,2]. Although the essential motivation in [1] was to provide an in-
trinsically 3-dimensional, quantum field theoretic interpretation of the Jones polynomials
of links, which appear in 3d CST as correlation functions of Wilson loop operators, it also
turned out that 3d CST had a strong relationship with 2d conformal field theory (2d CFT).
Witten argued that 3d CST on X x R, where X is a Riemann surface, is an exactly solvable
theory with a finite dimensional Hilbert space, which can be identified with the space of
conformal blocks of an appropriate chiral algebra on 3. These results have since been made
explicit by a number of authors [3]. The constraint of gauge invariance on wave functionals
is precisely the Ward identity for the currents of the Wess-Zumino-Witten (WZW) model
on Y; the wave functionals are thus the generating functionals for current correlators of
the WZW model. The construction of link invariants emphasizes the topological nature of
the theory (viz. the metric independence of the action). The existence of a chiral current
algebra is however related to the fact that the reduced phase space is the space of flat
gauge potentials on ¥ modulo gauge transformations; for gauge group SU(N) this space
can also be identified with the moduli space of stable, rank N holomorphic vector bundles
of Chern class zero over ¥, and holomorphic gauge transformations are naturally defined

in this case. We wish to generalize this latter aspect.

There are a number of four-dimensional field theories for which properties analogous to
those of 2d CFT may be relevant. There are many supersymmetric gauge theories which
are known to possess scale invariance, as exhibited by the vanishing of the [-function,
the most famous example being the N = 4 theory [4]. There are also indications that
electrodynamics may have a phase transition at a critical coupling [5]; the theory at this
point may have properties analogous to CFT’s. A priori, looking for a five-dimensional
analogue to 3d CST may seem like a circuitous route to generalize the structure of 2d CFT's
to four dimensions. One could more directly attempt to generalize the infinite dimensional
symmetry, the Virasoro algebra. Since this is related to invariance under complex analytic
transformations, a natural generalization would be to use quaternionic analyticity (which is

related to twistor holomorphicity via the Penrose transform). For R* or S* the symmetry
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algebra becomes the direct sum of two Virasoro algebras of zero central charge [6], but
the only field theories one can construct with this symmetry seem to be noninteracting
[7]. Generalizing 3d CST with its chiral algebra structure seems a more promising starting
point.

The obvious guess for an appropriate five-dimensional theory would be one with an

action based on the five-dimensional Chern-Simons term

SZ/MSWE)(A)

LT (A(dA)? + 3A%0A + 3.4) (1)

Ws =515
(wedge products have been suppressed here, and A is a gauge potential on a five-manifold
M5). The abelian case of this has been analyzed by Floreanini et al [8], who have shown
how to quantize the theory on M* x R and how to obtain from it a four-dimensional
theory with a U(1) current algebra. In the non-Abelian case the action exists only for
gauge groups SU(N), N > 3 and SO(6). There is no simple chiral algebra structure
and the reduced phase space is not of immediate interest, so even though it seems likely
that from a quantum field theory based on this action it might be possible to derive
some interesting results, including possibly an understanding of higher dimensional knot
invariants, we do not study it here.

Instead we shall consider the following theory: we take spacetime to be a Kéhler
manifold M* and denote the Kéhler form on M* by w. (Analogy with Riemann surfaces
in two dimensions would suggest the use of compact Kéahler manifolds. Our calculations

show no pathologies for R* and there seems to be no reason to exclude this simple case.)

The action is taken to be

k

[
47 M4%xR

Tr (ANdA+2 ANANA)ANw+PNF +¢* AN F) (2)

Here A is the locally defined Lie algebra valued 1-form on M* x R corresponding to a
gauge potential or a connection on a principal G-bundle over M4 x R. (G is a semisimple,
compact Lie group; for all calculations we will take G = SU(2)). F is the associated field
strength, F' = dA+ ANA. ¢, ¢* are, respectively, locally defined Lie algebra valued (2, 0)
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and (0, 2) forms on M*, and also 1-forms on R, i.e. if 2%, i = 1,2 are complex coordinates

on M* and t is the coordinate on R, then in local coordinates

=z, 2 t) dzt ANd2? A dt
o* = ¢* (24,2, t) dz' NdZ2 A dt (3)
Gauge transformations act upon the fields as follows:

A— A9 = gAgt + gdg™?

¢—gdg 't ¢ —gdig! (4)
where ¢ is a Lie group valued function on M* x R.. Invariance of the action under homo-
topically trivial gauge transformations follows from the fact that w, being a Kahler form on
M*, and having no t dependence, is closed on M* x R. In general, for compact M*, there
will exist homotopically nontrivial gauge transformations and invariance of €* under these
will require k to be an integer. In local coordinates we can write w = %wwdx“ Adx¥, and
we take w throughout to be self-dual (with the understanding that similar results exist if
we take w to be anti-self-dual). The theory we have described is not topological, because of
our use of the Kahler strcture on M*%. In fact our assumption that M* is K&hler is a little
stronger than is necessary, and many of our results go through when M* is any complex
manifold and w is an arbitrary symplectic form on M*. We shall keep the assumption
that M* is Kihler, though, and we refer to this theory as a Kihler-Chern-Simons theory
(KCST); we shall see that despite the lack of topological invariance, the theory has many
features common with 3d CST.

Consider now the canonical quantization of (2). It is convenient to treat the “time”
component A; separately from the space components A4, p = 1,2,3,4. We need to impose
the constraints 114, = 0, Il = 0, IIg= = 0. These are all first class; we can eliminate them
by setting A; = 0, ¢ = 0, ¢* = 0. We must further impose the corresponding equations of

motion

FAw=0 (5a)

F2O — 02— (5b)



(ha) is the Gauss law of the theory. The remaining equations (for A,) in (2) imply that the
time-derivative of A, is zero; there is no real dynamics, only the structure of the Hilbert

space is relevant. The symplectic 2-form following from (2) is

Q= E [ reeansA) Aw (6)
47'(' M4

where § denotes the exterior derivative on A, the space of gauge potentials on M*. The

corresponding Poisson bracket for A,(x) is

B 4T W,

E e =)o ™

[ Aju(x), AL(y) |

(here we take Tr(T*T?) = — 04, where T are the generators we use for the Lie algebra).

As in 3d CST there are two ways to proceed: one can quantize, using (7), and then
impose the constraints (5) on the states; alternatively one can solve the constraints and
then quantize on the reduced phase space (the space of solutions of the constraints, modulo
the remaining gauge invariance) [9]. For the most part we shall follow the latter approach.
It is well known that the equations (5) express the vanishing of the self-dual part of F' on
a complex manifold [10]. The solutions are thus anti-self-dual instantons, and the reduced
phase space is the moduli space of instantons. (If we take w to be anti-self-dual, we would
obtain the space of self-dual instantons. Note that unlike in 3d CST, where the reduced
phase space consists of flat connections on a Riemann surface and hence zero topological
charge, in this theory there is no constraint on the magnitude of the appropriate topological
charge, the second Chern number.) The quantization of our theory reduces to quantization
of moduli spaces of instantons with the symplectic structure (6) (the gauge invariance of

) will be examined shortly).

Symmetry structure of 3d CST and 5d KCST. As mentioned above, in 3d CST the reduced
phase space is the space of flat gauge potentials on a given Riemann surface ¥, modulo
gauge transformations. This space can be identified in two ways. We can solve the con-
straint ' = 0 to write, locally, A = u du~'. Then on the set of u’s so defined we further

have the action of gauge transformations. The reduced phase space is thus the set of u’s
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modulo Gy, the group of gauge transformations on . Alternatively, one can parametrise
A; locally as U9;U~! where U is G€ valued. F = 0 then constrains the hermitian part
of U and the action of dividing out by G removes the unitary part. In fact this two step
reduction can be achieved by dividing out by G€, the group of complexified gauge trans-
formations. Thus one can identify the reduced phase space as Ay./ Qg, where Ay, denotes
the space of gauge potentials on Y. In other words Hamiltonian or symplectic reduction
by F = 0 is equivalent to dividing out by GS [1,11]. The significance of this is that if
we quantize 3d CST before imposing the Gauss law of the theory, we get a set of states
which have a natural gg action on them; this is the chiral Kac-Moody symmetry. The
description in terms of the U’s shows further that the phase space is also the moduli space
of stable, rank N (for gauge group SU(N)) holomorphic vector bundles of Chern class
zero over Y., a natural focus of interest in topology [1,11]. (In the above we assume that
before dividing out the space of gauge potentials by the group of gauge transformations,
we remove certain types of potentials that do not give rise to stable bundles. For details

see [11]. Similar provisos apply in the next paragraph.)

The phase space of KCST, the moduli space of instantons of given 2nd Chern number
on M?*, has analogous interpretations. First, if we denote by AM1 the set of gauge
potentials on M* such that F(>9 = F0.2) — 0 and by G€ the group of complexified
gauge transformations on M*, then the phase space is obtained by symplectic reduction
of AV by the Gauss law (5a). This is also the space A1) /GC. Thus if we quantize the
theory before imposing the Gauss law (5a) we would get a set of states with a natural G€
action on them, a four-dimensional analogue of Kac-Moody symmetry or more precisely
a chiral symmetry algebra. (In the case of instantons on R* this symmetry has been
known for some time [12].) The conditions (5b) also show that we can write locally

A

k3

= U 05U ', i =1,2. Donaldson’s theorem [13] tells us that there is a unique
solution to (5a) for each solution to (5b) and hence the phase space can also be identified as
the moduli space of stable, rank N (for gauge group SU(N)), holomorphic vector bundles
over M*. Thus we have a close analogue to 3d CST. The observables in KCST correspond

to (functions of) the instanton moduli; these are the analogues of the holonomies in 3d

CST.



Some of the current algebraic aspects of the theory are revealed by considering quan-
tization before reduction for the case of zero instanton number. For compact M*, using
the parametrization A, = Ud,,U~!, one can see that the wavefunction satisfying (5a) is

¥ = exp(kS) where

S =

ITrOU OU) + o [ TrUar) A ®)
M

81 Jars us

Here M is taken to be M4 x [0, 1]; we identify one boundary component of this with our
original M*, and extend U into M in such a way that it tends to some fixed function on the
other component of the boundary (determined by the homotopy class of U on the original
M*). This expression S is the analogue of the action for the WZW model (with complex
U) which determines the wavefunction for 3d CST. There is a Polyakov-Wiegmann type
formula

S({U1Uz) = S(Uy) + S(Usz) + T'(Uy, Us)

1 -
(U, Us) = —/ g7 Tr(U; P 0;Uy Us85U, 1) (9)
M4

27

and there are conserved chiral currents. Many aspects of the two-dimensional WZW model
will generalize and we will have a chiral algebra structure [12]. The normalization integral
for ¢ will involve exp(kS(H)), where H is the hermitian matrix U'U; the variational
equation for S(H) is exactly the equation F'Aw = 0. Thus S is an action for the self-dual
gauge theory. Various authors [14] have written alternate actions for the SU(2) self-dual

gauge theory in terms of a parametrization of the matrix U.

Gauge invariance of the symplectic form. The symplectic form (6) is invariant, as a 2-
form, on the space of potentials satisfying F' A w = 0, under the gauge transformation

given locally by (4). It is straightforward to check that

QA7) — QA) = §(kQ'(4,9))

1

QYA g) = Py /M4 Tr(g~'6gF) Aw (10)

Thus with the condition (5a), e.g. on the space of instanton solutions, € is gauge invariant.

We can in fact say one thing more. Although (6) is not invariant under the transformation
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(4) on the whole space A, it defines a (non-trivial) element of the second cohomology
H?(A/G), since the Q' (A, g) obeys a cocycle condition Q' (A, hg) = Q1 (A, g) + QL(A9, h).
One can further check that the cohomology class of €2 in \4/G depends only on the class

of win H?(M™*). To do this, note we can write (6) in the form

k
N=— Tr(FAF) Aw (11)
4 M4

where

F=(d+0)A+ANA

(the extra terms do not contribute to the integral). If we change w by da, where « is a
1-form on M*, then since da = 0 and (d + 6)Tr(F A F) = 0 we see that Q changes by a

term proportional to
5(/ Tr(FAF)Aa);
M4

the term in parentheses defines a 1-form on .A4/G. Thus we have a map from H?(M?) to
H?(A/G). This is exactly the Donaldson p-map [15], in the cohomology version discussed
by Braam and multiplied by a factor of 27k since (6) was derived from an action, which
is measured naturally in units of 27. If we consider the 2-form derived from 7', where
S = 21T, we would obtain the Donaldson map times k; the requirement that k is an integer
is equivalent to the requirement that we obtain a map from H?(M*,Z) to H*(A/G,7Z).

The Donaldson pu-map is expected to be of interest in Euclidean gauge theories. The
configuration space of gauge theories is .A4/G; the y-map is very useful in understanding
the topology of this space. The natural appearance of the y-map in our theory suggests
that this theory may also provide a probe of some topological features of Euclidean gauge
theory.

We shall now consider the quantization of the reduced phase space for some special
cases. In general, the solutions to the equations (5) will include instantons of any topo-
logical charge, i.e. the magnitude of the Chern number is arbitrary. The Hilbert space
is thus characterized by k£ and the instanton number ¢. Eventually if one is to interpret
the results in a way similar to the WZW model in two dimensions, we need a rule for

comparing different values of ¢. It is not clear at present how one might do this, but the
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existence of Bécklund transformations that change instanton numbers [16] suggests that
this problem is solvable; i.e. one may eventually be able to construct a ‘universal moduli
space’ which includes all values of ¢q. For our calculations we shall consider moduli spaces

for fixed q.

Calculations on R*. By instanton moduli spaces for R* we really mean instanton moduli
spaces for S%; because of the conformal invariance of the self-duality equations in four
dimensions, every instanton on S$* is an instanton on R* (we assume the standard Euclidean
metrics here). We choose to work on R* rather than S* since otherwise we lose the Kéhler
structure.

The general self-dual 2-form on R* is given by w = w'n!, dz# A dz¥, where 7/, are
the 't Hooft n-tensors (see [17] for properties). The general 1-instanton solution has five
parameters, a vector a* and a positive scalar A\, corresponding to the position and size,
and is given by [18]

. 27, (x—a)

A.U«_ (.’17—(1)2—{-)\2

(12)

(in this section we use the basis o?/2i for Lie algebra of SU(2), where o* are the Pauli sigma
matrices) The g-instanton solution has 8¢ — 3 parameters; the solutions can be constructed
explicitly [19] but are very complicated. The general 2-instanton solution has a simple

form [20]

A, = —n,,0)np (13a)

A2 A2 22

x—a1)? (r—a2)® (z—a3)? (135)

a

Here A1, A2, A3 are positive scalars, but only two of them are physical (dividing p by an
overall constant does not affect A); aq, as, ag are vectors, but there is one superfluous
parameter (see [20]). In fact, for ¢ > 3, a 5q + 4 parameter subfamily of the 8¢ — 3

parameter family of instantons has form (13a), with

p _ qg+1 )\%
(x — a,)?

r=1
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in the obvious notation (again only ¢ of the ¢ + 1 parameters A;, Ag,...,A\g+1 are physical).
Note that the ¢ > 2 solutions we have given above all have apparent singularities, but in
fact these are gauge artefacts.

For any ¢ we wish to compute the symplectic form (6) on the instanton moduli space.
The first thing we notice is that for the solutions we have given above A appears to go
like 1/|x| for large |z|; again this is a gauge artefact, and in an appropriate gauge A goes
like 1/|z|?. Thus it would seem (6) will have logarithmic divergences. In fact explicit
calculations show that this is not the case (at least for the ¢ = 1 and ¢ = 2 spaces, and the
5q + 4 dimensional subspace described above of the general ¢ > 3 space). This remarkable
fact emerges in calculations from some seemingly coincidental cancellations of terms; we
currently have no insight into this result.

For ¢ = 1 (where topologically the moduli space is R* x (0, c0)), it is a straightforward
matter to calculate 2 (using 7-tensor identities from [17]) to find that

3k
0= Tﬂ— wypdar A da” (15)

It is straightforward to apply the techniques of geometric quantization to this. A plays no
role, i.e. quantization can be done for each value of A\. Choosing a polarization amounts

to choosing two appropriate linear combinations of the a*. We can write

Wosss = wuyog‘dagﬁ- = (7rd7_r/3+7rﬁ-7_rd>ea5 (16)
where we use the usual spinor notation, i.e. of, = (1,i0") and 74 = €55(m3)", the star

denoting complex conjugation. The two component spinor 7, & = 1,2, characterizes the
choice of complex structure on R*. Introducing the spinor version of a* by a* = o, V<

«

and 2® = Vi, we get

, k
Q= 377%&5 dz® A d2P (17)

The wave functions are thus given, up to normalization, in the obvious holomorphic po-
larization by
wnm = Z? zén (18)

with the standard Bargmann inner product induced by the Kahler potential K = %T’Tea gz 2P,

Note that the states 1, for n +m = 2j provide a spin j representation of SU(2); by our
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choice of w we have broken Lorentz invariance to SU(2), so we expect our states to give
representations of SU(2), and we see that each representation appears precisely once.

The logical next step would be to understand whether the 2- and multi-instanton
Hilbert spaces differ significantly from the tensor products of 1-instanton Hilbert spaces.
The calculation of () for the 2-instanton solution is very involved and we have to consider
some sort of approximation. The 13 parameters in the solution (13) should correspond to
the two positions (eight parameters), two size parameters and three parameters of relative
group orientation for the two instantons. In the limit of A3 /A%, A2/A\? < 1 and large |as—as|
one can see that the 2-instanton solution behaves approximately as two 1-instantons with
centers at as and az. We shall do the calculation in this ‘dilute gas’ limit. In terms of the
function p of equations (13), Q2 can be written as

k 5pu — 20,0
L PPy = 2pudp

0= )
8t Sy p3

N dpy (19)

The probelmatic factor in performing the integration exactly is the p? factor in the de-
nominator. The integral is manageable if we expand the p~2 factor in powers of A\3/\? and

A2/A%. Thus in a ‘dilute gas’ limit we expect to get
Q = wy(dahy A dal + dak A da¥) + corrections (20)

Furthermore, in this limit we can identify the angular components of the translation-
invariant combination a— % (az+ag) as corresponding to relative group orientation between
two distant instantons; it is therefore interesting to calculate the coefficient of daf A af
occuring in the ‘correction’ terms of (20). So far we have calculated these terms (using
the expansion procedure explained above) to lowest order in A3/A? and A\2/)\}, obtaining
the result zero. The Hilbert space for the 2-instanton case is thus a tensor product of two

1-instanton Hilbert spaces even up to first order corrections in A\3/A? and A3 /)%

Remarks on CP?. We shall now briefly consider aspects of the relevant moduli spaces
for the case of CP2. The construction of holomorphic rank 2 vector bundles on CP?
is known [21], and is analogous to the construction of vector bundles on CP? used to

obtain instantons on S* [19]. Bundles are classified by the first two Chern numbers ¢, co.
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For example, for (ci,c2) = (0,¢q), the complex dimension of the moduli space of vector
bundles is 4¢ — 3. While Donaldson’s theorem [13] guarantees the existence of anti-self-
dual instantons for stable vector bundles, there is no general procedure for constructing
the potentials given the vector bundle. For ¢ = 1 there are no stable vector bundles and
hence there is no 1l-instanton solution [22]. (There is a 5-parameter self-dual 1-instanton
solution on CP? [23], which is, however, not of relevance to us.) For ¢ > 2, stable vector
bundles, and hence g-instantons, are known to exist [22]. 2 will give us a Kéhler structure
on the moduli spaces; the Kahler metric induced on the moduli space is expected to be
the natural Riemannian metric on 4/G restricted to the moduli space [24]. We hope to

pursue these matters further elsewhere.

Discussion. An interesting feature of the theory is the emergence of the pu-map. This
may play an important role in understanding Euclidean gauge theories, as it provides
a symplectic structure on the set of solutions to a Euclidean gauge theory. For field
theories on R*, for example, there is the possibility of performing radial quantization. The

symplectic form, for standard Yang-Mills action, is given by
5(/ dXFF,0AL) (21)

where the integral is over a 3-sphere centered at the origin. A straightforward calculation
shows that this vanishes for the 1-instanton moduli space. Quantization with 2, however,
can still be carried out. In this context, it is important to identify the complete set of
finite action solutions of the Yang-Mills equations. Equations (5) are appropriate if all the
solutions are instantons. This is not the case for S* [25]. It would be interesting if other
solutions could be associated with relaxing the conditions F(*2) = F20) — 0 which
have been imposed in a somewhat ad hoc fashion in our theory. (Notice also that for R,
equations (5) can be written as F' A w* = 0, where w* = 5!, da# A da”. Ideally we would
like some way to avoid choosing a distinguished complex structure.)

In addition to the connection of KCST to gauge theories, the four-dimensional current-
algebraic aspects of KCST look very promising. We hope to be able to make explicit the

interesting properties of the action defined by (8); specifically we note that since it is in
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some sense integrable, we might expect the quantum theory to be renormalizable and even

possibly finite.
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