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Through the years since the discovery of the notion of “integrability” in PDEs, quite

a number of integrable PDEs have been discovered, most of which remain obscure for lack

of any physical significance. For nearly fifteen years now, the equation

ut + 2κux − uxxt + 3uux = 2uxuxx + uuxxx, (1)

derived by Fuchssteiner and Fokas [1] has enjoyed such obscurity; but in a recent paper

of Camassa and Holm [2], this equation was rediscovered, and looks likely to be of some

importance. Like Fuchssteiner and Fokas, Camassa and Holm showed that, for κ = 0, (1)

has bihamiltonian structure: if we write m = u− uxx, then (1) takes the form

mt = − J1
δH2

δm
= − J2

δH1

δm
, (2)

where

J1 = ∂ − ∂3, J2 = ∂m+m∂ (3)

are two compatible hamiltonian operators, and

H2 = 1
2

∫ ∞

−∞
(u3 + uu2

x)dx, H1 = 1
2

∫ ∞

−∞
(u2 + u2

x)dx. (4)

The novelty of Camassa and Holm’s work was that they gave a physical derivation of

(1). Furthermore, for κ = 0, they found solutions to (1) which they named “peakons”

(travelling wave solutions with a corner at their peak); these take the simple form

u = c exp(−|x− ct|). (5)

More generally they showed that

u =
N
∑

i=1

pi(t) exp(−|x− qi(t)|) (6)

gives an N -peakon solution, provided {pi(t), qi(t)} solves hamilton’s equations for the

hamiltonian

HA = 1
2

N
∑

i,j=1

pipj exp(−|qi − qj |). (7)

Camassa and Holm proved this hamiltonian system is integrable, and gave its solution for

N=2. For κ 6= 0, solutions of (1) have been investigated numerically in [3].

A little prior to Camassa and Holm’s work, Rosenau and Hyman [4] made the re-

markable observation that a large class of nonlinear PDEs with nonlinear dispersion terms
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exhibited “compacton” solutions, viz. solitons with compact spatial support. Rosenau [5]

further showed that this phenomenon can also occur in integrable PDEs; in particular, if

we replace (x, t) in the Fuchssteiner-Fokas-Camassa-Holm equation (1) by (ix, it), we find

the equation

ut + 2κux + uxxt + 3uux + 2uxuxx + uuxxx = 0, (8)

and this admits, for κ = 0, the compacton solution

u = c cos(x− ct) |x− ct| ≤ π

2
. (9)

(The compacton solutions of (8) are actually unstable; but it serves to illustrate that com-

pactons can occur in the framework of integrability; in addition it seems further equations

in its hierarchy have acceptable properties. I thank Philip Rosenau for information on this

point.)

In the wake of this work, two apparently widely applicable constructions of integrable

PDEs with nonlinear dispersion terms have been given. The first, due to Rosenau [6],

consists of applying Lagrange transformations to soliton-bearing integrable PDEs, such as

the KdV and MKdV equations. The philosophy here is that the standard solitons in such

equations, despite being of infinite spatial extent, carry finite mass and/or momentum, and

hence must be of compact support when measured in mass and/or momentum units. The

second construction, due to Olver and Rosenau [7] (again a rediscovery of Fuchssteiner

and Fokas’ earlier work [1]; the reader should also see the modern work [8] of Fokas),

starts from the observation that the two hamiltonian operators J1, J2 given in (3) look like

recombinations of terms from the two standard hamiltonian operators of the KdV equation

(see, for example, [9]). In fact it turns out that if a bihamiltonian integrable hierarchy has

one hamiltonian operator which is a constant coefficient differential operator, and another

hamiltonian operator which is a linear combination of a constant coefficient differential

operator and another operator which scales homogeneously with non-zero degree when the

fields are rescaled, then by recombining terms from these hamiltonian operators one can

construct a new hierarchy. In [7] this procedure is followed to construct dual hierarchies of

the KdV, MKdV, Broer-Kaup-Kupershmidt and Ito hierarchies (the NLS hierarchy is also

dualized by a variant of the general procedure). The aim of this paper is to provide yet

another method of constructing dual hierarchies, reproducing the results of [7]. This time

the initial observation is the similarity of the linear system associated with the Camassa-

Holm equation (the linear system is given in equation (6) of [2]), and the linear system

associated with the KdV equation. We will see that zero curvature formulations of dual

hierarchies can be obtained by a simple modification of the well-known zero curvature

formulations of the standard soliton equation hierarchies.
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The original purpose of this work was twofold. First, for standard soliton equation

hierarchies, the zero curvature formulation is a springboard for revealing many other prop-

erties of the hierarchies. In particular, in the zero curvature formulation one sees a natural

group action on the space of solutions (the group of “dressing transformations”), which,

when it can be made explicit, gives rise to a host of solutions of the hierarchies (for a com-

pact overview of how the group of dressing transformations gives rise to the tau-function

formalism for the MKdV equation, see [10]). Alas, while the zero curvature formulations

of dual hierarchies are only slight variations of those for standard hierarchies, this slight

variation complicates the explicit realization of dressing transformations, and we have been

unable, as of yet, to compute explicit dressing transformations and generate solutions this

way. The second hope in undertaking this work was that, while Olver and Rosenau’s con-

struction [7] cannot be extended to, for example, the Boussinesq (SL(3) KdV) equation

(one hamiltonian operator is a constant coefficient differential operator, as required, but

the other is the sum of a constant coefficient differential operator and another term that

does not scale homogeneously under any rescaling of the fields), it was hoped that the

zero curvature formulations would suggest an extension. Extensive experiments in this

direction — which will not be reported here — have so far yielded only negative results.

It seems quite possible that dual hierarchies can only be constructed for a handful of soli-

ton equation hierarchies, and not for all the various infinite chains of hierarchies, like the

SL(N) KdV hierarchies [11], that exist.

The content of this note is therefore limited to presenting zero curvature formulations

of the existing dual hierarchies. It is to be hoped that these will be of use in further studies

of these hierarchies, and in finding solutions. We will see some minor immediate benefits

of our labor; in particular, we will see that the dual Broer-Kaup-Kupershmidt hierarchy

and the dual Ito hierarchy are equivalent, and we clarify a little further the structure of

the dual NLS hierarchy. Also, of course, the zero curvature forms we will present, can be

used to derive “standard” Lax pairs for the dual hierarchies, via a simple procedure we

will illustrate.

Zero Curvature Formulations. The notion of a zero curvature formulation for a soliton

equation dates back to the work [12] (and other works in the Soviet literature). In [12] it

was observed that several equations of physical interest could be written in the form

∂tA = ∂xB + [B,A], (10)

where A,B are functions of x, t valued in the Lie algebra of the SL(2) loop group, that

is, A,B are traceless, 2 × 2 matrix valued functions of x, t, λ. Equation (10) reduces to
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the desired soliton equation by specifying a very particular dependence on the “spectral

parameter” λ. In greater generality, the majority of (if not all) soliton equation hierarchies

can be written in the form

∂trA = ∂xBr + [Br, A], (11)

where A, {Br} (r runs over an appropriate index set) are functions of x, {tr}, λ, valued in

some matrix Lie algebra, with a certain specified λ dependence. The classic example is

the KdV hierarchy, for which r ∈ {1, 3, 5, ...} and

A =

(

0 1
u(x, t) + λ 0

)

Br =

(

0 0
λ

r+1

2 0

)

+

(

polynomial of
degree r−1

2
in λ

)

.

(12)

(Note that requiring consistency of equations (11) almost fully determines the matrices Br

from the information in (12). To precisely determine the Br’s one should add on (a) the

conditions ∂trBs = ∂tsBr + [Br, Bs], and (b) certain homogeneity conditions. For brevity,

we shall overlook these details in this note.) The utility of this formulation of the hierarchy

is that equations (11) are invariant under gauge transformations

A→ ξ A ξ−1 + ∂xξ ξ
−1

Br → ξ Br ξ
−1 + ∂trξ ξ

−1,
(13)

where ξ is a function of x, {tr}, λ, valued in the appropriate Lie group. The group of such

gauge transformations that leave the specified λ dependence of A, {Br} unchanged is the

group of dressing transformations [13] referred to above.

Other gauge transformations that are of interest are those that map one hierarchy to

another, known as Miura maps. To illustrate, the MKdV hierarchy is given by (11), with

r ∈ {1, 3, 5, ...} again, and

A =

(

j(x, t) 1
λ −j(x, t)

)

Br =

(

0 0
λ

r+1

2 0

)

+

(

polynomial of
degree r−1

2
in λ

)

.

(14)

Choosing

ξ =

(

1 0
j(x, t) 1

)

, (15)

the MKdV choice of A, {Br} (14) is mapped to the KdV choice (12), with u = jx + j2.

(Note that in [10], Wilson works with an apparently different zero curvature formulation

of MKdV; he is simply using a different matrix representation of the SL(2) loop group).
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As for all the hierarchies we will consider in this note, the r = 1 equations for KdV

and MKdV are trivial. In each case B1 = A, and the flow equations are ut1 = ux and

jt1 = jx respectively. From these equations we see t1 can be identified with x. The first

nontrivial equations are obtained from r = 3: for KdV,

B3 =

(

1
4ux λ− 1

2u
λ2 + 1

2
λu+ 1

4
uxx − 1

2
u2 −1

4
ux

)

yielding ut3 = 1
4
uxxx − 3

2
uux, (16)

and for MKdV,

B3 =

(

λj + 1
4 (jxx − 2j3) λ− 1

2 (jx + j2)
λ2 + 1

2
λ(jx − j2) −λj − 1

4
(jxx − 2j3)

)

yielding jt3 = 1
4
jxxx− 3

2
j2jx. (17)

The procedure for extracting “standard” Lax pairs from zero curvature formulations is as

follows. Equations (11) are consistency conditions for the equations

∂xψ = Aψ

∂trψ = Brψ.
(18)

(Here ψ(x, t) is a vector in an appropriate representation of the appropriate Lie algebra.)

For KdV and r = 3, we eliminate ψ2 from (18) to arrive at the KdV Lax pair:

ψ1xx = (u+ λ)ψ1

ψ1t3 = 1
4
uxψ1 + (λ− 1

2
u)ψ1x.

(19)

The zero curvature formulations of the other standard hierarchies relevant to this

paper follow; all are associated with the SL(2) loop algebra.

1.The Broer-Kaup-Kupershmidt (BKK) hierarchy. (This hierarchy was brought to promi-

nence by Kupershmidt in [14], where it was attributed to Broer and Kaup. It seems,

however, that it should also be attributed to Whitham. It is frequently just referred to as

a “Boussinesq-type” hierarchy.)

A =

(

λ+ v(x, t) 1
u(x, t) −λ− v(x, t)

)

Br =

(

λr 0
0 −λr

)

+

(

polynomial of
degree r − 1 in λ

)

, r = 1, 2, 3, ...

(20)

Lowest nontrivial equation:

B2 =

(

λ2 + 1
2
vx − v2 λ− v

λu− 1
2ux − uv −λ2 − 1

2vx + v2

)

(21)
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yields
vt2 = ( 1

2vx − v2 + 1
2u)x

ut2 = (−1
2
ux − 2uv)x.

(22)

2.The NLS hierarchy.

A =

(

λ ψ(x, t)
ψ̄(x, t) −λ

)

Br =

(

λr 0
0 −λr

)

+

(

polynomial of
degree r − 1 in λ

)

, r = 1, 2, 3, ...

(23)

Lowest nontrivial equation:

B2 =

(

λ2 − 1
2ψψ̄ λψ + 1

2ψx
λψ̄ − 1

2 ψ̄x −λ2 + 1
2ψψ̄

)

(24)

yields
ψt2 = 1

2ψxx − ψ2ψ̄

ψ̄t2 = −1
2 ψ̄xx + ψψ̄2.

(25)

Miura map to the BKK hierarchy:

ξ =

(

1√
ψ

0

0
√
ψ

)

(26)

giving v = −ψx/2ψ, u = ψψ̄. (The relationship of NLS to the BKK hierarchy, and many

other “NLS-type” equations, was given in [15]).

3.The Ito hierarchy. [16]

A =

(

0 1
p(x,t)
λ

+ q(x, t) + λ 0

)

Br =

(

0 0
λ

r+1

2 0

)

+

(

polynomial of
degree r−1

2
in λ

)

+ f(x, t)A, r = 1, 3, 5, ...

(27)

Lowest nontrivial equation:

B3 =

(

1
4
qx λ− 1

2
q

λ2 + 1
2λq + ( 1

4qxx − 1
2q

2 + p) − 1
2λpq −1

4qx

)

(28)

yields
qt3 = 1

4qxxx − 3
2qqx + px

pt3 = −pqx − 1
2qpx

(29)
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(the substitution p = r2 returns the standard form of the Ito equation). The Ito hierarchy

is just one of what we shall call the generalized Ito hierarchies (which in turn are just a

subset of the hierarchies discussed in [17]). For any nonnegative integer M there exists a

hierarchy with

A =

(

0 1
λ+ S 0

)

, S =
M
∑

n=0

sn(x, t)λ
−n, (30)

and Br (r = 1, 3, 5, ...) specified by the requirement that its upper right hand entry is a

polynomial of degree (r− 1)/2 in λ with leading order coefficient 1. For M = 0 this is the

KdV hierarchy, for M = 1 the usual Ito hierarchy, and for M = 2 it is a simple exercise to

show the lowest nontrivial equation in the hierarchy takes form:

s0t3 = 1
4
s0xxx − 3

2
s0s0x + s1x

s1t3 = s2x − s1s0x − 1
2s0s1x

s2t3 = −s2s0x − 1
2s0s2x.

(31)

For the KdV and MKdV hierarchies, and for the 3 hierarchies just listed, the zero cur-

vature formulations of the dual hierarchies are obtained by rescaling entries in the matrices

A by appropriate powers of λ, and adjusting the matrices {Br} to maintain consistency.

For example for the Fuchssteiner-Fokas-Camassa-Holm hierarchy (the dual of KdV), we

take

A =

(

0 1
u(x, t)/λ+ 1 0

)

, (32)

i.e. A has the same form as for the KdV hierarchy, but with its (1, 2) entry rescaled by a

factor λ−1. Choosing Br of the form “polynomial of degree (r − 1)/2 in λ plus a multiple

of A”, it is straightforward to obtain the flows

utr =
[

(∂xu+ u∂x)(
1
2∂

3
x − 2∂x)

−1
]

r−1

2 ux. (33)

These are the flows of the Fuchssteiner-Fokas-Camassa-Holm hierarchy; in particular, set-

ting r = 1, and defining v via u = 1
2vxx − 2v, we obtain

2vt3 − 1
2
vxxt3 = 6vvx − vxvxx − 1

2
vvxxx, (34)

a simple rescaling of equation (1). Note the form of Br is also obtained from that of the

KdV hierarchy, by rescaling its (2, 1) entry by a factor λ−1.

For the dual of MKdV we take

A =

(

j(x, t)/
√
λ 1

1 −j(x, t)/
√
λ

)

. (35)
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This is of the same as for MKdV (14), after a rescaling of the (1, 1) and (2, 2) entries

by λ−
1
2 , and of the (2, 1) entry by λ−1. The appropriate choice for Br this time cannot

be found from a rescaling of the MKdV form: in particular, powers of
√
λ appear in the

off-diagonal terms of Br. Br can however be completely specified (up to an unimportant

overall factor) by the requirement that the sum of its off-diagonal elements be a polynomial

in λ of degree (r − 1)/2. For r = 1 we have B1 = A, as usual, and for r = 2 we find

B3 =

(√
λ(j − 1

4mxx) + 1√
λ
js λ+ s+ 1

2

√
λmx

λ+ s− 1
2

√
λmx −

√
λ(j − 1

4mxx) − 1√
λ
js

)

, (36)

where m is related to j by j = 1
4
mxx − m, and s = 1

2
( 1
4
m2
x − m2). This gives the flow

equation

jt3 =

[

j

2

(

m2
x

4
−m2

)]

x

, j =
1

4
mxx −m (37)

(c.f. [7]). The general flow is

jtr =
[

∂xj∂
−1
x j( 1

4∂
2
x − 1)−1

]

r−1

2 jx (38)

Note that there is no obvious Miura map from the dual of MKdV to the dual of KdV. The

small modifications we have made to the matrices A in each case have been sufficient to

destroy this, and in general Miura maps do not survive the dualization procedure. We will

see that it is also the case that new Miura maps can emerge. It remains an interesting open

question as to whether there exists a modification of the Fuchssteiner-Fokas-Camassa-Holm

equation.

We now list the zero curvature forms for the duals of the other hierarchies listed above.

1.The dual BKK hierarchy. We take

A =

(

1 + v(x, t)/λ 1/
√
λ

u(x, t)/
√
λ −1 − v(x, t)/λ

)

Br =

(

β(1 + v(x, t)/λ)− 1
2
βx β/

√
λ√

λγ + uβ/
√
λ −β(1 + v(x, t)/λ) + 1

2
βx

)

r = 1, 2, 3, ...,

(39)

where

β = λr−1 +

r−2
∑

n=0

βn(x, t)λ
n

γ =

r−2
∑

n=0

γn(x, t)λ
n.

(40)
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It is straightforward to check this gives the flow

∂tr

(

v
u

)

= [SR−1]r−1

(

vx
ux

)

(41)

where

S =

(

0 ∂xv
2v ∂xu+ u∂x

)

R =

(

1 1
2∂

2
x − ∂x

−∂x − 2 0

)

.

(42)

SR−1 is (up to simple rescalings) the recursion operator found in [7], but in [7] it is factored

as S̃R̃−1, where

S̃ = S
(

∂x 0
0 2

)

=

(

0 2∂xv
2v∂x 2(∂xu+ u∂x)

)

R̃ = R
(

∂x 0
0 2

)

=

(

∂x ∂2
x − 2∂x

−∂2
x − 2∂x 0

)

.

(43)

To write the r = 2 flow in local form, in [7] the substitution

(

v
u

)

= R̃∂−1
x

(

V
U

)

=

(

V − 2U + Ux
−2V − Vx

)

(44)

is introduced, giving the flow

∂t2

(

V − 2U + Ux
−2V − Vx

)

=

(

2(UV − 2U2 + UUx)x
(−8UV + V 2 − 2UVx)x

)

. (45)

From the zero curvature approach it is rather more natural to perform the substitution

(

v
u

)

=

(

Ṽ
1
2 Ũxx − 2Ũ − 2Ṽ − Ṽx

)

(46)

giving the flow

∂t2

(

Ṽ
1
2 Ũxx − 2Ũ − 2Ṽ − Ṽx

)

=

(

(Ũ Ṽ )x
( 1
2 Ũ Ũxx + 1

4 Ũ
2
x − (Ũ Ṽ )x + Ṽ 2 − 2Ũ Ṽ − 3Ũ2)x

)

,

(47)

or, equivalently,

∂t2

(

Ṽ
1
2 Ũxx − 2Ũ

)

=

(

(Ũ Ṽ )x
( 1
2 Ũ Ũxx + 1

4 Ũ
2
x + Ṽ 2 − 3Ũ2)x

)

, (48)

an equation that will appear again later. Note that the relationship of U, V and Ũ , Ṽ is

given by
V = Ṽ − 1

2 Ũx + Ũ

U = 1
2 Ũ .

(49)
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(The origin of this variable Ũ is that β introduced in (41)-(42) takes the form λ + Ũ for

r = 2.)

2.The dual NLS hierarchy. To obtain the dual NLS hierarchy of [7], take

A =

(

1 ψ(x, t)/
√
λ

ψ̄(x, t)/
√
λ −1

)

Br =

(

α
√
λβ√

λγ −α

)

r = 1, 2, 3, ...,

(50)

where

α = λr−1 +

r−2
∑

n=0

αn(x, t)λ
n

β =
r−2
∑

n=0

βn(x, t)λn

γ =

r−2
∑

n=0

γn(x, t)λ
n

(51)

to get the flows

∂tr

(

ψ
ψ̄

)

=

[

(

ψ∂−1
x ψ̄ −ψ∂−1

x ψ
−ψ̄∂−1

x ψ̄ ψ̄∂−1
x ψ

)(

1
2∂x − 1 0

0 1
2
∂x + 1

)−1
]r−1

(

2ψ
−2ψ̄

)

. (52)

Note the unusual form of the r = 1 flow. For r = 2 we set ψ = 1
2
vxe

2x, ψ̄ = 1
2
wxe

−2x, to

get the flow

∂t2∂x

(

v
w

)

= vw

(

vx
−wx

)

, (53)

with conserved quantity vxwx as noted in [7].

The forms (50)-(51) are not the most natural guess for the zero curvature formulation

in this case; for example we note that the ansatz does not permit choosing B1 = A, which

is why the r = 1 equation obtained above is nonstandard. We therefore consider the more

general ansatz

A =

(

1 ψ(x, t)/
√
λ

ψ̄(x, t)/
√
λ −1

)

Br =

(

α β/
√
λ

γ/
√
λ −α

)

r = 1, 2, 3, ...,

(54)
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where

α = λr−1 +

r−2
∑

n=0

αn(x, t)λ
n

β =
r−1
∑

n=0

βn(x, t)λn

γ =

r−1
∑

n=0

γn(x, t)λ
n.

(55)

(50)-(51) is just this with the restriction β0 = γ0 = 0. It turns out that the ansatz (54)-(55)

is consistent provided β0 = ψM(x, t), γ0 = ψ̄M(x, t) for some function M(x, t) (there is

a small further freedom; consistency only determines the αn’s up to a constant, which can

however be fixed by a homogeneity condition). In particular, we can now choose B1 = A

(for this β0 = ψ, γ0 = ψ̄) to recover a standard r = 1 flow equation. For the choice β0 = ψ,

γ0 = ψ̄ it is straightforward to find the r = 2 flow equation:

∂t2∂x

(

v
w

)

=

(

vxx + wvvx
wxx − wvwx

)

. (56)

Defining new coordinates x′, t′2 via ∂x′ = ∂x, ∂t′
2

= ∂t2 − ∂x, we see (56) is equivalent to

(53). This reflects a simple general symmetry of the system (11): adding cA (c constant)

to each Br can be exactly cancelled by a change of coordinates from x, tr to x′, t′r defined

by
∂x′ = ∂x

∂t′
r

= ∂tr − c∂x.
(57)

Taking β0 = ψ, γ0 = ψ̄ in the ansatz (54)-(55) is, taking into account the freedom to add

a constant to α0,equivalent to adding A to each of the Br’s of the ansatz (50)-(51), thus

explaining the relationship of (53) and (56). (Note this freedom we have just mentioned

does not exist in B1, so the two r = 1 equations we have obtained above are not related

by a change of coordinates of the form (57)!)

At this stage it is maybe appropriate to mention another general symmetry of (11),

for the case where A,Br are traceless 2 by 2 matrices. Writing

A = A+E
+ +A−E

− +A0E
0

Br = Br+E
+ +Br−E

− +Br0E
0,

(58)

where

E+ =

(

0 1
0 0

)

E− =

(

0 0
1 0

)

E0 =
1

2

(

1 0
0 −1

)

, (59)
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(11) is symmetric under

A+ → λαA+ A− → λ−αA− A0 → A0

Br+ → λαBr+ Br− → λ−αBr− Br0 → Br0,
(60)

for any constant α. In both the dual BKK and dual NLS hierarchies, the form of A has

been obtained by scaling the (1, 1) and (2, 2) entries of A in the standard hierarchy by

λ−1, and the (1, 2) and (2, 1) entries by λ−1/2. The symmetry (60) allows one to express

the rescaling of the components of A necessary to pass from the standard to the dual

hierarchies in a variety of equivalent ways. We will exploit this shortly.

3.The dual Ito and generalized Ito hierarchies. For the dual of the Ito hierarchy we take

A =

(

0 1
1 + q(x, t)/λ+ p(x, t)/λ2 0

)

B =

(

−1
2βx β

β(1 + p
λ + q

λ2 ) − 1
2βxx

1
2βx

)

, r = 1, 3, 5, ...,

(61)

with

β = λ
r−1

2 +

r−3

2
∑

n=0

βn(x, t)λ
n. (62)

The matrix A has been obtained from that of the standard Ito hierarchy by the same

scaling used to obtain Fuchssteiner-Fokas-Camassa-Holm from KdV, that is, the (2, 1)

entry of A has been multiplied by λ−1. For r = 3 we have β = λ + b(x, t), and we find

that we can take p = 1
2bxx − 2b, to obtain the flow

(

1
2bxx − 2b

)

t3
= qx + bxxbx + 1

2bbxxx − 6bbx

qt3 = 2qbx + bqx.
(63)

On substituting q = w2 this becomes

(

1
2bxx − 2b

)

t3
=
(

w2 + 1
4b

2
x + 1

2bbxx − 3b2
)

x

wt3 = (wb)x,
(64)

i.e. we have recovered the lowest nontrivial flow in the dual BKK hierarchy, equation (48).

The relationship between the dual BKK hierarchy and the dual Ito hierarchy we

have just seen is an instance of a Miura map “born” after dualization. Exploiting the

symmetry (60) of (11), with α = 1
2
, we observe that the BKK hierarchy has a zero curvature

formulation with

A =

(

1 + v(x, t)/λ 1
u(x, t)/λ −1 − v(x, t)/λ

)

. (65)
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Via gauge transformation with

ξ =

(

1 0
1 + v(x, t)/λ 1

)

(66)

this is brought to the form

A =

(

0 1
1 + (u+ 2v + vx)/λ+ v2/λ2 0

)

, (67)

which is of the form used in (61), and therefore defines a Miura map from the dual BKK

hierarchy to the dual Ito hierarchy. When written out in the variables we have used to

write the lowest nontrivial flows of the dual BKK and dual Ito hierarchies, the Miura map

becomes an equivalence.

Finally, we note that the generalized Ito hierarchies can be dualized in the same way

as the KdV and Ito hierarchies, that is we take

A =

(

0 1
1 + S 0

)

, S =

M
∑

n=0

sn(x, t)λ
−n−1, (68)

with Br (r = 1, 3, 5, ...) specified by the requirement that its upper right hand entry is a

polynomial of degree (r− 1)/2 in λ with leading order coefficient 1. Thus we have at least

one infinite family of integrable hierarchies that affords dualization.
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