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Abstract. A map is presented that associates with each element of a loop group a solution of
an equation related by a simple change of coordinates to the Camassa—Holm (CH) Equation.
Certain simple automorphisms of the loop group give rise to Béacklund transformations of
the equation. These are used to find 2-soliton solutions of the CH equation, as well as some
novel singular solutions.

1 Introduction

Substantial interest is accumulating in the Camassa-Holm (CH) equation:

up = 2fzu+ fug , u:%f:c:c_zf- (1)

This equation has been believed to be integrable for many years [9, 11], but only recently has
it been widely studied, following the work of Camassa and Holm [3] showing that it describes
shallow water waves. Camassa and Holm found that this equation exhibits “peakons”, i.e.
solitary wave solutions with discontinuous first derivative at their crest (here f is regarded as
the fundamental field; for peakon solutions u is just a moving delta function). Multipeakon
solutions can be found, and are related to an integrable finite dimensional Hamiltonian sys-
tem, which has been exhaustively studied [2, 16]. Both numerical and analytic studies [4, 5]
suggest that for suitable initial data (1) describes the decomposition of the initial data into
peakon components; in particular for analytic initial data with u of mixed sign, the first
derivative of f develops a discontinuity in finite time. In addition to peakon solutions, (1)
is known to have analytic soliton solutions tending to finite nonzero depth at spatial infinity
[7, 13]; these converge to peakon solutions as the depth at infinity tends to zero.

A number of papers have appeared explaining various aspects of the integrable structure
of CH [8, 10, 15, 18, 20]. Despite these results, much work remains to be done, particular in
regard to generating explicit solutions. The aim of the current paper is to present the analog,
for CH, of a cornerstone of KdV theory, the Segal-Wilson map [22]. The Segal-Wilson map
associates with each element of a loop group a solution (possibly with singularities) of KdV.
In [23], Wilson gave a very explicit version of this map, writing down a huge class of solutions
of the modified KdV equation. Here I will give an analogous formula for CH; more precisely,
I give a map from a loop group to the space of solutions of an equation related by a simple



change of coordinates to the CH equation, which I will call the associated Camassa-Holm
(ACH) equation. The application I will make of this result is the construction of Backlund
transformations (BTs) for the ACH equation. In the case of the KdV equation, it is known
that BTs have their origins in simple automorphisms of the relevant loop group [21], and by
looking at similar transformations here, BTs can be derived for ACH. These facilitate the
construction of new solutions of CH, along with a new formula for 2-soliton solutions. (A
formula for 2-soliton solutions has already been given in [1], using a different approach, with
which I will not compare here.)

This paper is structured in a logically incorrect fashion, but one which I hope will enable
others working on the CH equation to read the results obtained without going into details
of the loop group construction. Section 2 contains all the results that do not require some
understanding of loop groups: Here I define the ACH equation, explore its elementary solu-
tions and properties, give two BTs for ACH (derived later by loop group techniques), and
use the BTs to study less elementary solutions of ACH, and the corresponding solutions of
CH. Section 3 contains the details of the map from a loop group to solutions of ACH, the
main result of the paper. Finally, Section 4 contains the derivation of the two BT's using loop
group methods, which logically should precede much of the material in section 2.

The reader will see in section 2 that this paper only studies solutions of CH for which
u is of constant sign (only then is the transformation to ACH defined). I have tried hard
to find a loop group construction that gives rise to mixed sign solutions of CH, but without
success. This, along with the results of [5], leads me to conjecture (1) is in some sense “more”
integrable for solutions of constant sign than for solutions of mixed sign (in [5] it is shown
that if a solution of (1) is of constant sign at some time, then it remains so). The exact
sense of this remains to be clarified, but it is certainly clear that the CH equation presents
an interesting challenge to the integrable systems community.

A few more introductory points: First, in the current paper I limit myself to the study
of (1), and not the related equation obtained by replacing the definition of w in (1) by
U = %fz‘x + 2f, which admits a compacton solution [13, 17, 19]. Second, note the choice of
coefficients I have made in (1) differs slightly from that in [3]; in particular for my choice
of coefficients positive elevation peakons move to the left. Third, I note that the change of
coordinates from CH to ACH is suggested in [10]. And finally, I draw the reader’s attention
to the papers [6], which study the periodic problem for the CH equation.

2 The ACH Equation and its Backlund Transformations

Proposition 1. There exists a one to one correspondence between C'* solutions of (1) with u
positive and C** solutions of
. / 2
. 2 o/ p(p p
= s = — — -, 2
p=pf =7 (p) 5 (2)
with p positive. Here p, f are functions of tg,t1, a prime denotes differentiation with respect
to tg, and a dot differentiation with respect to ¢;. Equation (2) will be referred to as the
Associated Camassa-Holm (ACH) Equation.

Proof. Suppose we have a solution to (1) with u positive, and let p = \/u. Then p; = (pf),.
It follows that we can define a new set of coordinates tg,¢; (the reason for this notation will
become clear in section 3) via

dto = pdx + pfdt , dt; = dt . (3)



In the new coordinates equation (1) becomes (2). To go from a solution of (2) to a solution
of (1), we note that the change of coordinates (3) implies
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Given a solution p, f of (2), with p non-vanishing, we find x as a function of ¢, t; by integrating
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and so

By the first equation of (2), these equations are integrable. We clearly can identify ¢ and ¢1;
and since g—z) > 0 it follows that the map between z and ¢, for fixed t = ¢; is one to one (and
C*). Thus we can express to,t; in terms of x,t to obtain a solution of (1) (with u = p?). Tt
is clear that this sets up a one to one correspondence between “positive” solutions of the two
equations.

Note. Clearly a solution of (2) with p negative also gives rise to a solution of (1). A solution of
(2) for which p has zeros will in general give rise to a number of solutions of (1): in integrating
(4) we obtain a relationship between ¢y and x (for fixed t; = t) which is many to one. We
will see an example of this below. In the other direction, a solution of (1) with u always
negative can be used to give a solution with u always positive by the replacements v — —u,
f— —f,t — —t, and from this we can obtain a solution of (2). But there is no apparent
way to obtain a solution of (2) from a solution of (1) in which u is allowed to change sign.
Finally, the correspondence also extends to solutions with point singularities; below we will
see an example of this too.
Proposition 2. p(z,t) = ¢(x — ct) (c # 0) solves (2) if

(@) = —2¢° + ag? + B +4, (5)

C

where «, 3 are arbitrary constants. In particular we have “soliton solutions”

¢(z):Asech2(\/gz)+h, A:%—h, (6)

(here h # 0 and k3 sgn(c) < |c|), and (singular) “rational solutions”

o(z) =M - 5. ()

22

Proof. This is a straightforward computation. Equation (5) is familiar from the theory of the
KdV equation, but the nonzero constant term implies that if ¢’ — 0 at spatial infinity, then
¢ cannot go to zero there, as seen in the forms of both the soliton and rational solutions. In
the soliton solutions the parameter h is the asymptotic height; for the rational solutions the
asymptotic height is ¢'/3, a limiting case of the heights allowed for soliton solutions.

Corresponding Solutions of CH. It is a straightforward but arduous matter to translate the
solutions of ACH just presented to solutions of CH, following the procedure in the proof of



proposition 1. From the soliton solutions of ACH we obtain the soliton solutions of CH,
which for ¢ > 0 take the form

F 2 N ( 1 1>
= _—— C _— — = s
2 Asech’X +h h
u = (Asech’X 4 h)?,

where A = (¢/h?) — h , and X (: VAce(to — ctl)) is determined from

c h? 1 1 me?X 4+ 1 c c 2
=+ = |t=y/——— X+-In| ——— = — —/=-1] .
! <h+2> \ 1T=%3/c +2n<e2X—|—m " (\/hi’» V73 ) ©)
The speed of the solution as a solution of CH is é = ¢/h + h?/2, differing from the speed c of

the solution as a solution of ACH. To understand the nature of this solution, it is useful to
look at the relation of x — ¢t and X in the limits X — +o00 and X — 0: For X — +o00

x—ét:,/%hg/c Xiln(\/%—,/%—1>+o(1),

1
ct = E 1—h3
ct < T~ 7/c /C)X + o(X

In figure 1, a plot of 2 — & against X is given for the value h®/c = 1/3, as well as plots of
f/h? and u/h? against x — &t for this value. The limit h — 0 with ¢ constant is — according
to [13] — the peakon limit (or, rather, since we are looking at right moving solutions, the
anti-peakon limit); I leave it as an interesting exercise to the reader to show that in this limit
we indeed obtain the anti-peakon solution

and for X — 0

f=—cexp(—2|z —¢ct|) , u=2¢e(lx —ét|) . (10)

Turning now to the rational solutions (7), for these ¢ changes sign twice (at z = +c/?)
and has a singularity (at z = 0). Following the method of translation back to solutions of

CH Leads to _ )
—3X 2 1
f:éin?’_l , u:—é(l——) , (11)

where X (: ze1/ 3) is determined by

1
a:—ét:X—i-Eln

X -1
Eesik ()
and ¢ = %cz/ 3. The map from X to = — &t is three to one, so here a single solution of ACH
gives three solutions of CH, corresponding to the ranges on which ¢ is of definite sign, viz.
X < -1, -1 < X <1and X > 1. In the middle range the solution has a singularity at
X = 0. The three solutions are illustrated in figure 2. For X < —1 and X > 1, the solutions
for u take the form of a “kink”, with the limit at one end being approached polynomially
and at the other end exponentially; the solution for f is finite at one end, and diverges
exponentially at the other end. For the range —1 < X < 1, the solution for u is a “spikon”
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Figure 1: The soliton solution, for h?/c = 1/3.

On the left, a plot of x — ¢t versus X is

displayed; the straight lines show the X — 400 behavior. On the right the functions wu/h?

and f/h? are plotted against x — é&t.

(an infinitely peaked soliton), and f has a cusp at x — ¢t = 0 and exponentially diverges at
infinity. (For z —ét ~ 0 we find f ~ —1—2-371/3(x—¢&)?/3, and there is a cusp at = — & = 0,
not a simple corner as appears from the low resolution plot in figure 2.) One might hope to
“splice” together the two solutions for X < —1 and X > 1 to form a finite height peakon
solution for f with polynomial decay at infinity; this does not seem to be possible.

Note. T have not, as of yet, explored the solutions of (1) corresponding to the cnoidal wave

solutions of (2).

The great advantage of ACH over CH is that ACH has standard Béacklund transformations.
These are presented here (and can be verified by direct computations), but their derivations

will be given in section 4.

Proposition 3. The ACH equation (2) has the Backlund transformation p — p — s’ where

2
, s 1 1>
= —_—— _ — 1
s p9+p9<p2+0 : (13)

5 = —s2+§s+9(9—2f). (14)

This is a strong BT (in the sense that (13) and (
is a parameter, 6 # 0. Under the BT

f=1F-
p

Applying this BT to the constant solution with p

or

(p—s) "

14) are only consistent if p, f obey (2)). 6

(15)

= h and f = —h?/2, we find we can take

1
0

1 ~(to + Oht1 + C)) (16)

1 1 1 1
8:h9\/ﬁ+§co‘ch< ﬁ+§(to+9ht1+0)>, (17)
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Figure 2: The solutions of CH obtained from rational solution of ACH, for the ranges X < —1,
—1< X <1andand X > 1 (from left to right).

where C' is a constant of integration. Taking the choice (16) for s, with C = 0 and 6 =
—c/h, returns the soliton solution (6). The choice (17) gives a singular solution. Repeated
application of the BT is simplified by the following nonlinear superposition formula:

Proposition 4. If application of the above BT with parameter 6; to a solution p of (2) yields
the new solution p; = p — s}, and application with parameter 6, yields the new solution
p2 = p — 85, then

(61 — 62)(0102 — 8182))/

Oas1 — 0152 (18)

P12 =p~— (
is also a solution of (2) (arising from repeated application of the BT with parameters 6; and
0o — in either order — to p). The corresponding f takes the form

_ P 51— 82
fi2 = f — 01602(01 — 62) (IE> (m) : (19)

Proof (outline only). The formulae (18) and (19) are best proven by direct verification using
a symbolic manipulator. As regards their derivation, the starting point is commutativity
of BTs with different parameter values, for which an argument can be given at the loop
group level (see section 4). Given this, suppose applying the BT with parameter 62 to p;
gives p1a = p1 — 89, and applying the BT with parameter 61 to pay gives pa1 = pa — shy.
If p12 = po1, then (s1 + s12) = (s2 + s91)’, and this suggests looking at the possibility that
814 S12 = 82+ 891. Since from the BT we have expressions for the derivatives of s1, s9, s12, o1,
we can differentiate this relationship to find other algebraic relationships from which s1o and
s91 can be determined (due to their length, I do not reproduce these calculations here). This
is the origin of the formula (18).

2-soliton solutions of ACH are now easily found using the superposition formula on the
constant solution p = h, f = —h?/2. Taking h > 0, 65 < 01 < —h?, 51 of the form (16) and
s of the form (17) we obtain

(B2 + h2) + (1 — 63) tanh® y, — (61 + h?) tanh? y; tanh? gy
2
(\/91(92 + h?) — \/02(01 + h?) tanh y; tanh yg)

p="h—h(01—0s): , (20




where y; = /1/h% +1/61(to + 61hty + C1) and yo = /1/h? + 1/02(tg + O2ht1 + Cs). For
0, < 61 < —h? it is simple to check this is nonsingular, and moreover that p > h, so in
particular p has no zeros and f is nonsingular too. For f we find the formula
h2
[ = —7—(91—92)’ (21)
02(02 + h?) 4 (61 — 02)(h? + 6 + 65) tanh? yy — 61(61 + h?) tanh? y; tanh? g,

2
(\/92(92 + h?) — 1/01(61 + h?) tanh y; tanh yg) — (6 — 6)2 tanh? 3y

To translate these results into 2-soliton solutions of CH we follow the procedure of proposition
1: fis as given in (21) and u = p?, where p is as given in (20), but now ¢; must be replaced
by t, and ty is a parameter, related to the coordinates x,t by

vl dt; ! 0, t))dt) 22
v= |, smmte= f, St )
(which solves (4)). I cannot see how to evaluate these integrals analytically, but they can
be approximated in various limits, as well as evaluated numerically. In figure 3, snapshots
of a 2-soliton solution of ACH are given, and in figure 4 the corresponding pictures of the
corresponding solution of CH are shown. One important feature of the passage from ACH to
CH is that the speeds of the soliton components change; for ACH the speeds are ¢; = —6;h,
i = 1,2, and for CH they are & = ¢;/h + h?/2 = —0; + h?/2.

I proceed to a second BT for ACH, which will also be derived later by loop group tech-
niques.

Proposition 5. The ACH equation (2) has the strong Bécklund transformation

p—>pl<1— T > - (23)
where B and 7 satisfy the equations.
1 p : —p
B :B<— —> B = (—)B OpB’' 24
(pB') PR oy ) 0P (24)
B2
o= B 7 = 0(p*B” — B?) (25)

and 6 is a parameter, 6 # 0.

This BT looks more involved than the previous one, but it is actually very similar to imple-
ment. The apparently difficult part of implementation is solving the first equation of (24),
a second order linear equation determining the z-dependence of B. This is, however, just a
linearization of the Riccati equation (13) that appears in the previous BT: if B solves the
first equation of (24) then s = pd B’/ B solves (13).

As an example of the use of this BT, consider its action on the trivial solution p = h,
f = —h?/2 (h constant). One allowed choice of B, is

/1 1
B = Klexp( ﬁ+§(to+h9t1)>
h 1 1
T = K12 7exp<2\/—+—(to—|—h9t1)>+K2 ,
(29,/#+$ 2o
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Figure 3: The 2-soliton solution of ACH given by equation (20), with h = 1, §; = -2,
0o = =3, C; = Cy = 0. Plots are of p as a function of ¢y, for t; = —3,—-2,—1,0,1,2 (from
top to bottom).

Figure 4: The corresponding 2-soliton solution of CH . Plots are of u as a function of z, for
t=-3,-2,—-1,0,1,2 (from top to bottom).



where K1, K5 are constants, and it is straightforward to show that this returns the 1-soliton
solution with speed —h#. A more general possibility for B, T is

1 1
B = Kjcosh <\/ 72 + g(to + hot; + Kg))

K2h 0

1 T 1
= S~ 2 (204 B2ty + K3+ ————sinh 24/ = + , K
T - (to - (20407) 11+ A Tfr%sm < =+ 5t + hot + 2)>),

where K1, K5, K3 are constants, with resulting solution of ACH

26 .
0 23 ) (1 + cosh y2) + y1 sinh yo
) () , (26)

p=h—dh (1 T (y1 + sinhy)?
where y; = 2\/% + %(to - %(29+h2)t1 +K3), yo = 21/% + %(to + 60ht1 + K3). This solution,
which is illustrated in figure 5 (for # < 0) and figure 6 (for # > 0), should presumably be
considered as the superposition of a soliton and a simple rational solution. For almost every
value of t1, it has a singularity at a single value of ¢y, and two zeros, giving singularities of the
corresponding function f. (The possible exceptions to this are the two values of ¢; defined by
the relations y; = +2/0(0 + h%)/h?, yo = —sinh ™! y;; when these relations hold, the ratio
in (26) is undefined.)

Let us look more closely at the solution in the case § > 0. As can be seen in figure 6,
as t1 increases, the singularity of p passes through the zeros of p. The implications of this
for the corresponding solutions of CH are quite dramatic. Because of the 2 zeros of p there
are 3 corresponding solutions of CH, but let us focus on the solution corresponding to the #g
region between the two zeros of p. This solution evidently has the remarkable feature that
for ¢ below one critical time t. and above another critical time ¢? (determined as explained
above), the solution for u = p? is analytic, but for t} < ¢ < t2, the solution has a singularity.
The singularity moves in from x = 400 and out to x = —oo as t increases between the
two critical values. The reason a singularity can develop and disappear this way is that
the dynamics of u is driven by the dynamics of f and f blows up at both +oo. It turns
out that for the solution (26) it is possible to analytically compute the integrals required to
change coordinates back from ACH to CH, and in figure 7 the interesting solution of CH
just described is illustrated (though this illustration does not adequately capture the most
important feature, that for ¢ < t! and ¢ > t2 there is no singularity). For completeness, I
note that for Ko = K3 = 0 the critical times are given by

2 sinh ™! z) L 2\/0(0 + h?)

e = e = 299 1 2y <1+ i 72

3 The Loop Group Construction for ACH

3.1 The ACH and CH Hierarchies

The key to the map from a loop group to solutions of ACH is the following trivially-checked
property:
Proposition 6. The ACH equation (2) has a zero curvature formulation

O Zo = Oy 21 + [ 21, Zo| (27)
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Figure 5: The solution (26) of ACH for h = 1, § = —2, Ky = K3 = 0. Plots of p against tg
for ty = —3,-2,—1,0,1,2,3 (from top to bottom).

Figure 6: The solution (26) of ACH for h =1, § =1, Ko = K3 = 0. Plots of p against ¢ for
t1 =—3,-0.5,-0.4,0,0.4,0.5,3 (from top to bottom).

Figure 7: The solution of CH arising from the middle ty range (the range with p < 0) of the so-
lution of ACH of figure 6. Plots of u against = for t = —0.5, —0.4055, —0.37, 0, 0.37, 0.4055,0.5
(from top to bottom). The solution is analytic for [¢t| > t? ~ 0.4058.
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where

= (i ) 2%)
2= (Vo) (0 ) (29

and f is given by the formula in (2).

There is an integrable hierarchy associated with the CH equation [3], so it is natural to
investigate whether there is a hierarchy related to the ACH equation. Though I do not
intend to explore it in full detail here, there is a hierarchy, which can be easily defined using
a zero curvature formulation:

Definition. The n-th ACH equation (n € Z, n # 0) is the zero curvature equation
atn ZO - ato Zn + [Zna ZO] (30)

where

Zo = 0 1/p(t07tn)) ’ (31)

(P(to,tn)/)\+ 1/p(t07tn) 0
and

e forn > 0, Z, is a polynomial in X of order n, with highest degree term A" (? (1)) and

constant term with vanishing 1,2 entry.

e for n < 0, Z, is a polynomial in 1/\ of order 1 — n. with highest degree term

0 0 0 1
n—1 .
A (p(to, t) 0) and constant term proportional to (1 0).

It is straightforward to check the consistency of the above definition. Of particular interest

is the n = —1 equation, which, writing » = 1/p, (and ignoring one constant of integration)
becomes ,
1 3r?% 1
0 S = 32
et (4T sr 2 (82)

It is also straightforward to use the above definition to show that the n > 1 ACH equations
are related by a change of coordinates to the higher equations in the CH hierarchy, for
which a zero curvature formulation is given in [20]. Less straightforward (but nevertheless
possible) is to show the consistency of all the ACH equations, i.e. that we can look for
functions p(...,t_1,to,t1,...) simultaneously satisfying all the equations in the hierarchy.
This calculation is made unnecessary by the loop group construction that will shortly be
given, which constructs solutions of the entire hierarchy.

3.2 The Loop Group G

Suppose € > 0, and denote by Cy and C respectively the circles {|A| = €} and {|A\| = 1/¢}
in the Riemann sphere. Write C = Cy U Co,. The loop group we will need, which I denote
G, is the group of smooth maps from C into SL(2). I denote by G4 the subgroup of G of
maps which are the boundary values of analytic maps from {e¢ < |\| < 1/e} to SL(2), and by

11



G_ the subgroup of G of maps which are the boundary values of analytic maps S(\) from
{IN| < e} U{|A| > 1/e} to SL(2), satisfying the boundary conditions

o-(4 0. w0-(TT ) e

for some «, 3,7 (with a # 0). (It is straightforward to check these conditions do define a
group). Throughout I identify SL(2) with its fundamental representation. The key property
of G we shall use is that a dense open subset of elements U € G (given a certain natural
topology) can be factorized in the form

U=5"'Y (34)

with S € G_ and Y € G (the so-called “Birkhoff factorization” property).

The corresponding splitting of the Lie algebra G of GG is described as follows. An element
v € G has Fourier decompositions on both the circles Cy and Coo, i.e. we can write

o)

v o= Z anp\" A =€
= D A" A =1/e, (35)

where the coefficients a,,b, are in the Lie algebra sl(2). Consider the terms containing
negative powers of A in the series valid on |A| = e. Since the series Y o ; a_,A™" converges
for [\|7! = 1/e, it converges absolutely for |\7!| < 1/e, i.e. for |\| > ¢, defining an analytic
function there. Similarly the series > o> ; b, A" converges absolutely for |\| < 1/¢, defining an
analytic function there. And thus, for arbitrary ¢ € si(2) (we will fix ¢ shortly),

&) &)
Ve = a AT+ Y b\
n=1 n=1

defines an analytic function on € < |[A| < 1/¢, and is also convergent on the boundaries of
this region, thus defining an element of the Lie algebra G, of G,. We have

NE

v—vy = (ag—1t)+ Y (an—by)\" IA| =€

n=1

NE

= (o—t)+ > (bn—a )™ A =1/e.

Il
—

n

Thus, irrespective of ¢, v —v4 is the boundary value of a function analytic in {|A| < e}U{|\| >
1/e}. We choose t so that v_ = v — vy is in the Lie algebra G_ of G_; from (33), the extra
conditions we need to satisfy are

e-va=0 =" D) o= = () §)

1+a

for some a, b, ¢, and a brief calculation shows that this can be done by taking

_ (bo)11 (ao)12
= <(bo)21 — (bo)12 + (a0)12  (bo)22 ) '
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To summarize, we have shown the following:

Proposition 7. For all v € G, there exists a unique way to write v = v4 + v_ with vy € Gt
and v_ € G_. If v has series expansions as in (35), then

_ v n (bo)11 (@0)12) |, =, \n
ve = D asa +<(bo)21_ A (60)22)4—;%)\ e <IN < 1/e

n=1
_((a0)11 = (bo) 0 =
T (bs)ll; - (b(?)lel (ap)22 — (b0)22) T nz::l(a" by) A A < e
_ 0 (bo)12 — (ao)12 = WA .
N ((b0)12 — (a0)12 0 ) + ;(b_n —n))‘ ’)\’ > 1/

3.3 The Map from G to Solutions of the ACH Hierarchy

Proposition 8. There exists a natural map from the loop group G to solutions (possibly with
singularities) of the ACH hierarchy. This map descends to a map from the coset space G/G
to solutions of the ACH hierarchy.

Proof. The proof I give of this follows the description of the Segal-Wilson map given in [21],
which in turn follows the proof of a similar result for the KP hierarchy given by Mulase [14].
Similar ideas appear in [12].

Let M denote the infinite dimensional affine manifold with coordinates ...t_1,%g,t1, ...,
and define a G, valued one-form €2 on M by

= ./ 0 1
Q= > A <1+% 0>dtn. (36)

n=—oo

Since evidently dQ2 = Q A Q = 0, the differential system

du(t) = QU(t) , (37)
where U is a G-valued function on M, is Frobenius integrable, with general solution

U(t) =MU(0) , (38)

where

A |
2 A (1+§ o)t">

M = exp(

e O TR

and z =32 N, . Let U =S"'Y, Se€G_,Y € Gy, be the Birkhoff decomposition of

n=—oo

U, as described in section 3.2. Substituting into (37) we find

—dS STt +dy Yl =505, (39)
from which it follows that

dS S~ '=—(SQS™H_  and dY Y '=(SQSY), , (40)

13



where here I am using the notation of proposition 7 for the projections of an element of G to
G, and G_. If we write Z = dY Y !, then clearly dZ = Z A Z, or, writing

Z=> Zndty, (41)

n=—oo

the components of Z satisfy the zero curvature equations
O, Zn, — O, Zomn = [Zm, Zn] (42)

(c.f. (27),(30)). On the other hand, the second equation of (40) tells us that

Zn:<)\"5(1ﬁ% é>5—1>+ . (43)

I will now show that this fixes the form of the matrices Z, appearing in the zero curvature
equations (42) to the form of the matrices appearing in the zero curvature formulation of
the ACH hierarchy given in section 3.1. From this it follows at once that given U(0) € G
to specify a solution of (37) we can find an associated solution of the ACH hierarchy, by
computing in turn U, S (or Y) and then Z = (SQS~!), = dY Y ~!. This is the natural map
of the proposition.

To show that (43) correctly fixes the form of the Z,, consider first what we know about
S. S is an element of G_ and hence has expansions

— 1/ 0
S = Y87, 50:( ) A < e
n=0 ﬁ a

o~ & yon & _(VI+? v )
e n , e , 21 .
Yo S=(VUT ) wz

01 1)5_1inLaurent
1+5 0

series valid in 0 < |A| < € and 1/e < |A| < oo, and then use the projection formula of
proposition 7. For example, for n = 0, we have, for 0 < |A\| < € :

To see the content of (43), we use these formulae to expand A"™S (

0 1\ o1 _ 0

1 0 O _ 0 1 _ _ 0 0 _
_ XSO(l 0)501+50<1 0)501+[51501,50<1 O>501]+0(A)

_( 0(1) 1/a2+O(A)>
— \e2/A+0(1) O(1) :

(1)) (So+ AS1) "L+ O\

where here O(1) denotes only non-negative powers of A, and for 1/e < |\| < oo
0 1\ o & (0 1\a.
S(1+% O)S = 5 (1 0)50 +O(1/2)
0 1
- (¢ ) voun.

Using the projection formula we obtain

a=(s(i0y 0)57), ~(wntue ) .
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of the required form with p = o?. The required results for Z,, n # 0, follow in a similar

manner; for n > 0 the expansion for 0 < |A| < € gives no contribution to the projection, and
for n < 0 the expansion for 1/e < |\| < oo gives no contribution.

To conclude the proof, I note that the solutions generated of the ACH hierarchy may have
singularities because the Birkhoff decomposition is only possible for open, dense subset of G.
And, the reason the map descends to the coset G/G is that if we multiply U(0) on the right
by g € G4, then U(t) and Y get similarly multiplied, but S is left unchanged, and therefore
so is the solution of ACH.

4 The Derivation of BTs of ACH

As explained in [21] for the case of the KdV equation, BTs for ACH are associated with
simple automorphisms of the loop group. The relevant automorphisms do not preserve the
fibration of G over G/G, so a single solution of ACH, corresponding to a G coset in G,
will typically get mapped by a BT into a family of solutions, corresponding to a family of
cosets.

The aim in this section is to outline how the automorphsims

Uo) — i—j(HOl/A é)U(O)((l) A/(A0—6)> (45)

U0) — U(O)<I+%>, M:((l) 8) (46)

give rise, respectively, to the BTs of propositions 3 and 5. This is simply an exercise in
Birkhoff factorization. We will need the first terms in the expansion of Y around A = 6,
0 # 0. Without loss of generality (since we have not specified € in the definition of G), we
assume 6 is in the region of analyticity of Y, in which case we can write

Y\ t) = Yo(t) [T+ Yi(®)(A = 0) + O(A - 0)%] |

(A B() (alt) b0
%= (am oe) - 0= La)

(Yo, Y7 of course have 6 dependence, but we treat 6 as fixed.) Substituting these expansions
into the equations 0;,Y = ZyY and 0,Y = Z1Y, and using the forms of Zy, Z; given in
proposition 6 (expanded around A = 6), we find relations between the fields A, B,C, D, a,b,c
and the field p; amongst these relations are the equations

D . j
B = = B=-LB+¢D
P 2p
p 1 : P
D = B(24:> D=0-2f)B+LD
(9%) =20)B+5,
B2 .
Vo= b=D*-B?.

Note that if we eliminate D from this system and write 7 = 6(1 + b) we recover the system
of equations (24) and (25). A and C obey a set of equation identical to that for B and D.
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Derivation of the First BT. Under the transformation (45), we have

o - ;_J_rf(Hol/A (1))U(t)<(1) A/(AO—9)>

= Gt o) A ) ) (YT

where in the last line, I have factored U, and inserted the product of a certain matrix
and its inverse, chosen so that the final expression is the product of a function analytic in
{N <€} U{X\ > 1/e} and another function analytic in {e < A < 1/e}. (This can be directly
checked; the boundary condition obeyed by S at A = 0 must be used.) This does not quite
complete the Birkhoff factorization; it is necessary to insert a further matrix — independent
of A — and its inverse in order to make sure the new S satisfies the required boundary
conditions. The calculation is arduous, and I omit the details; the final result is

s 1 (A 0 ><—C/A 1> ﬂ5<0 )\/()\+1)>

VA2 _—2\-C (A2-C?H/A)\1-0/x 0)\Xx=06"\1 0
1 A 0 -C/A 1 0 NOA-0)
Vo e e o) (Cai o) (0T
Examining the behavior of S(0) we see that the induced transformation on o = 1/(5(0))1; is
6(C?—A%) 1
O e
A a’

and so (since p = a?),

As mentioned above, A and C obey the same equations as B and D, so we can eliminate C
to write the transformation

p2A”? ) 0 9 A? 1
— — - = _ — — .
P A? p P\ Az

To make contact with the form in which I have given the BT in section 2, two more manip-
ulations are necessary. First, note that s = pfA’/A satisfies equation (13), and in terms of
this the transformation becomes simply

82—02_ g
Op —P

p%

Second, it is necessary to use the ¢; evolution equation for A to check that s satisfies (14);
this is completely straightforward.

It just remains to confirm that BTs associated with different values of # commute. At
first this appears not to be the case. If we denote the automorphism (45) of G by f(#), then
it is simple to check that the effect of first applying f(61) and then f(62) to U(0) is

A—02
U(O)HU(O)( A= 3_91)7

0 A—02

16



indicating that order is important. The source of the noncommutativity is that in general

A A A A
0 A—01 0 A—02 75 0 A—02 0 A—01 .
1 0 1 0 1 0 1 0
But the BT corresponds to the action of the automorphism on an whole G coset in G, and
when this is taken into account commutativity is restored. This can be seen from the simple

identity

0 25\ (0 25)_(0 1)\ /(0 25\ (0 25\ (0 -1

1 0 1 0 S \-1 0 1 0 10 10
(by inserting G4 elements — in fact constant SL(2) matrices in this case — we can make
the necessary matrices commute).

Derivation of the Second BT. Under the transformation (46) we have

Ut) — Ul (I+%>

N \! N M
_ -1 v . v sl
= S (I+)\_9> (I+)\_9)Y(I+)\_9>,

where once again I have inserted a matrix and its inverse to make the last expression the
product of functions analytic in appropriate regions. The correct choice of N, which works
for any M such that M? =0, is

N =-YoM{I + Y M) 'yyt (47)

(this satisfies N2 = 0 and NYgM = 0). Again, this does not complete the Birkhoff fac-
torization, and we need to insert a constant matrix and its inverse to restore the boundary
condition for S at A = 0. We thus get the transformation

(7 ) (1452

5 vien )\t g

h
1+ h? h N M

y = ( h 1+h2><I+A—9)Y<I+>\—9>’

Nio

V(0= Nao)? — N3,

The resulting transformation for p is given by

Nao ) 2 (N 12 ) 2
1——=) — (== . 49
p—p [( 7 7 (49)
So far all the formulas given have been for an arbitrary choice of M in (46), with just the
proviso that M? = 0. For the particular choice of M indicated we find Ny3 = B2/(1+b) and
Ny = BD/(1+b). Contact is made with the presentation of the BT in section 2 via the

system of equations for B, D,b given above. For this second BT, commutativity for different
values of # is trivial.

where

h =

(48)

17



Acknowledgments

It is a pleasure to acknowledge hospitality at the University of Minneapolis, where some of
this work was done, and interesting conversations with Yi Li, Peter Olver, Philip Rosenau
and David Sattinger.

References

1]

[10]

[11]

[12]

[13]

M.S.Alber, R.Camassa, D.D.Holm and J.E.Marsden, The Geometry of Peaked Soli-
tons and Billiard Solutions of a Class of Integrable PDFEs, Lett.Math.Phys. 32 137-
151 (1994); On the Link Between Umbilic Geodesics and Soliton Solutions of Nonlinear
PDEs, Proc.R.Soc.Lond.A 450 677-692 (1995).

F.Calogero, An Integrable Hamiltonian System, Phys.Lett.A 201 306-319 (1995).

R.Camassa and D.D.Holm An Integrable Shallow Water Equation with Peaked Solitons,
Phys.Rev.Lett. 71 1661-1664 (1993).

R.Camassa, D.D.Holm and J.M.Hyman, A New Integrable Shallow Water Equation,
Adv.Appl.Mech. 31 1-33 (1994).

A.Constantin and J.Escher, Global Existence and Blow-Up for a Shallow Water Equa-
tion, to appear in Ann.Sc.Norm.Sup.Pisa.

A.Constantin, On the Cauchy Problem for the Periodic Camassa-Holm Equation, to ap-
pear in J.Diff. Eq.; A.Constantin and J.Escher, Well-posedness, Global Existence and
Blow-up Phenomena for a Periodic Hyperbolic Quasi-linear Equation, to appear in
Comm.Pur.Appl.Math; A.Constatin and H.McKean, The Integrability of a Shallow Wa-
ter Equation with Periodic Boundary Conditions, preprint.

A.S.Fokas, The Korteweg-de Vries Equation and Beyond, Acta Appl.Math. 39 295-305
(1995).

A.S.Fokas, P.J.Olver and P.Rosenau, A Plethora of Integrable Bi-Hamiltonian Equations,
in Algebraic Aspects of Integrable Systems, ed. A.S.Fokas and I.M.Gelfand, Birkhauser,
Boston (1996).

B.Fuchssteiner, The Lie Algebra Structure of Nonlinear Evolution Equations Admitting
Infinite Dimensional Abelian Symmetry Groups, Prog.Theo.Phys. 65 861-876 (1981).

B.Fuchssteiner, Some Tricks from the Symmetry—Toolbox for Nonlinear Equations: The
Camassa—Holm FEquation, preprint (1993).

B.Fuchssteiner and A.S.Fokas, Symplectic Structures, Their Bdacklund Transformations
and Hereditary Symmetries, Physica D 4 47-66 (1981).

G.Haak, M.Schmidt and R.Schrader, Group Theoretical Formulation of the Segal- Wilson
Approach to Integrable Systems with Applications Rev.Math.Phys. 4 451-499 (1992).

Y.A.Li and P.J.Olver, Convergence of Solitary Wave Solutions in a Perturbed Bi-
Hamiltonian Dynamical System: 1. Compactons and Peakons, Discr.Cont.Dyn.Sys. 3
419-432 (1997); II. Complex Analytic Behavior and Convergence to Non-analytic Solu-
tions, Discr.Cont.Dyn.Sys. to appear.

18



[14]

[15]

M.Mulase, Complete Integrability of the Kadomitsev-Petviashvili Equation, Adv.Math. 54
57-66 (1984); Solvability of the super KP equation and a generalization of the Birkhoff
decomposition, Inv.Math. 92 1-46 (1988).

P.J.Olver and P.Rosenau, Tri-Hamiltonian Duality Between Solitons and Compactons,
Phys.Rev.E 53 1900-1906 (1996).

0O.Ragnisco and M.Bruschi, Peakons, R—Matriz and Toda Lattice, Physica A 228 150-159
(1996).

P.Rosenau, Nonlinear Dispersion and Compact Structures, Phys.Rev.Lett. 73 1737-1741
(1994).

P.Rosenau, On Solitons, Compactons and Lagrange Maps, Phys.Lett.A 211 265-275
(1996).

P.Rosenau and J.M.Hyman, Compactons: Solitons with Finite Wavelength, Phys.Rev.
Lett. 70 564-567 (1993).

J.Schiff, Zero Curvature Formulations of Dual Hierarchies, J. Math. Phys. 37 1928-1938
(1996).

J.Schiff, Symmetries of KdV and Loop Groups, preprint, archive no. solv-int/9606004.

G.Segal and G.Wilson, Loop Groups and Equations of KdV Type, Pub.Math.IL.H.E.S 61
5-65 (1983).

G.Wilson, Habillage et fonctions 7, C.R.Acad.Sc.Paris 299 587-590 (1984); Infinite-
dimensional Lie groups and algebraic geometry in soliton theory, Phil. Trans.Roy.Soc.
Lond. 315 393-404 (1985).

19



