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Abstract

Using a Miura-Gardner-Kruskal type construction, we show that the Camassa-Holm
equation has an infinite number of local conserved quantities. We explore the implica-

tions of these conserved quantities for global well-posedness.

1. Introduction.

Much interest has been developing in the Camassa-Holm (CH) equation
my = —2Mmug, — My | m=u— Uz . (1)

This equation first appeared in work of Fuchssteiner and Fokas [1] as an example of a bihamiltonian
system, but more recently it was rediscovered by Camassa and Holm [2] as a model for shallow water
waves. In addition, Misiotek [3] has shown that it describes a geodesic flow on the group Diff(S?).
In these and other regards, the CH equation has much in common with the KdV equation, but
there are also a number of significant differences. In particular, when considered as an evolution
equation on a suitable Sobolev space, KdV is globally well-posed, while CH is in general not [2, 4, 5];

the first derivative of a solution of CH can become infinite in finite time.

In this paper we present analogs for CH of two pieces of KAV theory. The first concerns the

construction of the conserved quantities. Bihamiltonian structure implies that CH has an infinite



number of conserved quantities. Explicitly, (1) can be written either in the form

0H>
= —Bj—= 2
1
Blzav—@g, ngi/(ug—l—uui)d:n,
or in the form
0H,
= —By—— 3
my 2 om ) ( )
1
By =9, m +m0, , H1:§/(u2—|—ui)dm.
Since By, By are a hamiltonian pair [6], the bi-infinite sequence of functionals ..., H_1, Hy, Hy, . ..
defined by
O0H,  _ 0Hup1
BZ om —Bl 5m. TLGZ, (4)

are conserved quantities in involution with respect to the Poisson brackets determined by either

By or Bs. In [2], formulae were given for Hy, H_1, H_5, viz.

1 m2 1
Ho—/mdl‘, H_l—/\/T_TLd$, H_g——1/<m+ﬁ> dx (5)

(there is a typo in the coefficients of H_ in [2]). Unfortunately, however, the need to invert either
By or By each time (4) is used makes it very hard to use this to generate further explicit formulae
for the H,, or to prove anything about them. The first result of this paper is an alternative
derivation of a bi-infinite sequence of conserved quantities for CH, which we believe, but do not
prove, to be equivalent to the H,,. The advantage of our method is that it shows directly that half
of the conserved quantities (those we believe equivalent to H_,, for n > 0) are local, i.e. integrals
of some function of the fields m and their xz-derivatives. The existence of two constructions for
the conserved quantities is familiar from KdV theory; for KdV the bihamiltonian structure gives
the Lenard recursion [7], but locality is much easier to show via the Miura-Green-Kruskal (MGK)

construction [8]. The new derivation we give for a CH is precisely an analog of MGK for KdV.

Our second result concerns the relevance of the conserved quantities for the initial value problem.
For KdV the relevant results are due to Lax [9], who showed, for the periodic problem, that the
conserved quantities bound Sobolev norms. We give a similar result for CH, restricted, however,

to solutions with m > 0. In this case global well-posedness has been proved for CH [4].

One more point needs to be explained in this introduction. In most of the paper we do not
work directly with the CH equation, but rather with the associated Camassa-Holm (ACH) equation,
introduced in [10] and related to CH by a change of coordinates (see also [11] and [12]; in the latter
work CH is actually related to the KAV hierarchy by a similar change of coordinates). In section
2 we describe the relationship between CH and ACH, so that the results proved for ACH can be
immediately translated into results for CH. In section 3, we give the MGK-type construction for
ACH, proving there exist an infinite number of local conserved quantities of ACH and hence also
of CH. And in section 4, we show how these conserved quantities bound certain norms for certain

classes of solutions of ACH, and hence also for CH.



2. CH and ACH

We concentrate our attention on two types of solution of CH, (1) solutions with m > 0 satisfying
m — h? as || — oo, where h is a positive constant, and (2) solutions with m > 0, and u, m periodic
in x, with period independent of ¢. In general when m > 0 we can define p = y/m, and the first

equation of (1) becomes p; = —(up),. This implies we can define new coordinates tg,t; via
dty = p dx — pu dt , dty = dt . (6)

More precisely, these define tg, 1 up to translations; choosing the origin to coincide with the origin

of z,t coordinates we have

T t
to = / (!, t) da! — / w(0,)p(0,) dt',  t—t. (7)
0 0
Transforming to the new coordinates gives the associated Camassa-Holm (ACH) equation:
=N/
. p
p=-pu, u=p'—p (5) : (8)

Here a prime denotes differentiation with respect to tg, and a dot differentiation with respect to
t1. The two classes of solutions of CH introduced above correspond, respectively, to (1) solutions
of ACH with p > 0, satisfying p — h as |tg| — oo, and (2) solutions of ACH with p > 0 and p, u
periodic in ty, with period independent of ¢;. In the latter case, a solution of CH with period T'
corresponds to a solution of ACH with period S = fOT p(z,t) dx (which is independent of ¢), and
in the opposite direction a solution of ACH with period S corresponds to a solution of CH with
period T' = fos(l/p(to, t1)) dto (which is independent of t7).

Evidently, a solution of CH in one of the two classes under consideration exists for all ¢ if and
only if the corresponding solution of ACH does. There is also a correspondence between conserved
quantities of the two equations (we thank Andy Hone for explaining this to us, citing it as a result
of Rogers, see [13]). Suppose X, 7 are functions of m, u and their z, ¢t derivatives, such that X; = 7,
follows from (1). Then [ X dz is a conserved quantity of CH. Using the relations 0, = pd;, and
O0p = Oy, —pu0y,, X and T can be rewritten as functions of p, w and their tg,¢; derivatives, and it is
straightforward to check that 0y, (X /p) = 0y (T + uX). Thus [(X/p) dto is a conserved quantity
of ACH. This procedure can be reversed, and we obtain a correspondence between conserved
quantities of the two equations. We will call a conserved quantity of CH (ACH) local if it is of
the form [ X dx ([ X dto), where X (X) is a function of m (p) and its x (ty) derivatives alone.
The general correspondence just described can be checked to reduce to a correspondence of local

conserved quantities.

The results we have just presented allow us to study ACH instead of CH. From the form (8)
of ACH it is not clear in what sense this is an evolution equation, but it turns out that when
we restrict to either of the classes of solutions introduced above it can be written in a simple
evolutionary form. To see this we first eliminate u from (8). Gathering all the terms with t;
derivatives on one side, the resulting equation can be written

" 12 .
o PP 1) p /
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To write this in evolutionary form (i.e. to have an explicit expression for p) we need to solve the
second order ordinary differential equation

" 12
2 P p 1
T - 1
(ato 2p  4p? p2>y ! (10)

(here f,p are given and y is the unknown). For class (1) of solutions, f =2,/pp’ — 0 as |tg| — oo,
and we need a (hopefully unique) solution y obeying a similar condition. Similarly, for class (2)
of solutions, f is periodic, and we need a (hopefully unique) periodic solution y. Remarkably,
for arbitrary p it is possible to explicitly solve the homogeneous problem corresponding to (10)
(i.e. the case f = 0), and thence by standard methods solve the two inhomogeneous problems.

Explicitly, in the homogeneous case, (10) has two linearly independent solutions

yalto) = o exp (+ [ 20 )

and the two evolutionary forms of ACH are given by

) o0 to du
p(to,t1) = —/ p(to, t1)p(s0, t1)p (s0, t1) exp <— / — ) dsg , (12)
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p(to,t1) = —/0 p(to,t1)p(so,t1)p (50, t1) dso (13)

. S d
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respectively. In the latter, S denotes the period of p as a function of ¢y, and [ 2] denotes the

largest integer not exceeding % ¢; it is an enjoyable exercise to check that the expression cosh(...)

appearing in (13) is continuous when ¢y is an integer multiple of .S, for any so.
3. The MGK construction for ACH

It was shown in [10] that (8) has a strong Bécklund transformation

25
p—p— 25, U— U+ —, 14
p(p —2s') 14)
where s satisfies
2
/ S A p
_ o 15
s pn | 2p Ty (15)
§ = -2+ 2 —i—)\()\—i—u) (16)

(X is a parameter). It is straightforward to check that

(E)-sfo-t)

from which we deduce that [(s/p) dto is a conserved quantity. But s is dependent on A; so if we
can find a consistent expansion of s in powers of A, then in fact each term in the expansion of

[ (s/p) dto will yield a conserved quantity. Two such consistent expansions of s are:

s = Z SnAZ with s1 =p (18)



and -
s=> rp A" withrg=1. (19)
n=0

Using (18) and substituting in (15) gives the recursion

1 n—2
Sp+1 = —S;L + % (6n2 — Z Si+23n_i> n=12,... . (20)
=0

With the aid of a symbolic manipulator it is easy to compute the first few of the s,; we find that
sp/p is a total derivative for n even, but that for n odd we obtain nontrivial conserved quantities
(both these statements can easily be proved). Writing K,, = [(san—1/p) dto, n = 2,3,..., and
integrating by parts to reduce the order of derivatives appearing, we find (up to unimportant

overall constants):

/2
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Following the procedure of converting conserved quantities of ACH to those of CH, as described
in section 2 , it can be seen that Ky gives H_5 as given in (5) up to an overall constant. Similarly,
lengthy calculations show that the conserved quantity of CH determined by K3 is actually H_s,

up to an overall constant; the explicit form of H_g3 is

1 m2, 35 mi 5 m2 1
H—3—g/<m7/2—ﬁm11/2+§m7/2+m3/2 dx . (22)

We conjecture that in fact K, is equivalent to H_,, for all n = 2,3,... (up to multiplication
by overall constants). In any case, it is clear that the K, are local, and therefore so are the

corresponding conserved quantities of CH.

Using now the series (19) for s and substituting in (16) gives the recursion

1 Comp
T+l = 5 <u5n0 — T+ % — Z Tit1Tn—i n=0,1,... . (23)
=0

Explicit expressions for the first few r, are:
T =

Tg =

(@) )



The resulting conserved quantities [(r,/p) dty are in general not local, since these expressions
involve ti-derivatives. 7 gives rise to the conserved quantity 7' = [(1/p) dty of ACH mentioned
in section 2. Lengthy calculations, not reproduced here, show that the conserved quantities of CH
determined by 1,79, r3 are Hy, Hy, Hy respectively (up to multiplication by overall constants). We

conjecture that r, gives rise to the conserved quantity H,_1 of CH for all n > 0.

In the next section we will use the first series of conserved quantities, and it will be useful to

have a number of facts about them available. The following results are easy to prove:

1. For n > 1, s, is a polynomial in ,p p",...; s, is odd under p — —p.
2. Assigning weight 1 to 1—1) and weight n — 1 to p™, s, is a sum of terms of weight n — 2.

3. Each term in s, contains at most n — 1 derivatives (so, for example, in s7 a (p”’)?/p term is
allowed, but not a (p™)%(p')?/p term).

These results concern s,. In constructing the conserved quantities K,, = [(s2n—1/p) dtg (n > 2)
we are allowed to integrate by parts to reduce the order of derivatives appearing. In general, we
can continue to do this until the highest derivative appearing in any term appears nonlinearly.
After this, we have K,, = [ KC,, dtp, where:

1. K, is a polynomial in ,p p”, ..., even under p — —p and divisible by 1%
2. Assigning weight 1 to 5 and weight n — 1 to p™, K,, is a sum of terms of weight 2n — 2.

3. Each term in IC,, contains at most 2n — 2 derivatives, and in each term the highest derivative

appears nonlinearly.

It follows that the highest order derivative appearing in K, is p(*~Y, and this appears only in a
term proportional to (p*~1)2/p?. We will assume in what follows that the coefficient of this term
is always nonzero, in which case we can without loss of generality take it to be positive. I, also
has a term with no derivatives, proportional to 1/p?"~2. Since this term is not affected in any way
by the procedure of integration by parts, it also appears in so,—1/p, and from the recursion (20)
it is possible to show its coefficient is nonzero. This guarantees the nontriviality of the series of
conserved quantities. But it also implies that the K, as we have defined them are actually infinite
in the case of solutions with p — h as |tg| — oo. This can be rectified by adding a suitable constant
to ICy; for example K should be modified to [0 (’;—,22 + 1715 — Elg) dty . Similarly the conserved

quantity 7" should be modified to [ (1—1) — %) dty.

4. Bounds on norms from the conserved quantities

In this section we consider only the periodic case of ACH. By rescaling p, tg,t; we can without
loss of generality take S = 1. The p > 0 condition is awkward to work with, so we eliminate it via

the substitution p(t,t;) = e(*0:*1). The evolution equation (13) becomes

1 cosh f e v uo ’tl duo — fto_[to] e—v(uo,tl) duo
o(to, 1) = —/ e20(s0:t)y/ (50, 1) ( . D
0 sinh ( [ e=vluostr) duo)

dSQ . (25)
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Usual contraction mapping methods can be used to prove the local existence of solutions for this
equation. For convenience we write out the first few local conserved quantities in terms of the new
field v:

K, =

To obtain these formulas we have performed some integration by parts, so that once again all
terms in the densities have their highest derivative appearing nonlinearly. A direct check that T
is conserved under the flow (25) is a long but ultimately rewarding exercise. The following analog

of Lax’s theorem now holds:

Theorem: Let v be a smooth function of period 1, and n a positive integer; the quantities

max{[oto) |, [/ (to)| -, [0 Dt} [0 (00))? dto
can be bounded in terms of T, Ko, ..., K,11.

Proof: The cases n = 1, 2 needs to be checked individually; for larger n we can proceed by induction,

exactly as in Lax [9], because for n > 4 the density of K, is at most quadratic not only in v(=1)

but also in v(*=2). (For K4 this is evident from the explicit formula, but is fortuitous because there
are no a priori reasons to exclude a term proportional to (v”)3; for n > 4 it follows since all terms

in the density of K,, can have at most 2n — 2 derivatives.)

For n = 1, writing Q = fol (v")? dtg, we evidently have Q < K. Also, since for any tg, so

v(to) = v(so) + /to v/ (ug) dug

S0

it follows from the Schwarz inequality that
(v(t0))? < 2((v(50))* + Q) -

Taking sy to be any point such that e=¥(50) = fol e vwo) duy =T (such a point exists by the mean

value theorem), we have at once that for all ¢y
(v(to))? <2 ((T)? + Q) <2((InT)* + K>) .

This gives a bound for max{|v(ty)|}. Moving now to n = 2, again it is clear that Qo = fol ("% dty <

K3/4, and an argument similar to that given before shows that for all ¢y, sg
(v/(t0))? < 2 ((v/(s0))? + 52) .

7



Choosing sg such that (v/(sg))? = Q < K3 gives a bound on max{|v/(t)|}. e

Thus in particular we see how the conserved quantities of (25) give bounds on the Sobolev
norms of its solutions. It just remains to reverse two steps, to go from (25) to periodic ACH
(13), and thence to the periodic case of CH. Both steps are immediate. For the step to ACH, we
have p = v, and thus p(") = e”(v(r)—k a polynomial in lower derivatives of v). Thus, for example,

n=1) give bounds on p,p/,...,p™ Y, and in greater generality the theorem

bounds on v, v/, ..., vl
stated above is true with v replaced by p. Similarly to go from ACH to CH, we have m = p? and
0z = pOy,; thus O,m = p2(2pr_1p(r)+ a polynomial in lower derivatives of p). Immediately we see
that bounds on p,p/,...,p" Y give bounds on m and its first n — 1 derivatives with respect to z,

and in greater generality the theorem above is true with v(tg) replaced by m(x).

In fact the theorem above has other implications too. The bound on |v| gives not only a bound
on |m| but also on |-£|. Thus for a solution of CH with m > 0 we can find € > 0 such that m > e
for all time. This improves the result of Constantin and Escher [4] that a solution with m > 0 at

some time has m > 0 for all time.
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