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Abstract

By use of harmonic superfields, Witten’s topological gauge theory is written as a field

theory on a supertwistor space. Further, using the realisation of complex compactified

Minkowski space as a quadric in CP 5, we show that the theory has a simple formulation

in terms of analytic superfields on super-CP 5 ×CP 3.
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1.Introduction

In this paper we give a twistor theoretic description of the topological gauge theory

constructed by Witten, in which the Donaldson polynomial invariants of four-manifolds

can be obtained as correlation functions [1],[2]. Several authors have observed that Wit-

ten’s action is a gauge fixed version of a topological action
∫

Tr(F ∧ F ), or something

similar, through a BRST procedure [3]. In [1] Witten suggested another interpretation

of the theory, at least on flat space, as an N = 2 supersymmetric gauge theory with a

reinterpretation of the action of the Lorentz group. The internal SU(2)I relating the two

supersymmetries is identified with SU(2)R, the right chirality component of the Lorentz

group. We shall develop this point of view using the harmonic superspace approach to

N = 2 supersymmetric gauge theory [4]. In this approach one considers superfields not

on regular superspace M but on harmonic superspace which is of the form M × CP 1.

The authors of [4] show that the constraints of N = 2 supersymmetric gauge theory can

be solved in terms of analytic fields on harmonic superspace, giving an unconstrained su-

perfield formalism for the theory. With the reinterpretation of the action of the Lorentz

group, we obtain a superfield description of the Witten theory (distinct from the superfield

formulation given in [5]), defined on a supersymmetric version of twistor space [6]. The

BRST-type Q-symmetry used in proving the topological invariance of the theory becomes

a Grassman analogue of the scaling symmetry πα̇ → λπα̇, λ ∈ C which allows us to go

from C
2 − {0} defined by πα̇, α̇ = 0, 1, to the projective space CP 1.

Another geometrical description of spacetime, closely related to twistor theory, is the

CP 5 calculus [6], [7]. Complex compactified Minkowski space can be realised as a quadric

Ω(X) = 0 in CP 5, XM ,M = 1, . . . , 6 being homogeneous coordinates for CP 5. We show

that topological gauge theory has a very natural formulation in this language. In particular

the Lagrangian is given by Tr(AΩ)2 where AΩ is the (Lie algebra valued) gauge potential

along the direction ∂
∂Ω orthogonal to Ω(X) = 0, i.e. orthogonal to (complex) Minkowski

space. The relationship with twistor space can be recovered by the well-known observation

that certain lines in twistor space define (complex) Minkowski space, and conversely certain

planes in Minkowski space define twistor space [6]. The CP 5 description also extends
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naturally to conformally flat manifolds.

A suggestion that twistor space may be a natural setting for topological field theory

was also made recently by Penrose [8]. In the particular case of topological gauge theory,

the theory gives information about instanton moduli space, and via the Ward correspon-

dence, instantons correspond to certain holomorphic vector bundles on twistor space [9].

Thus we feel that the twistor formulation may give some extra insight into topological

gauge theory.

2.Harmonic Superspace Formalism

We begin with a description of the harmonic superfield formalism of N = 2 gauge

theory. Spinor notation will be used , i.e. ψα, ψα̇ transform as spinors of SU(2)L and

SU(2)R respectively, which are left and right components of the Lorentz group. We use

the conventions of [4] for raising and lowering of indices. Harmonic superspace is described

by coordinates (xαα̇, θα
i , θ̄

α̇i, πi)(i = 0, 1) where the θ’s are Grassman variables and πi

are two complex variables, π0 = π1 = 0 excluded, but the theory has invariance under

πi → λπi, so that ultimately the π’s describe CP 1. Alternatively one can use ui = πi√
|π|2

which describe SU(2). Invariance under U(1) ⊂ SU(2) can be achieved by assigning a U(1)

charge +1 to ui and −1 to ūi = (−(u2)∗, (u1)∗) and ensuring balance of these charges in

any equation (here * denotes complex conjugation).

We define ξα = θα
i u

i, ξ̄α = θα
i ū

i, ηα̇ = θ̄α̇
i u

i, η̄α̇ = θ̄α̇
i ū

i and consider the following

basis of vector fields on harmonic superspace:

Dαα̇ =
∂

∂xαα̇
(1a)

D+
α =

∂

∂ξ̄α
− 1

2
ηα̇Dαα̇ (1b)

D+
α̇ =

∂

∂η̄α̇
+ 1

2ξ
αDαα̇ (1c)

D−
α =

∂

∂ξα
+ 1

2 η̄
α̇Dαα̇ (1d)

D−
α̇ =

∂

∂ηα̇
− 1

2 ξ̄
αDαα̇ (1e)
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D++ = ui ∂

∂ūi
+ ξα ∂

∂ξ̄α
+ ηα̇ ∂

∂η̄α̇
(1f)

D−− = ūi ∂

∂ui
+ ξ̄α ∂

∂ξα
+ η̄α̇ ∂

∂ηα̇
(1g)

D0 =
1

2

(

ui ∂

∂ui
+ ξα ∂

∂ξα
+ ηα̇ ∂

∂ηα̇
− ūi ∂

∂ūi
− ξ̄α ∂

∂ξ̄α
− η̄α̇ ∂

∂η̄α̇

)

(1h)

Here the +’s and −’s associated with each operator tell us its associated U(1) charge. Any

expression of fixed charge is an eigenfunction of D0 (with eigenvalue half of the charge),

so for our purposes D0 can be regarded as a number, rather than a differential operator.

We note the following graded commutation relations of the above operators:

{D+
α , D

+
β } = {D+

α̇ , D
+

β̇
} = {D+

α , D
+
α̇ } = 0 (2a)

{D−
α , D

−
β } = {D−

α̇ , D
−
β̇
} = {D−

α , D
−
α̇ } = 0 (2b)

{D−
α , D

+
α̇ } = −{D+

α , D
−
α̇ } = Dαα̇ (2c)

[D++, D+
α ] = [D++, D+

α̇ ] = 0 (2d)

[D++, D−
α ] = −D+

α (2e)

[D++, D−
α̇ ] = −D+

α̇ (2f)

[D−−, D−
α ] = [D−−, D−

α̇ ] = 0 (2g)

[D−−, D+
α ] = −D−

α (2h)

[D−−, D+
α̇ ] = −D−

α̇ (2i)

[D++, D−−] = 2D0 (2j)

These derivative operators can be made covariant by introducing gauge potentials for each

of them, e.g. D++ → ∇++ = D++ + A++, (we do not gauge D0 though), and we can

define field strengths in the obvious way, e.g. F++,−− = [∇++,∇−−] − 2D0. Now, given

an N = 2 gauge field on regular superspace (Aαα̇,Ai
α,Aα̇i) satisfying the usual constraints

[10], we can define a gauge field on harmonic superspace by setting

A++ = A−− = 0 (3a)
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A+
α = Ai

αu
i (3b)

A−
α = Ai

αū
i (3c)

A+
α̇ = Ai

α̇u
i (3d)

A−
α̇ = Ai

α̇ū
i (3e)

Aαα̇ = Aαα̇ (3f)

The field strengths associated with all the commutators in (2) will be zero by virtue of

these assignments and the N = 2 constraints. The usual N = 2 field strengths W, W̄ are

given by

{∇+
α ,∇−

β } = Wǫαβ (4a)

{∇+
α̇ ,∇−

β̇
} = W̄ ǫα̇β̇ (4b)

By virtue of the vanishing of the field strengths associated with the commutators in (2a) we

can obtain a gauge equivalent description with A+
α = A+

α̇ = 0. In this gauge A++ and A−−

will be non-zero. The vanishing of the field strengths associated with the commutators in

(2d,h,i,j,c) in this gauge imply (respectively)

D+
αA

++ = D+
α̇A

++ = 0 (5a)

A−
α = D+

αA
−− (5b)

A−
α̇ = D+

α̇A
−− (5c)

D++A−− −D−−A++ + [A++, A−−] = 0 (5d)

Aαα̇ = D+
α̇D

+
αA

−− (5e)

Equation (5a) is the definition of analyticity in harmonic superspace; it requires that A++

depends on xαα̇, ξ̄α, η̄α̇ only through the combination yαα̇ = xαα̇ + 1
2(ξαη̄α̇ + ξ̄αηα̇). (5d)

determines A−− in terms of A++ (see [11]) , whence (5b,c,e) give all other components of

the gauge field. Thus all physical quantities are given in terms of the analytic superfield

A++. (Furthermore it is possible to show that apart from the analyticity condition there

are no other constraints on A++; to do this, given an analytic A++ we construct a full
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gauge field on harmonic superspace by (5b)-(5e), and setting A+
α = A+

α̇ = 0, then change

gauge back to a gauge where A++ = A−− = 0, using (5d). From the gauge field in this

gauge it is easy to construct a gauge field on regular superspace and to check it satisfies

the usual N = 2 constraints.) In the new gauge the field strengths are

W = 1
2D

+
αD

+αA−− (6a)

W̄ = 1
2D

+
α̇D

+α̇A−− (6b)

These satisfy covariant chirality conditions so that

D+
α Tr(W

2) = D−
α Tr(W

2) = 0 (7a)

D+
α̇ Tr(W̄

2) = D−
α̇ Tr(W̄

2) = 0 (7b)

The action for N = 2 theory can be taken as the sum of

S+ =

∫

d4xdud2ηd2η̄ T r(W 2) (8a)

S− =

∫

d4xdud2ξd2ξ̄ T r(W̄ 2) (8b)

where du is an invariant measure on CP 1 = SU(2)/U(1).

In the formalism we have given the supersymmetry generators are given by

Qi
α = ui ∂

∂ξα
+ ūi ∂

∂ξ̄α
+ 1

2

(

η̄α̇ui − ηα̇ūi
)

Dαα̇ (9a)

Qα̇j = −uj

∂

∂ηα̇
− ūj

∂

∂η̄α̇
+ 1

2

(

ξ̄αuj − ξαūj

)

Dαα̇ (9b)

All of these (anti)commute with all of the derivatives in (1). Finally we note that in this

formalism we can write A++, following [3], in a Wess- Zumino type gauge in the form

A++ = φ(y)η·η+λ(y)ξ·ξ+Vαα̇(y)ξαηα̇+χα̇i(y)ξ·ξηα̇ūi+ψαi(y)η·ηξαūi+D(ij)(y)ξ·ξη·ηūiūj

(10)

(where η · η = ηα̇η
α̇ etc.) thus identifying the usual component fields of N = 2 gauge

theory (D(ij) is an auxiliary field).
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3.Topological Gauge Theory

To obtain Witten’s topological gauge theory, we identify SU(2)I , under which ui =

πi√
|π|2

is a doublet, with the right chirality component of the the Lorentz group, so we re-

place πi by πα̇. Harmonic superspace is now given by coordinates xαα̇, πα̇, π̄α̇, ξα, ξ̄α, ηα̇, η̄α̇.

Projective twistor space, realised as a CP 1 bundle over spacetime, is described by (xαα̇, πα̇, π̄α̇),

so harmonic superspace is now a supersymmetric version of projective twistor space. The

supertwistors thus obtained are related to, but not the same as, the standard supertwistors

obtained from superextensions of the conformal group [12].

Because of the chirality property (7a), Tr(W 2) can only depend on xαα̇, ξα, ξ̄α through

the combination zαα̇ = xαα̇ + 1
2 (ξ̄αηα̇ − ξαη̄α̇). Defining ωα = zαα̇πα̇, ω̄

α = zαα̇π̄α̇, we can

write the action of the topological gauge theory as

S+ =

∫

d2ωd2ω̄d2πd2π̄d2ηd2η̄

(π · π̄)2
Tr(W 2) (11)

Unlike N = 2 gauge theory we do not include the hermitian conjugate S− since (11) has

(Fµν − F̃µν)2, F̃µν = 1
2
ǫµνρσF

ρσ, which is appropriate for instantons. (Needless to say, a

conjugate description is obtained by identifying SU(2)I with SU(2)L and using S− as the

action).

We identify components in the Wess-Zumino gauge, as above, where now

A++ = φ(y) η · η + λ(y) ξ · ξ + Vαα̇(y) ξαηα̇ + χα̇β̇(y) ξ · ξηα̇ūβ̇ + ψαα̇(y) η · ηξαūα̇

+D(α̇β̇)(y) ξ · ξ η · ηūα̇ūβ̇ (12)

This gives exactly the field content of [1] (we write χα̇β̇ = η(y)ǫα̇β̇ + χ(α̇β̇)(y), giving

Witten’s fermionic scalar and fermionic antisymmetric tensor), with the auxiliaries D(α̇β̇).

The Q-symmetry operator is given by ǫα̇β̇Qα̇β̇ , where Qα̇β̇ are obtained from (9b). This

gives

Q = u · ∂
∂η

+ ū · ∂
∂η̄

+ 1
2 (ξ̄αuα̇ − ξαūα̇)Dαα̇ (13)

The component action of the Q-symmetry can be obtained by letting Q act on A++, and

then performing a gauge transformation A++ → g−1A++g + g−1D++g (g analytic) to

restore Wess-Zumino gauge.
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Being a superfield formulation, it is trivial to see that the Lagrangian is Q-exact, i.e.

is the Q-variation of another field. Writing

Tr(W 2) = L(z) η · η η̄ · η̄ + Vα̇(z, u, ū) ηα̇η̄ · η̄ + V̄α̇(z, u, ū) η̄α̇η · η + . . . (14)

we have

Q Tr(W 2) = 2L(z) u · η η̄ · η̄ + 2L(z) ū · η̄ η · η + . . . (15)

So

δQVα̇ = 2Luα̇ (16a)

δQV̄α̇ = 2Lūα̇ (16b)

and thus we conclude L = δQV where V = 1
2 (V̄α̇u

α̇ − Vα̇ū
α̇). (An explicit formula for V

in component fields, corresponding to that in [1], can easily be obtained, starting from the

component form of W given in [10] for the regular N = 2 theory. With the auxiliary fields,

as expected, this proof does not depend on the equations of motion.)

It is also straightforward in this formalism to write the correlators yielding the Don-

aldson polynomials. From the chirality property (7b), Tr(W̄ 2) only depends on xαα̇, ηα̇, η̄α̇

through the combination z̃αα̇ = xαα̇ − 1
2 (ξ̄αηα̇ − ξαη̄α̇), and hence we can check that

Q Tr(W̄ 2) = (ξ̄αuα̇ − ξαūα̇)Dαα̇Tr(W̄
2) (17)

and thus Tr(W̄ 2)|ξ=ξ̄=0 is Q-invariant (and gauge invariant). This is exactly the Trφ2

field used to construct the Donaldson polynomials, which can thus be identified with the

correlators

∫

dµ(A++) exp(−S+) Tr(W̄ 2)(x1)Tr(W̄
2)(x2) . . . T r(W̄

2)(xn)|ξ=ξ̄=0 (18)

If throughout our work we had opted to work with the πα̇ variables in place of the uα̇

ones, and had defined η̃α̇ = θ̄α̇

β̇
πβ̇(=

√

|π|2ηα̇), then clearly the Lagrangian Tr(W 2) would

be invariant under the scaling πα̇ → λπα̇, η̃α̇ → λη̃α̇, λ ∈ C. Ignoring changes in Tr(W 2)

which are total derivatives, the Q-symmetry is effectively η̃α̇ → η̃α̇ + ǫπα̇, where ǫ is a real

Grassman number. If we write

Π =

(

πα̇ η̃α̇

0 πα̇

)

(19)
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then we can combine the two symmetries as

Π → ΛΠ, Λ =

(

λ ǫ
0 λ

)

(20)

Q-symmetry is thus a Grassman analogue of the scaling πα̇ → |λ|πα̇. Since ǫ is taken to

be a real Grassman number the phase information of λ has no analogue.

4.CP 5 Formalism

We shall now reformulate the theory in (super)CP 5 × CP 3. Introduce homoge-

neous coordinates for CP 5, XM , M = 1, . . . , 6, homogeneous coordinates for CP 3,

Zi = (ωα, πα̇), i = 1, . . . , 4, and Grassman coordinates Qi = (ξα, ηα̇), i = 1, . . . , 4 (note

the use of the index i is now different from that of section 2). We can equivalently represent

XM as an antisymmetric bitwistor X ij via

X ij =

[

iζǫ xµeµ

−xµ(eµ)T iζ̃ǫ

]

(21)

where ζ = X5−X6

√
2

, ζ̃ = X5+X6

√
2

, xµ = Xµ, eµ = (1, iσk) where σk are the Pauli matrices,

ǫ = iσ2 and µ is an index that runs from 1 to 4 (we shall also use the notation, as

throughout this paper, xαα̇ = (xµeµ)αα̇). We inroduce the following derivatives:

Dij =
∂

∂X ij
(22a)

D+
i =

∂

∂Q̄i
+ 1

2Q
kDki (22b)

D−
i =

∂

∂Qi
− 1

2
Q̄kDki (22c)

D++ = Zi ∂

∂Z̄i
+Qi ∂

∂Q̄i
(22d)

D−− = Z̄i ∂

∂Zi
+ Q̄i ∂

∂Qi
(22e)

D0 =
1

2

(

Zi ∂

∂Zi
+Qi ∂

∂Qi
− Z̄i ∂

∂Z̄i
− Q̄i ∂

∂Q̄i

)

(22f)

The commutators that we shall use are

[D++, D+
i ] = 0, [D++, D−

i ] = −D+
i (23a)
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[D−−, D−
i ] = 0, [D−−, D+

i ] = −D−
i (23b)

[D++, D−−] = 2D0 (23c)

{D+
i , D

+
j } = 0, {D−

i , D
−
j } = 0 (23d)

{D+
i , D

−
j } = −Dij (23e)

We now introduce gauge fields for all the derivatives we have introduced except D0, and set

all field strengths associated with the above commutation relations to zero. By choosing

the gauge A+
i = 0 as before, we find the analyticity condition D+

i A
++ = 0, which implies

that in A++, (X ij , Q̄i) enter only via the combination X ′ij where ζ ′ = ζ + i
2
ξ · ξ̄, ζ̃ ′ =

ζ̃ + i
2
η · η̄, x′αα̇ = xαα̇ + 1

2
(ξαη̄α̇ + ξ̄αηα̇). A++ determines A−−, A−

i , Aij via D++A−− −
D−−A+++[A++, A−−] = 0, A−

i = D+
i A

−−, and Aij = D+
i D

+
j A

−−. The potential Aij has

components Aζ , Aζ̃ which become W and W̄ once the ζ, ζ̃, ω dependence of all functions

is restricted suitably. This can be done in a way consistent with the analyticity of A++ by

imposing

Ω(X,Q) ≡ −1
8 ǫijklX

′ijX ′kl = ζ ′ζ̃ ′ + x′µx′µ = 0 (24a)

ZiX ′
ij = 0 (24b)

where X ′
ij = 1

2ǫijklX
′kl. (Actually (24b) requires (24a) for consistency, so there is some

harmless redundancy here. Equation (24b), via the Klein correspondence, can be inter-

preted as the realisation of the set of projective lines in CP 3 as a quadric in CP 5 [6],[7].)

These equations are invariant under scaling of X ′ij as expected for equations on CP 5. One

can obtain Minkowski space from the quadric (24a) by choice of an infinity twistor. If we

set

I =

[

iǫ 0
0 0

]

(25)

and remove the points IklX ′
kl = 0 from the quadric, then on the remainder of the quadric,

by virtue of the scaling symmetry we can set IklX ′
kl = 2, or ζ̃ ′ = 1. This choice breaks

the symmetry between α and α̇, leaving only a Poincaré invariant structure, as expected

for Minkowski space. Also in this case, (24b) gives the standard identification ωα =

x′αα̇πα̇. Thus on restriction to the quadric (24), A++(X ′, Q, Z, Z̄) becomes a function of
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x′αα̇, πα̇, π̄α̇, ξα, ηα̇, and D++, D−−, D0, D+
i , D

−
i reproduce the derivatives (1b)−(1h). The

potentials Aζ , Aζ̃ become W, W̄ respectively, and so the Lagrangian for the Witten theory

is Tr(Aζ
2). From the definition of Ω we see that ∂

∂ζ′
= ζ̃ ′ ∂

∂Ω
(By this we understand that

if we were to replace the variable ζ ′ in our formulation by the variable Ω this is how we

would rewrite the derivative ∂
∂ζ′

). Thus a general definition of the Lagrangian is Tr(AΩ
2),

AΩ being the gauge potential in the direction ∂
∂Ω

, i.e. the potential along the normal to

the quadric (24a). For the choice ζ̃ ′ = 1 this general Lagrangian reproduces Tr(W 2); the

choice ζ ′ = 1, corresponding to an infinity twistor

Ĩ =

[

0 0
0 iǫ

]

(26)

leads to Tr(W̄ 2), which is the Lagrangian for the theory appropriate to anti-instantons

with (Fµν + F̃µν)2 in the action (obtained from N = 2 theory by identifying SU(2)I with

the component SU(2)L of the Lorentz group). We must finally, of course, restrict to the

subspace of real xµ in the quadric (24).

Although we have until now emphasized the flat space formulation, the CP 5 approach

extends naturally to all conformally flat spacetimes. Such spaces can be obtained by

different choices of the infinity twistor I and removing I · X from the quadric (24) [6].

The complete topological invariance, under arbitrary variations of the metric, is still not

manifest in this approach; nevertheless we expect it to be a fruitful perspective on the

theory.
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