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AbstractFor N � 3 there are SN and DN actions on the space of solutions of the �rst non-trivial equation in the SL(N) MKdV hierarchy, generalizing the two Z2 actionson the space of solutions of the standard MKdV equation. These actions survivescaling reduction, and give rise to transformation groups for certain (systems of)ODEs, including the second, fourth and �fth Painlev�e equations.
Given a solution j of the MKdV equationjt = jxxx � 32j2jx (1)we can construct new solutions, �j and j � 2q , where q satis�esqx + qj = 1qt + q(jxx � 12j3) = (jx � 12j2): (2)0 Address from August 20th 1993: Department of Mathematics and Computer Science,Bar Ilan University, Ramat Gan 52900, Israel.1



Equations (2) constitute a strong auto-B�acklund transformation for the MKdV equation,distinct from the usual one given in the literature (see for example [1], Chapter 8, Ex-ercise 2), and discovered, I believe, in the context of Painlev�e analysis [2]. If we choosethe integration constant arising in the solution of (2) appropriately, the square of thistransformation is the identity; but when combined with the j ! �j transformation it can,generically, be used to generate an in�nite number of solutions from a particular one (solu-tions of MKdV that are periodic under the action of the combined symmetry are discussedin [3]).Unlike the standard auto-B�acklund transformation for MKdV, the transformationsj ! �j, j ! j � 2q do not contain dimensionful parameters, and hence survive scalingreduction.1 Setting j = �2(3t)� 13 J(w) where w = �x(3t)� 13 , (1) reduces to the secondPainlev�e equation (PII) J 00 = 2J3 + Jw + � (3)where a prime denotes di�erentiation with respect to w and � is an integration constant.Setting q = (3t) 13Q(w) in (2), we can solve for Q and thus we have two explicit transfor-mations for (3), J ! �J; �! ��J ! J + 12 � �J 0 � J2 � 12w ; �! 1� �: (4)These transformations, which both square to the identity, generate the well-known trans-formation group of PII (see [5],[6] and references therein). In solving for Q I have assumed� 6= 12 ; for � = 12 there is a one parameter family of solutions of PII given by the solutionsof J 0 = J2 + 12w (which can be solved in terms of Airy functions).The purpose of this note is to present generalizations of the above transformations forthe SL(N) MKdV equations, N � 3. The above transformations for the standard MKdVequation actually extend to the MKdV hierarchy, and similarly in the SL(N) case therelevant transformations extend to the hierarchy. But for clarity we will focus just on thelowest nontrivial equation in the hierarchy. On scaling reduction all the transformationsbecome explicit. The (lowest nontrivial) SL(3) and SL(4) MKdV equations reduce, re-spectively, to the PIV and PV equations (the �rst of these facts originated, I believe, in[7]; the second is, I believe, new); we recover the transformation groups investigated byOkamoto for PIV [6] (see also [8]) and PV [9].1 When the dimensionful parameter in the standard transformation is set to zero, thetransformation becomes trivial. The standard auto-B�acklund transformation for KdV [1]remains non-trivial even when the dimensionful parameter is set to zero, and this was usedin [4], along with the Miura map, to obtain a di�erent derivation of the transformationgroup of PII from the one we are about to see.2



The SL(N) MKdV hierarchy describes evolutions of N �elds ji, i = 1; ::; N , withPNi=1 ji = 0. Writing � = 1N PNi=1 j2i , the lowest nontrivial evolution in the hierarchy is@tji = @x "N�1Xr=1 �1� 2rN � @xji+r(mod N) + j2i � �# ; i = 1; ::; N (5)or, equivalently,@t(ji � ji+1) = @x[@x(ji + ji+1) + j2i � j2i+1]; i = 1; ::; N � 1: (5)0A simple way to obtain (5) is by reduction of the SL(N) self-dual Yang-Mills equationswith an ansatz given in the appendix. (5) has one obvious symmetry group:Prop.1: DN Invariance of (5).Equations (5) are invariant under the DN action generated byA : ji ! ji+1(mod N); x! x; t! tB : ji ! jN+1�i; x! �x; t! �t (6)which satisfy AN = B2 = I, ABAB = I.The other symmetry group is less obvious:Prop.2: SN Invariance of (5).There is an SN action on solutions of (5); the action of the fundamental trans-positions Ti = (i i+ 1), i = 1; ::; N � 1, is given byji ! ji + q�1iji+1 ! ji+1 � q�1ijr ! jr; r 6= i; i+ 1 (7)where qi satis�es2qix + (ji � ji+1)qi + 1 = 0qit + [(ji + ji+1)x + j2i � j2i+1]qi + (ji + ji+1) = 0: (8)For a complete understanding of the origin of these transformations, and why the groupgenerated by the transformations Ti is SN , the reader is referred to [10]. The basic2 Equations (8) determine qi up to a parameter. The precise action of Ti is determinedby picking a suitable boundary condition satis�ed by the solution j1; :::; jN on which wewish to act, and requiring the Ti to preserve this condition. For example, for the scalingreduction of (5) we will shortly consider, we �x this parameter by requiring that qi shouldalso have a well-de�ned scaling behavior. 3



argument however is quite simple: consider the Nth order di�erential operator L =(@ + jN )::(@ + j2)(@ + j1), and choose a basis f 1; ::;  Ng for the kernel of L such thatf 1; ::;  ig is a basis for the kernel of (@ + ji)::(@ + j2)(@ + j1) for each i, i = 1; ::; N . It iseasy to check that switching  i and  i+1 induces the change in the jr given by (7), withqi satisfying the �rst equation in (8); the second equation in (8) is then deduced directlyfrom (5).There are relations between the DN and SN generators; two obvious ones areATi = Ti�1A; i = 2; 3; ::; N � 1BTi = TN�iB; i = 1; 2; ::; N � 1: (9)It is natural to de�ne a transformation TN by TN � A�1TN�1A; this satis�es AT1 = TNAand BTN = TNB. The explicit action of TN isjN ! jN + q�1Nj1 ! j1 � q�1Njr ! jr; r 6= N; 1 (10)where qN satis�es qNx + (jN � j1)qN + 1 = 0qNt + [(jN + j1)x + j2N � j21 ]qN + (jN + j1) = 0: (11)It must be emphasized that TN is not a pure SN transformation, and should not beconfused with the fundamental transposition (1 N) in SN , which generically changes allthe ji. Having introduced TN , it is clear that the transformation group for (5) is a semi-direct product of the group generated by T1; ::; TN with the group DN .We now consider the scaling reduction of (5). Writing ji = t� 12 Ji(w) where w = t� 12x,we �nd that we can at once integrate each equation of (5) to obtain the reduced system�12wJi + �i = N�1Xr=1 �1� 2rN �J 0i+r(mod N) + J2i � S; i = 1; ::; N: (12)Here S = 1N PNr=1 J2r , a prime denotes di�erentiation with respect to w,the �i, i = 1; ::; N ,are constants satisfyingPNr=1 �i = 0, andPNr=1 Ji = 0. Because of the square roots in thereduction formulae, (12) displays a residual scale invariance w ! �w, Ji ! �Ji.3 Thiscan be eliminated by setting Ji(w) = w�1Ki(z), where z = w2, to obtain the system(�i� 12Ki)z = N�1Xr=1 �1� 2rN � (2z _Ki+r(mod N)�Ki+r(mod N))+K2i �T; i = 1; ::; N: (13)3 Similar considerations give rise to the extra invariances of equation (3) under J ! �J ,w ! �2w with �3 = 1. 4



Here a dot denotes di�erentiation with respect to z, T = 1N PNr=1K2i , and PNr=1Ki = 0.We could, of course, have obtained (13) directly from (5) by substituting ji = x�1Ki(z)where z = t�1x2, but if we do this it is somewhat harder to see the integrations that canbe done.Under scaling reduction (i.e. setting qi = xQi(z)) we �nd we can solve (8) for qi; wecan thus write down both the DN and SN actions explicitly:Prop.10: DN Invariance of (13).Equations (13) are invariant under the DN action generated byA : Ki ! Ki+1(mod N); z ! z; �i ! �i+1(mod N)B : Ki ! �KN+1�i; z ! �z; �i ! ��N+1�i (14)which satisfy AN = B2 = I, ABAB = I.Prop.20: SN Invariance of (13).There is an SN action on solutions of (13); the action of the fundamental trans-positions Ti = (i i+ 1), i = 1; ::; N � 1, is given byKi ! Ki + z(�i+1 � �i � 12)Ki +Ki+1 + 12zKi+1 ! Ki+1 � z(�i+1 � �i � 12)Ki +Ki+1 + 12zKr ! Kr; r 6= i; i+ 1�i ! �i+1 � 12�i+1 ! �i + 12�r ! �r; r 6= i; i+ 1:
(15)

The transformations Ti can easily be checked using the reduced form of (5)0 (equivalent to(13)):2z( _Ki+ _Ki+1) = (Ki+1+Ki)(Ki+1�Ki+1)+ 12z(Ki+1�Ki)+z(�i��i+1); i = 1; ::; N�1:(13)0For comparison with [6],[9] it is useful to de�ne �i � N�1(2�i � i+ 12 (N + 1)); the actionof Ti, i = 1; ::; N � 1, on the �r is �i ! �i+1, �i+1 ! �i, and �r ! �r for r 6= i; i + 1.The action of TN is �1 ! �N + 1, �N ! �1 � 1, and �r ! �r for r 6= 1; N . Theaction of A is �r ! �r+1 + 1N for r 6= N , and �N ! �1 � N�1N , and the action of B is�r ! ��N+1�r . The transformation AT1T2:::TN�1 acts as a \parallel transformation",mapping ~� to ~� + 1N (1; 1; ::; 1; 1�N).We now relate the above systems for N = 3; 4 to PIV and PV, and discuss the relevanttransformation groups. The following results are elementary to establish.5



Prop.3The general solution of (13) for N = 3 isK3 = M + z2K2 �K1 = 2z _MM � 1 + z(1 + 2�1 � 2�2)M (16)where M(z) solves the equation�M = _M22M + 3M332z2 + 3M28z + �34 � 2�3z � 1z2� 3M8 � (12 + �1 � �2)22M : (17)M(z) solves (17) if and only if J(p) de�ned byM(z) = 2pJ(p), where p = (3z=4) 12 ,satis�es PIV:d2Jdp2 = 12J �dJdp�2 + 32J3 + 4pJ2 + 2(p2 � 2�3)J � 2J �1 + 2�1 � 2�23 �2 : (18)The transformation group for (17) is a semi-direct product of the group generated byT1; T2; T3, which Okamoto [6] calls s1; s2; ~s, with theDN group generated byA;B. Okamotowrites ~l for A�1 (and l for T2T1A�1), and instead of B uses x = AB (all this can eas-ily be checked; Okamoto's coe�cients v1; v2; v3 are the coe�cients �1; �2; �3 introducedabove). The transformation group for (18) is just that for (17) supplemented with theextra symmetry J ! �J , p ! �p, which Okamoto denotes  . Explicit formulae for allthe transformations can easily be written.Prop.4The general solution of (13) for N = 4 isK1 = z _VV (V � 1) + z4 V + 1V � 1 � V + 1 + 2(V � 1)(�2 � �1)4VK2 = � z _VV (V � 1) + z4 V + 1V � 1 + V + 1 + 2(V � 1)(�2 � �1)4VK3 = z _V(V � 1) � z4 V + 1V � 1 � V + 1 + 2(V � 1)(�3 � �4)4 (19)
where V (z) solves PV:�V = � 12V + 1V � 1� _V 2 � _Vz � V (V + 1)8(V � 1) + (�1 + �2)V2z+ (V � 1)232z2 �(1 + 2�3 � 2�4)2V � (1 + 2�1 � 2�2)2V � :(20)6



Note that for N 6= 4 the order of the system (13) is N � 1, but for N = 4 it is 2. The formof PV in (20) is brought to the standard form of Okamoto [9] by rescaling z. Having donethis, it is straightforward to check that the coe�cients �1; ::; �4 are exactly the coe�cientsv1; ::; v4 of Okamoto. The relationship between the transformations we have introducedand those of [9] is as follows. First we note that since V is determined by K1 + K2,the transformations T1; T3 leave V unchanged. These are �01 and �1 in [9], respectively.s1; s2; s3; s0 in [9] are T1; T2; T3; T4 respectively, and l is T3T2T1A�1. Finally x (or �2) of[9] is BA2, and w0 of [9] is T1T3B.DiscussionIt is pleasing that we have obtained the results of [6] and [9] in a uni�ed and extendedframework; we see the rather complicated transformation groups for PIV and PV have afairly simple origin in the symmetries of (5). It is to be expected that useful applicationswill be found for the system (13) for N � 5, and for the systems obtained by scalingreduction of higher equations in the MKdV hierarchies (all of these systems possess thePainlev�e property). For example, in generalization of the results of [11], we should expectthe scaling reductions of equations in the SL(N) MKdV hierarchy to arise as the \stringequations" for certain matrix models.One thing missing from this paper is an explanation of the origin of the transformationgroups for PIII [12] and PVI [13]. From Okamoto's work on these systems one might guessthat they arise as scaling reductions of an MKdV equation associated with the Lie algebrasB2 and D4 respectively [14]. The lowest nontrivial 
ow in the B2 MKdV hierarchy (whichdescribes the evolution of two �elds j1; j2) can be computed, and has a consistent scalingreduction; each of the resulting pair of equations can be integrated once, as above, but theremaining system is a fourth order system with two arbitrary constants. Remarkably, thissystem can actually be written as a single fourth order ODE. But so far I have been unableto establish any connection between this equation and PIII. From [5] it is clear that PIIIand PVI have to be discussed in tandem with other systems, so it might not be surprisingif they arose naturally embedded in some larger system; but currently the existence of arelation between the B2 MKdV and PIII remains conjecture.Another possibility for the origin of the transformation groups of PIII and PVI is thatthese equations might arise as scaling reductions of some other bihamiltonian integrablesystem in 1 + 1 dimensions (it is known that PIII and PVI arise as reductions of certain1 + 1 dimensional systems - see [15], p.343 for references - but not as scaling reductions).It can be shown that group actions which survive scaling reduction exist on the spaces ofsolutions of other bihamiltonian systems. Indeed the reader can check that PIV arises as7



a scaling reduction of the system jt = (jx + j2 � 2j�j)x�jt = (��jx � �j2 + 2j�j)x (21)which is intimately related to the nonlinear Schr�odinger equation (see [16]). SimpleB�acklund transformations of (21), such as j ! �j; �j ! j; x ! x; t ! �t generate at leastsome of the transformations for PIV (compare [17] where some of the transformations forPIV were obtained directly from B�acklund transformations of NLS).As a �nal comment, I note that a new derivation of all the Painlev�e equations hasrecently been given by Mason and Woodhouse, who examined certain symmetry reductionsof the SL(2) self-dual Yang-Mills equations [18]. It would be very interesting to see if thetransformation groups had an explanation from this viewpoint as well.AcknowledgementsI thank P.Aspinwall and C.Johnson for discussions. This work was supported by theU.S.Department of Energy under grant #DE-FG02-90ER40542.Appendix: Derivation of (5)The self-dual Yang-Mills equations can be written F�x�t = 0, Fx�t = Ft�x, Fxt = 0, whereF�� = @�A� � @�A� + [A�; A� ] (�; � 2 fx; t; �x; �tg) and the A� are the \potentials" i.e.Lie-algebra valued functions of x; t; �x; �t. Equations (5), up to a rescaling of t, are obtainedfrom the SL(N) self-dual Yang-Mills equations with an ansatz:(A�x)ij = �i;j+(N�1)(A�t)ij = f�i;j+(N�1) � �i;j+(N�2)(Ax)ij = ji�i;j + �i;j�1(At)ij = Ai�i;j +Bi�i;j�1 � �i;j�2Here the Ai (i = 1; ::; N), Bi (i = 1; ::; N � 1), ji (i = 1; ::; N) and f are functions of x; talone, with PNi=1 ji = 0 and PNi=1Ai = 0.
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