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Abstract. We study a system of difference equations which, like Hamilton’s equa-
tions, preserves the standard symplectic structure on R

2m. In particular, we construct a
differential-difference equation which we call the Hamilton-Jacobi difference equation, the
analog of the Hamilton-Jacobi equation for our discrete system. We solve the Hamilton-
Jacobi difference equation in a simple case.

The Hamilton-Jacobi equation is of great importance in analytic dy-

namics [1]. Here an analogous difference equation is derived for canonical
systems of difference equations. It is shown that the general solution of the

Hamilton-Jacobi difference equation is equivalent to the general solution of

the canonical system of difference equations to which it is related.
We consider a sequence (X(0), Y (0)), (X(1), Y (1)), . . . , (X(n), Y (n)), . . . in

Rm × Rm, generated from the initial point (X(0), Y (0)) via the difference
equations

X
(n+1)
k

= X
(n)
k

+ h
∂Hn(X(n), Y (n+1))

∂Y
(n+1)

k

.(1)

Y
(n+1)
k

= Y
(n)
k

− h
∂Hn(X(n), Y (n+1))

∂X
(n)
k

Throughout, k = 1, . . . , m, and n = 0, 1, 2 . . . ; X
(n)
k

, Y
(n)
k

denote the k-th

components of X(n), Y (n), and the “Hamiltonian” functions Hn : Rm×Rm →
R are assumed differentiable. The equations (1) define (X(n+1), Y (n+1)) im-

plicitly for given (X(n), Y (n)); we assume that for small enough h there exists

a unique solution of these equations such that the mapping (X(n), Y (n)) 7→
(X(n+1), Y (n+1)) is a diffeomorphism which is a continuous deformation of the

identity (below we also make the assumption that the map (X(n), Y (n)) 7→
(X(n), Y (n+1)) is a diffeomorphism). In the important case Hn(X(n), Y (n+1)) =
1
2
Y (n+1) · Y (n+1) + Vn(X(n)), the equations (1) are explicit.
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Denoting by d the exterior derivative on Rm × Rm (the (X(n), Y (n))
are determined by (X(0), Y (0)) and in this way are functions on Rm × Rm),

it is straightforward to check that the equations (1) are equivalent to the
equations

X(n+1) · dY (n+1) + Y (n) · dX(n) = d
(

Y (n+1) · X(n) + hHn(X(n), Y (n+1))
)

.(2)

(Here a dot denotes the standard inner product on Rm.) From (2) it follows
that the standard symplectic structure on Rm × Rm is preserved, i.e.

m
∑

k=1

dY
(n+1)
k

∧ dX
(n+1)
k

=
m
∑

k=1

dY
(n)
k

∧ dX
(n)
k

.(3)

We therefore refer to the system of difference equations (1) as canonical, fol-

lowing the usage in [2]. The system (1) is not the only possible discretization
of Hamilton’s equations, and displays an apparently undesirable asymmetry

between X and Y . We will comment on this further at a later stage.

Let us make the canonical change of variables (X(n), Y (n)) 7→ (U (n), V (n)),
defined by

V
(n)
k

= −
∂Wn(X(n), U (n), h)

∂U
(n)
k

,(4)

Y
(n)
k

=
∂Wn(X(n), U (n), h)

∂X
(n)
k

which can alternatively be written as an equation for differentials

Y (n) · dX(n) − V (n) · dU (n) = dWn(X(n), U (n), h).(5)

(Again, assumptions on W are necessary to guarantee that the implicit equa-

tions (4) define a change of coordinates. We gloss over these.) Eliminating
X(n), Y (n) from (5) using (2), we obtain

U (n+1) · dV (n+1) + V (n) · dU (n)(6)

= d
(

V (n+1) · U (n) + hSn(U (n), V (n+1), h)
)

,

or, equivalently,

U
(n+1)
k

= U
(n)
k

+ h
∂Sn(U (n), V (n+1), h)

∂V
(n+1)
k

,(7)

V
(n+1)
k

= V
(n)
k

− h
∂Sn(U (n), V (n+1), h)

∂U
(n)
k
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where we have denoted

hSn(U (n), V (n+1), h) = Wn+1(X
(n+1), U (n+1), h) − Wn(X(n), U (n), h)(8)

+ V (n+1) · (U (n+1) − U (n))

− Y (n+1) · (X(n+1) − X(n)) + hHn(X(n), Y (n+1)) .

In the equality (8) it is assumed that all the variables appearing on the RHS

are written in terms of U (n), V (n+1) using the expressions for the change of
variables and the difference equations. Equation (8) can also be written

(using (1),(4) and (6)) in the form

hSn(U (n), V (n+1), h) + h
m
∑

k=1

∂Wn+1(X
(n+1), U (n+1), h)

∂U
(n+1)
k

∂Sn(U (n), V (n+1), h)

∂V
(n+1)

k

= Wn+1(X
(n+1), U (n+1), h) − Wn(X(n), U (n), h) + hHn(X(n), Y (n+1))(9)

−h
m
∑

k=1

∂Wn+1(X
(n+1), U (n+1), h)

∂X
(n+1)
k

∂Hn(X(n), Y (n+1))

∂Y
(n+1)

k

.

We see that the canonical system of difference equations (1) is transformed to
another canonical system of difference equations (7) by the canonical change

of variables (4).

We now consider the conditions necessary for a canonical change of vari-
ables to bring us to a system in which we have.

Sn(U (n), V (n+1), h) = 0.(10)

When (10) holds, the system (7) can be solved exactly, to give

U (n) = U (0), V (n) = V (0).(11)

Thus the form of the canonical change of variables (4) is

V
(0)
k

= −
∂Wn(X(n), U (0), h)

∂U
(0)
k

,(12)

Y
(n)
k

=
∂Wn(X(n), U (0), h)

∂X
(n)
k

where the functions Wn(X(n), U (0), h) satisfy the difference equation

0 = Wn+1(X
(n+1), U (0), h) − Wn(X(n), U (0), h) + hHn(X(n), Y (n+1))

− h
m
∑

k=1

∂Wn+1(X
(n+1), U (0), h)

∂X
(n+1)
k

∂Hn(X(n), Y (n+1))

∂Y
(n+1)
k

.(13)
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The differential-difference equation (13) will be called the Hamilton-Jacobi
difference equation. The solution Wn = Wn(X(n), U (0), h), n = 0, 1, 2, . . .,

of (13), depending on m arbitrary constants U (0), will be called the general
integral of (13) provided the system of implicit equations

V
(0)
k

= −
∂Wn(X(n), U (0), h)

∂U
(0)
k

(14)

(the first equation of (12)) can be solved for X(n). A sufficient condition for

this is the nonvanishing of the determinant of the matrix of second derivatives

∂2Wn(X(n), U (0), h)

∂U
(0)
k

∂X
(n)
l

k = 0, 1, . . . , m
l = 0, 1, . . . , m

.(15)

Thus we arrive at the following result: if we know the general integral of the
Hamilton-Jacobi difference equation (13), then finding the general solution

of the canonical system of difference equations (1) is reduced to solving the
system of implicit equations (12).

Let us now consider the special “linear” case

Hn(X(n), Y (n+1)) = X(n)T A
(n)
0 X(n) + X(n)T A

(n)
1 Y (n+1)(16)

+ Y (n+1)T A
(n)
2 Y (n+1),

where A
(n)
0 , A

(n)
1 , A

(n)
2 are m×m matrices, with A

(n)
0 , A

(n)
2 symmetric. Equa-

tion (13) can be written

0 = Wn+1(X
(n+1), U (0), h) − Wn(X(n), U (0), h) + hHn(X(n), Y (n+1))(17)

− h
m
∑

k=1

Y
(n+1)
k

∂Hn(X(n), Y (n+1))

∂Y
(n+1)
k

,

using the second equation of (12). Since the Hn of equation (16) is the sum
of three terms of fixed homogeneity in the components of Y (n+1), this gives

0 = Wn+1(X
(n+1), U (0), h) − Wn(X(n), U (0), h)(18)

+ h(X(n)T A
(n)
0 X(n) − Y (n+1)T A

(n)
2 Y (n+1)) .

In this equation it is understood that the vectors X(n+1), Y (n+1) should be
written in terms of X(n), Y (n) via the equations of motion, and that Y (n) is

determined by the function Wn(X(n), U (0), h) via the second equation of (12).
Since the equations are rather lengthy in the general case, we restrict here
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to the simple case A
(n)
0 = A

(n)
2 = 1

2
I, A

(n)
1 = 0, where we obtain, after some

algebra, the system

0 = Wn+1

(

(1 − h2)X(n) + hY (n), U (0), h
)

− Wn(X(n), U (0), h)

+ 1
2
h(1 − h2)X(n) · X(n) + h2X(n) · Y (n) − 1

2
hY (n) · Y (n) ,(19)

Y
(n)
k

=
∂Wn(X(n), U (0), h)

∂X
(n)
k

.

Making the ansatz

Wn(X(n), U (0, h) = Q(X(n), U (0, h) − nhα, α constant,(20)

which is appropriate whenever Hn is independent of n, we finally obtain

α =





Q
(

(1 − h2)X(n) + hY (n), U (0), h
)

− Q(X(n), U (0), h)

h





+ 1
2
(1 − h2)X(n) · X(n) + hX(n) · Y (n) − 1

2
Y (n) · Y (n) ,(21)

Y
(n)
k

=
∂Q(X(n), U (0), h)

∂X
(n)
k

.

For the case m = 1 a solution of this can be found: Taking U (0) = α, it is a

simple but laborious calculation to check that

Q(X(n), α, h) =
h

4
X(n)2 −

1

2

√

1 −
h2

4
(22)

(

X(n)
√

C2α − X(n)2 + αC2 sin−1

(

X(n)

C
√

α

))

satisfies equation (21), where C is a positive constant defined by

1

C2
=

θ

2h

√

1 −
h2

4
, θ = cos−1

(

1 −
h2

2

)

.(23)

Writing β = V (0), we have (from equation (14)):

β = −
∂Wn(X(n), α, h)

∂α

= nh −
∂Q(X(n), α, h)

∂α
(24)

= nh +
h

θ
sin−1

(

X(n)

C
√

α

)

,
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giving

X(n) = −C
√

α sin

(

nθ −
βθ

h

)

.(25)

We also have

Y (n) =
∂Q(X(n), α, h)

∂X(n)
=

h

2
X(n) −

√

1 −
h2

4

√

C2α − X(n)2,(26)

which, using equation (25) and the fact sin(θ/2) = h/2, gives

Y (n) = −C
√

α cos

(

nθ −
βθ

h
−

θ

2

)

.(27)

It is straightforward to check that equations (25) and (27) give the general so-

lution of the canonical system (1) for the case m = 1 and Hn(X(n), Y (n+1)) =
1
2

(

X(n)2 + Y (n+1)2
)

. The quantity X(n)2+Y (n)2−hX(n)Y (n) = C2α(1−h2/4)

is conserved in this case. It should be admitted that the above solution (22)
of the Hamilton-Jacobi difference equation (21) was actually constructed by

obtaining the general solution of (1) and working backwards. At the present
time the differential-difference equation (21) is more of formal interest than

it is useful for calculations.

We conclude with a discussion of the h → 0 limit. Denoting in the
obvious fashion by X(t), Y (t), H(t, X, Y ) etc. the limits (as h → 0 and n →
∞ with nh = t) of X(n), Y (n), Hn(X

(n), Y (n+1)) etc., the canonical system of
difference equations (1) tends in the limit to the Hamiltonian system

dXk

dt
=

∂H(t, X, Y )

∂Yk

,
dYk

dt
= −

∂H(t, X, Y )

∂Xk

.(28)

In the limit we have

1

h

(

Wn+1(X
(n+1), U (0), h) − Wn(X(n), U (0), h)

)

(29)

−→
∂W (t, X, U)

∂t
+

m
∑

k=1

∂W (t, X, U)

∂Xk

dXk

dt
,

so, dividing equation (13) by h, taking the limit, and using the first equation
of (28), we have

∂W (t, X, U)

∂t
+ H(t, X, Y ) = 0,(30)
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where the vector Y is defined by

Yk =
∂W (t, X, U)

∂Xk

.(31)

The general integral of the Hamilton-Jacobi equation (30)-(31) enables us to
completely integrate the Hamiltonian system (28), the change of variables

Vk = −
∂W (t, X, U)

∂Uk

, Yk =
∂W (t, X, U)

∂Xk

(32)

transforming the system to the system

dUk

dt
= 0 ,

dVk

dt
= 0 .(33)

Thus in the h → 0 limit we recover the standard Hamilton-Jacobi theory for

continuous Hamiltonian systems.
As was mentioned towards the start of this paper, the system (1) is

only one possible discretization of Hamilton’s equations (28). The system
(1) displays an asymmetry between X and Y , and also, in the general case,

only defines X(n+1) and Y (n+1) implicitly. We currently do not know how
to provide a discretization of Hamilton’s equations that is canonical, in the

sense that equation (3) holds, but does not have the two drawbacks just
mentioned. In particular, the most obvious discretization

X
(n+1)
k

= X
(n)
k

+ h
∂Hn(X(n), Y (n))

∂Y
(n)

k

Y
(n+1)
k

= Y
(n)
k

− h
∂Hn(X(n), Y (n))

∂X
(n)
k

is explicit and symmetric in X and Y , but not canonical.

The work in this paper is relevant to the study of symplectic integrators
[3], numerical techniques for the integration of hamiltonian systems, preserv-

ing the symplectic structure. The relationship will be discussed in another
publication. We thank the referee for pointing out the need to comment on

the asymmetry of the system (1).
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