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Abstract. Motivated by applications in Dynamic Spectrum Access Networks, we focus on a system in which a few agents are
engaged in a costly individual exploration process where each agent’s benefit is determined according to the minimum obtained
value. Such an exploration pattern is applicable to many systems, including shipment and travel planning. This paper formally
introduces and analyzes a sequential variant of the general model. According to that variant, only a single agent engages in
exploration at any given time, and when an agent initiates its exploration, it has complete information about the minimum value
obtained by the other agents so far. We prove that the exploration strategy of each agent, according to the equilibrium of the
resulting Stackelberg game, is reservation-value based, and show how the reservation values can be calculated. We also analyze
the agents’ expected-benefit maximizing exploration strategies when they are fully cooperative (i.e., when they aim to maximize
the expected joint benefit). The equilibrium strategies and the expected benefit of each agent are illustrated using a synthetic
homogeneous environment, thereby demonstrating the properties of this new exploration scheme and the benefits of cooperation.
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1. Introduction

This paper focuses on exploration problems stem-
ming from the spectrum sensing process of users in
a Cognitive Radio Network (also known as Dynamic
Spectrum Access Network). A Cognitive Radio was
first defined by Mitola [35] as a radio that can adapt
its transmitter parameters to the environment in which
it operates. According to the Federal Communications
Commission (FCC), a large portion of the assigned
spectrum is used only sporadically [11]. Due to their
adaptability and capability to utilize the wireless spec-
trum opportunistically, Cognitive Radios are consid-
ered key enablers for efficient use of the spectrum
[1,12,13].

Under the basic model of Dynamic Spectrum Ac-
cess Networks [1], Secondary Users (SUs) can use
white spaces that are not used by the Primary Users
(PUs) but must avoid interfering with active PUs.1

In order to identify available PU channels, the SUs
have to sense the spectrum and to obtain the qual-
ity of the different available channels. In particular,
a spectrum sensing mechanism has to determine how
and when the SUs sense the different channels, and a
spectrum decision mechanism has to determine which
channel best satisfies the application requirements (dif-
ferent channels may have different qualities) [1,17].
While spectrum sensing is primarily a physical layer

1PUs and SUs are also referred to as Licensed and Opportunistic
Users, respectively.
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Fig. 1. An illustration of the exploration process of the SUs which
are connected via an infrastructure network.

issue, we focus on the functionalities above the physi-
cal layer that determine how the sensing should be per-
formed.

Specifically, we focus on the exploration process of
SUs which is illustrated in Figure 1.2 In our model,
there are a few non-interfering SUs that are served
by different base stations or access points. These SUs
need to maintain a connection through the infrastruc-
ture network. Each of the SUs has to sense the channels
in its own environment (i.e., to its own base station)
and to select a specific channel based on the channels’
qualities (these qualities are not known in advance as
they depend on PUs’ activity). Sensing a specific chan-
nel consumes the SU’s resources (e.g., energy), and
therefore an SU will usually not sense all the channels
in its environment.

The key point is that since all SUs participate in
the connection, the overall performance of the sys-
tem (e.g., bandwidth allocated to the connection) is
a function of the quality of the worst channel. Each
SU’s decision of whether or not to sense and obtain
an additional channel should thus be based on the
tradeoff between the expected incremental improve-
ment that can be obtained in the connection’s quality
and the cost (in terms of energy spending) associated
with the additional sensing operation. The fact that the
marginal improvement also depends on the findings
of the other agents substantially complicates the cal-
culation of the SUs’ exploration strategy. Particularly,
when the SUs are self-interested, the set of exploration
strategies should be derived based on equilibrium anal-
ysis.

2We note that modeling the effects of the PU arrival process [23]
is out of the scope of this work.

Models of agents engaged in costly exploration pro-
cesses involving the evaluation of different available
options (opportunities), out of which only one needs
to be chosen, are quite common in multi-agent sys-
tems (MAS) [7,26,27,19]. In these models, the goal
of the agent is not necessarily to find the opportu-
nity associated with the maximum value but rather to
maximize the overall benefit, defined as the value of
an opportunity eventually picked minus the costs ac-
cumulated during the exploration process. Economic
search theory provides a framework for optimizing
the performance of an agent in such costly explo-
ration settings [32,40,14]. The expected-benefit max-
imizing exploration strategy in such models is com-
monly reservation-value based. Namely, the agent ob-
tains opportunities as long as the best value found is
lesser (or greater, depending on the application) than a
pre-defined threshold.

Despite the richness of research of costly explo-
ration, the models used commonly assume a single
exploration process. Yet, as illustrated by the Dy-
namic Spectrum Access example, in reality agents of-
ten need to take into consideration the performance
of other agents engaged in the exploration process.
A similar example for such a dependency exists in
“Mars rovers”-like applications. For example, when
the robots need to evaluate different routes in order to
get to a pre-defined location in order to mine a certain
mineral on the face of Mars. The evaluation of differ-
ent routes is costly as the robots possibly need to gather
supplementary information required for the process. If
all agents need to be present at the location in order for
the mining process to be executed, then their perfor-
mance depends on the maximum among the minimum
individual times it takes any of them to arrive. Another
such typical scenario can be found in coordination-
management applications (e.g., DARPA’s Coordina-
tors project) where the quality of performance of a
task is commonly defined by a quality accumulation
function over the sub-tasks [48]. This also holds in
complex transportation problems, e.g., those that in-
volve ground, air and sea transportation. Assume that
for each segment of the shipment route different offers
should be received from shipment companies. The se-
lection of a container/vehicle for each segment of the
route dictates the amount and type of cargo that can
be transported overall (a single bottleneck). Similarly,
when planning a trip and requesting quotes from dif-
ferent vendors (e.g., for flights and accommodation),
the correlation between the results of different explo-
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ration efforts substantially influences the overall per-
formance.

In this paper, we formally introduce the model of a
multi-agent exploration in which different agents need
to explore individually and the performance of each
agent is affected by the performance of all the others.
In particular, we focus on a protocol under which only
one agent explores at a time, and each agent’s explo-
ration starts upon receiving the final outcome of all
agents that have explored prior to it. Since the agents
are exploring sequentially, the problem can be consid-
ered from a game theory perspective and formulated
as a Stackelberg game, where each agent is a follower
for the agent exploring prior to it and a leader for the
agent performing the subsequent exploration process.
We provide a comprehensive analysis of the problem
and prove that the equilibrium strategies for the se-
quential multi-agent exploration are reservation-value
based. Based on the analysis, we obtain the appropriate
equations from which the reservation value of each op-
portunity can be calculated. Complementary analysis
for the case of fully cooperative agents and defection
from cooperation scenarios is also provided. We use
homogeneous environments (i.e., where all opportuni-
ties available to an agent share the same exploration
cost and probabilistic properties) to illustrate the ef-
fect of different parameters on the equilibrium explo-
ration strategies and the expected benefit of the differ-
ent agents. Preliminary results of the research reported
in this paper appear in [39].

2. The Model

We consider a setting where k individual agents
need to establish an ad-hoc partnership from which
they all benefit.3 Each agent Ai sees a different value
in the partnership, denoted vi. The value vi, seen by
agent Ai in the partnership, is the result of an ex-
ploration process involving ni opportunities, denoted
Oi = {o1i , .., o

ni
i }, from which the agent needs to

choose one. While the value of each opportunity oji is
a priori unknown to agent Ai, the agent is acquainted
with the probability distribution function f ji (y) from
which it is derived. In order to obtain the true value of
opportunity oji ∈ Oi, agent Ai needs to consume some
of its resources. This is modeled by the cost cji , ex-

3See Appendix B for a summary of all the notations used in this
paper.

pressed in terms of opportunity values. Therefore, the
agents are required to conduct an exploration process
which takes into consideration the tradeoff between the
marginal improvement in the value they see in the part-
nership and the accumulated cost incurred along the
process.

The value vi that agent Ai sees in the partnership
is therefore the maximum among the values obtained
along its individual exploration process. This value,
however, is only an upper bound to the value that agent
Ai can potentially gain from the partnership. The ac-
tual value each of the agents gains from the partner-
ship, denoted v∗ (and termed “effective value” here-
after), is the minimum of the values seen by all agents
in the partnership, i.e., v∗ = min{vi|i = 1, .., k}. The
model assumes full information in the sense that all
agents are acquainted with all of the distribution func-
tions f ji (y) and exploration costs cji .

Taking the cognitive radio application domain as an
example, each agent represents an SU and all SUs are
interested in establishing a conference call, use a doc-
ument/video sharing application or play in a multi-
player game. The SUs are located in different geo-
graphical locations and each SU can use different wire-
less channels to connect to a server supporting the re-
quested application. Each SU senses several different
channels of different qualities until it selects a specific
channel with a specific quality (the SU spends some re-
sources, e.g., energy, to sense each channel). The qual-
ity of service provided by application depends on the
qualities of all individual channels (e.g., if one of the
SUs has a low quality channel, the experience of all of
the users will be negatively affected). Hence, the qual-
ity of service provided to all the SUs will be a func-
tion of the lowest quality channel selected by one of
the SUs (See Figure 1).

Table 1 provides mappings of the cognitive radio co-
operative exploration application and the different ap-
plications discussed in the former section to the model
formally presented above. In all these examples the ex-
ploration itself consumes some resources, resulting in
a tradeoff between the benefit from the potential im-
provement in the quality of the results that may be
further obtained and the costs of the additional ex-
ploration. Also, in all these examples, the value from
which the agents benefit is the minimum among the
maximum values found in the individual explorations
(except for the Mars rovers application in which the
maximum among the minimum distances found indi-
vidually is used, which is essentially a dual problem
and thus equivalent).
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Table 1
Mapping real-life applications to the sequential exploration problem.

Application Agent Opportunity Benefit
Essence Value Exploration cost

Cognitive radio SUs Channels to com-
municate with
server

Quality of channel Battery power required to
sense additional channels

The lowest quality among the
qualities of channels selected
by the SUs

Mars rovers Robots Routes to destina-
tion point

Time to get to des-
tination

Battery power required
for communication and
obtaining complementary
data

Maximum among the mini-
mum individual times it takes
any of the robots to arrive to
the location

Coordinators Scheduling
assistants

Alternative plans
for task execution

Quality of plan Resources required for
schedule evaluation

Minimum quality achieved
(when using minimum qual-
ity accumulated function)

A1
. . . Ai

. . . Ak

v∗1 v∗i−1 v∗i v∗k−1

Fig. 2. The sequential k-agent exploration process. The fig-
ure illustrates schematically the sequential exploration process,
where the exploration of agent Ai starts only after agent Ai−1

has finished its exploration (where A1 is the first to explore).
When agent Ai−1 finishes its exploration, it broadcasts the value
v∗i−1 = min{vi|i = 1, .., i− 1} to the next agent in the sequence.
The effective value is v∗ = min{vi|i = 1, .., k}.

There are many protocols the agents can follow for
executing this multi-agent exploration, differing in the
parallelism and levels of cooperation along the pro-
cess. For example, the agents can explore opportuni-
ties simultaneously, in parallel, with no interaction be-
tween them until each terminates its exploration pro-
cess and shares the best value obtained. Another op-
tion is to take turns in exploration and share the val-
ues found along the process. Each exploration model
variant is associated with different advantages, disad-
vantages and computational complexities. In this pa-
per, we investigate a sequential exploration protocol
by which agent Ai performs its exploration process as
a whole only after agent Ai−1 has finished its explo-
ration (where A1 is the first to explore) and the values
obtained by agents finishing their exploration which
become common knowledge (See Figure 2). The se-
quential nature of the process suggests that the explo-
ration of the multiple agents is not iterative hence there
are no convergence issues involved.

We distinguish between two principal settings, vary-
ing in the way each agent’s expected benefit is de-
fined. In the first, all agents are self-interested. Namely,
each agent Ai attempts to maximize its own overall
expected benefit, denoted EBi, defined as the effec-
tive value, v∗, minus the expected accumulated cost in-
curred by that agent along its exploration. The problem

in this case can therefore be thought of as a Stackel-
berg game, where each agent Ai is the first mover and
wants to maximize its expected benefit with respect to
its extent of exploration, which affects the strategies
used by the remaining k − i agents. In the second set-
ting, all agents are cooperative, thus each agent’s goal
is to maximize the aggregate of all agents’ expected
benefits, i.e., kv∗ minus the sum of the costs accumu-
lated along all agents’ explorations. The cooperative
setting is common when the agents involved represent
individuals from the same organization or family.

3. Analysis

We first introduce the expected-benefit maximizing
exploration strategy for a single agent when the value it
sees in the different opportunities is not constrained by
the exploration of other agents. We then augment that
strategy and adapt it to the case of k-agents with the
minimum value restriction, distinguishing between the
cooperative and the non-cooperative cases. The new
strategies are proven to be expected-benefit maximiz-
ing for each agent, given the values it receives, result-
ing in the equilibrium set of strategies for the Stackel-
berg game.

The unique characteristics of the agents’ expected-
benefit maximizing exploration strategies and the re-
sulting equilibrium dynamics in the self-interested
variant of the multi-agent model are demonstrated us-
ing a simplistic setting where opportunities are homo-
geneous and the agents can explore as many oppor-
tunities as they request. The use of the homogeneous
setting is more tractable numerically. It thus facili-
tates the illustration of the main differences between
the sequential multi-agent exploration strategies model
and others the agents may use, as well as the differ-
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ences between the strategies of the different agents
under different cooperation schemes. Specifically, we
use a setting where all opportunities available to agent
Ai (i = 1, ..k) share the same exploration cost and
probability distribution function, denoted ci and fi(y)
respectively. For the latter we use a uniform distri-
bution function defined over the interval (a, b) (i.e.,
fi(y) = 1/(b− a), ∀a ≤ y ≤ b, otherwise fi(y) = 0).
Any setting of this type can therefore be represented as
{(c1, (a1, b1)), .., (ck, (ak, bk))}. We stress that even
though such a setting is standard in costly exploration
literature [32,30], its use in our case is merely for illus-
tration purposes and all the results given in this paper
are based on formal theoretical proofs.

3.1. Optimal Exploration with no Restrictions on the
Values

When relaxing the restriction over the value ob-
tained by the agent, each agent’s exploration process
can be analyzed separately and solved as an opti-
mization problem. The individual exploration problem
in this case can be mapped to the canonical explo-
ration problem described by Weitzman [52]. Weitz-
man’s model considers a single agent facing a setting
similar to the one used for each of the agents in our
model, except that the agent’s expected benefit is the
highest value it finds minus the expected cost incurred
along its exploration process.

The optimal (expected-benefit maximizing) explo-
ration strategy in Weitzman’s model is inherently se-
quential (i.e., exploring one opportunity at a time). It is
based on setting a reservation value (a threshold), de-
noted rj for each opportunity oj . The reservation value
rj to be used should satisfy:

cj =

∫ ∞
y=rj

(y − rj)f j(y)dy (1)

Intuitively, rj is the value where the agent is precisely
indifferent: the expected marginal benefit from explor-
ing an opportunity (i.e., obtaining its value) exactly
equals the cost of the exploration. The agent should al-
ways choose to obtain the value of the opportunity as-
sociated with the maximum reservation value and ter-
minate the exploration once the maximum value ob-
tained so far is greater than the maximum reservation
value of any of the opportunities which has not yet
been explored.

We denote the above exploration strategy as “naive”
in the context of the multi-agent exploration with value

restriction, since it does not take into consideration the
exploration of the other agents. In the following para-
graphs we investigate the expected-benefit maximizing
exploration strategy of an agent given the exploration
strategy of the other agents and the minimum value
constraint. We show that this latter strategy is quali-
tatively similar to the “naive” one, i.e, carried out se-
quentially according to reservation values, though the
reservation values used are different and the new strat-
egy does not necessarily follow the same exploration
sequence as in the “naive” case.

3.2. Expected-Benefit Maximizing Strategy for the
Sequential Multi-Agent Exploration with Value
Restriction

Our analysis of the multi-agent exploration dis-
tinguishes between the expected-benefit maximizing
strategy of agent Ak (the last agent in the sequence)
and those of the other agents. Unlike the other agents,
agent Ak’s exploration does not depend on any future
explorations of other agents and its only input is the
minimum value obtained by the former k − 1 agents,
denoted v∗k−1 = min{vi|i = 1, .., k − 1}. Any other
agent Ai (1 ≤ i < k) takes into account the strategy of
the remaining k−i agents in its exploration strategy, in
addition to the minimum value obtained by the former
i− 1 agents (denoted v∗i−1 = min{vi|i = 1, .., i− 1},
where v∗0 =∞).

While many domains dictate a sequential explo-
ration in the agent level (e.g., spectrum sensing tech-
nology precludes the evaluation of several channels si-
multaneously), the superiority of this approach over
parallel (or partially-parallel) exploration is quite
straightforward: exploring the opportunities in a sub-
set Ōi ⊂ Oi in parallel is equivalent to a sequential ex-
ploration where the decision is made at the end of the
process. Therefore, the optimal sequential exploration
strategy results in an expected benefit at least as good
as the parallel one.

In the following paragraphs we prove that the in-
dividual expected-benefit maximizing strategy of each
agent (best-response), given the input it receives (in
terms of prior agents’ findings), is reservation-value
based. Consequently each strategy which is part of the
equilibrium set of strategies of the resulting Stackel-
berg game is also of this structure.

We begin by developing the expected-benefit max-
imizing exploration strategy for agent Ak, given the
value v∗k−1 received based on the exploration of the
other k − 1 agents. Obviously, if Ak obtains a value
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greater than v∗k−1 along its own exploration then it nec-
essarily terminates its exploration, as its benefit from
the partnership cannot be improved further.

We use (v∗k−1, w, Ōk) to denote the state of agent
Ak, where v∗k−1 is the minimum value obtained by the
previous k − 1 agents that have already finished their
exploring, w is the best value found so far by Ak and
Ōk (Ōk ⊆ Ok) is the set of opportunities which values
have not yet been obtained.

We denote the expected value the agents end up
with at the end of the process as a whole (the “effec-
tive value”) given that agent Ak is currently in state
(v∗k−1, w, Ōk) by Ek[v∗|(v∗k−1, w, Ōk)]. The expected
effective value, if agent Ak is about to start its explo-
ration process after receiving a value v∗k−1, denoted
Ek[v∗|v∗k−1], is thus given by Ek[v ∗ |(v,−∞, Ok)].

Theorem 1. The expected-benefit maximizing explo-
ration strategy for agentAk, given its state (v∗k−1, w, Ōk),
is to set a reservation value rjk < v∗k−1 for each op-
portunity ojk ∈ Ōk, where rjk is derived from:

cjk =

∫ ∞
y=rjk

(min(y, v∗k−1)− rjk)f jk(y)dy (2)

Agent Ak should always choose to explore the oppor-
tunity ojk ∈ Ōk associated with the maximum reserva-
tion value and terminate the exploration once the max-
imum value obtained so far,w, is greater than the max-
imum reservation value of any of the remaining unex-
plored opportunities.

Proof. See appendix A.1

One important implication of Theorem 1 is that the
reservation value calculation does not depend on the
value found,w, nor on the set of unexplored opportuni-
ties Ōk. This means that the agent only needs to calcu-
late nk reservation values and this can be done before
the exploration process even begins.

Figure 3 illustrates the expected benefit of agent Ak

as a function of the reservation value it uses for a set-
ting {∗, (ck = 0.1, (0, 1))} when receiving a value
v∗k−1 = 0.8 (agent Ak’s strategy depends solely on the
value v∗k−1 and the characteristics of the opportunities
available to Ak). The Figure also depicts the ck and∫∞
y=rk

(min(y, v∗k−1)−rk)fk(y)dy curves, demonstrat-
ing that the two intersect in the expected-benefit max-
imizing strategy’s reservation value, according to (2).

Based on Equation 2 we observe two important and
somehow intuitive properties of the expected-benefit

Fig. 3. The expected benefit of Ak as a function of the reser-
vation value rk it uses. The two other curves depict both sides
of Equation 2, illustrating the intersection at the expected-ben-
efit maximizing strategy’s reservation value. The setting used is
{∗, (ck = 0.1, (0, 1))}.

maximizing strategy’s reservation value rjk. First, rjk
increases as v∗k−1 increases — the increase in v∗k−1
translates to an increase in min(y, v∗k−1), thus in order
for Equation 2 to hold, rjk must also increase. The in-
tuitive interpretation of this is that an increase in v∗k−1,
which is in fact an upper bound for the value each
of the remaining agents may obtain from the partner-
ship, should encourage each of the agents to increase
its individual reservation value as greater values found
could be exploited to a greater extent. The second ob-
servation is that the reservation value rjk decreases as
cjk increases — the only way the right hand side of
Equation 2 can increase is through a decrease in rjk.
Intuitively, this can be explained by the fact that the in-
crease in the cost of exploration results in a decrease in
the benefit from future explorations, hence the reserva-
tion value (which directly affects the extent of explo-
ration) decreases. Furthermore, Proposition 1 presents
an important property of the correlation between rjk
and v∗k−1.

Proposition 1. The difference between v∗k−1 and rjk

increases as v∗k−1 increases, i.e., 0 <
drjk

dv∗k−1
< 1.

Proof. See appendix A.2.

Intuitively, Proposition 1 can be explained by the
fact that when v∗k−1 is relatively small, agent Ak is
likely to achieve an improvement similar to the in-
crease in v∗k−1 within a small number of explorations.
When v∗k−1 is relatively high, in order to fully match
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Fig. 4. The expected-benefit maximizing strategy’s reservation value
of Ak (according to (2)), as a function of v∗k−1. The value of rk
increases in a decreasing rate as v∗k−1 increases. The setting used is
{∗, (ck = 0.01, (0, 1))}.

Fig. 5. The expected-benefit maximizing strategy’s reservation value
as a function of the exploration cost, ck . The setting used is
{∗, (ck, (0, 1))} and v∗k−1 = 0.8.

the increase with an increase in the value the agent sees
in the partnership, it needs to go through substantial
exploration and consequently incurs substantial cost,
which makes any increase in rjk less favorable.

Figure 4 depicts the correlation between rk and
v∗k−1 for a setting {∗, (ck = 0.01, (0, 1))}. The curve
of rk(v∗k−1) complies with Proposition 1, i.e., in-
creases as v∗k−1 increases, in a decreasing rate. Fig-
ure 5 depicts the correlation between rk (calculated ac-
cording to (2)) and ck for the setting {∗, (ck, (0, 1))}
where v∗k−1 = 0.8. As expected, the value of rk is al-
ways smaller than v∗k−1 and decreases as ck increases.

We now move to analyze the expected-benefit max-
imizing strategy of the remaining agents. Similar to
the case of the k-th agent, we use (v∗i−1, w, Ōi) to de-
note the state of agent Ai (1 ≤ i < k), where v∗i−1
is the minimum value obtained by the previous i − 1

agents that have already finished their exploring, w is
the best value found so far by Ai and Ōi (Ōi ⊆ Oi)
is the set of opportunities which values have not yet
been obtained. The expected effective value, if agent
Ai is about to start its exploration process after receiv-
ing a value v∗i−1, denoted Ei[v

∗|v∗i−1], is thus given by
Ei[v

∗|v] = Ei[v
∗|(v,−∞, Oi)]. Using the new nota-

tions, we can now introduce Theorem 2, which spec-
ifies the expected-benefit maximizing strategy for any
agent Ai (1 ≤ i < k) given its state.

Theorem 2. The expected-benefit maximizing explo-
ration strategy for each agentAi (i = 1, .., k−1) when
in state (v∗i−1, w, Ōi) is to set a reservation value rji
for each opportunities oji ∈ Ōi, where rji derives from:

cji =

∫ ∞
y=rji

(Ei+1[v∗|min(v∗i−1, y)] (3)

−Ei+1[v∗|rji ])f ji (y)dy

where:
Ei+1[v∗|v∗i ] = Ei+1[v∗|(v∗i ,−∞, Oi+1)],

Ei[v
∗|(v∗i−1, w, Ōi)]= (4)∫ rji

y=−∞
Ei[v

∗|(v∗i−1,max(w, y), Ōi − oji )]f
j
i (y)dy

+

∫ ∞
y=rji

Ei+1[v∗|min(v∗i−1,max(w, y))]f ji (y)dy,

Ei[v
∗|(v∗i−1, w, null)]=Ei+1[v∗|min(v∗i−1, w)],

E1[v∗|v∗0 ] = E1[v∗|∞]
and
Ek+1[v∗|v∗k] = v∗k
The agent should choose to explore the opportunity
oji ∈ Ōi associated with the maximum reservation
value and terminate the exploration process once the
maximum value, w, obtained so far is greater than the
maximum reservation value of any of the remaining
unexplored opportunities.

Proof. See appendix A.3

Similar to the case of Ak, the reservation value cal-
culation of agent Ai (1 ≤ i < k) does not depend on
the value found, w, nor on the set of unexplored op-
portunities Ōi. This means that the agent only needs
to calculate ni reservation values and this can be done
even before the exploration process even begins. Fur-
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Fig. 6. The expected-benefit maximizing strategy’s reservation value
of Ai (1 < i < 5) (according to (3)), as a function of v∗i−1.
The value of ri increases in a decreasing rate as v∗i−1 increases.
The setting used is {∗,(c2 = 0.01, (0, 1)),(c3 = 0.01, (0, 1)),
(c4 = 0.01, (0, 1)), (c5 = 0.01, (0, 1))}. The small figure to the
right depicts the same curves over a wider range of v∗i−1 values.

thermore, based on Equation 3 we can draw the same
conclusions regarding the correlation between rji , v∗i−1
and cji for any agent Ai (1 < i < k) as given for the
case of agent Ak. This time, however, the proof of cor-
rectness relies on the fact that Ei+1[v∗|min(v∗i−1, y)]
increases as v∗i−1 increases (this is proven as part
of Theorem 2’s proof). Given the latter property of
Ei+1[v∗|min(v∗i−1, y)], an increase in v∗i−1 requires an
increase in rji in order for Equation 3 to hold. Simi-
larly, an increase in cji requires a decrease in rji .

Figure 6 depicts the correlation between ri (1 < i <
5) and v∗i−1 for a setting {∗, (c2 = 0.01, (0, 1)), (c3 =
0.01, (0, 1)), (c4 = 0.01, (0, 1)), (c5 = 0.01, (0, 1))}.
The curve ri(v∗i−1) complies with the above proper-
ties, i.e., increases as v∗i−1 increases at a decreasing
rate. This is explained by the fact that the reservation
values that agent Ai assigns to its opportunities are al-
ways less than the value v∗i−1 it receives as an input for
its exploration.

The proof of the 0 <
drji

dv∗i−1
< 1 property for the

general case (i.e., for any 1 < i < k) uses the same
principles used for proving Proposition 1, taking ad-
vantage of the relation Ei[v

∗|v∗i−1] < Ei[v
∗|v∗′i−1] for

any two values v∗i−1 < v∗
′

i−1.
The expected effective value obtained eventually by

each agent from the partnership, E[v∗], can be calcu-
lated using a recursive equation similar to (4):

E[v∗] = E1[v∗|∞] (5)

Fig. 7. (a) The expected number of evaluated opportunities; (b) Indi-
vidual expected benefit of each agent as a function of the exploration
cost c. The setting used is {(c1 = c, (0, 1)), .., (c3 = c, (0, 1))}.

Since the effective value v∗ applies to all agents,
the expected benefit of each agent differs only in its
accumulated cost component. The expected cost of
agent Ai, given the value it receives v∗i−1, denoted
ECi[cost|v∗i−1], can be calculated usingECi[cost|v∗i−1]

=
∑ni

j=1 c
j
i

∏j−1
l=1 F

l
i (rji ) (where F l

i is cumulative
distribution function of opportunity oji ). The term∏j−1

l=1 F
l
i (rji ) denotes the probability thatAi will even-

tually obtain, along its exploration process, the value
of the opportunity associated with the jth highest reser-
vation value. The calculation of the a priori expected
accumulated cost (that takes into consideration all pos-
sible v∗i−1 values), denoted ECi[cost], should weight
ECi[cost|v∗i−1] according to the probability of receiv-
ing each v∗i−1 value. This latter probability can be cal-
culated using the same principles used in Equation 4.
The expected benefit of any agent Ai, denoted EBi, is
thus given by:

EBi = E[v∗]− ECi[cost] (6)

Figure 7 depicts the expected number of opportu-
nities evaluated by the different agents (7(a)) and the
expected benefit of the different agents (7(b)) in the
setting {(c1 = c, (0, 1)), .., (c3 = c, (0, 1))}. As ex-
pected, the expected benefit decreases as the explo-
ration cost increases. An interesting property of this
symmetric setting is that the expected number of op-
portunities evaluated by Ai is less than those evalu-
ated by Ai−1. This is explained by the fact that when
all parameters are alike, ri < ri−1 and the agent as-
sociated with the lower reservation value terminate its
exploration earlier than one using a greater reserva-
tion value. Similarly, in our symmetric case the ex-
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Fig. 8. (a) The expected-benefit maximizing strategy’s reservation
value of agent A1 as a function of the exploration cost for different
amounts of agents. (b) The average expected benefit (per agent) as
a function of the exploration cost c for different amounts of agents.
The setting used is {(c1 = c, (0, 1)), .., (c4 = c, (0, 1))}.

pected benefit of agent Ai is greater than the expected
benefit of Ai−1 as they both enjoy the same effec-
tive value v∗, however, Ai “spends” less on explo-
ration. We emphasize that these two latter properties
(EBi and expected number of opportunities evalu-
ated by Ai decrease in i) do not necessary hold in
general. For example, when using the setting {(c1 =
0.02, (0, 10)), (c2 = 0.02, (0, 1))}, the expected bene-
fits are 0.88 and 0.8 and the expected number of evalu-
ated opportunities are 1.1 and 5 for agents A1 and A2,
respectively.

Figure 8 illustrates the effect of the number of agents
involved in the exploration process on the reservation
values used and the average expected benefit per agent
when using the setting {(c1 = c, (0, 1)), .., (c4 =
c, (0, 1))}. The reservation value depicted in 8(a) is
for the first agent (A1). As can be observed from the
figure, the greater the number of agents involved, the
lower the reservation value used by the agent. This re-
sult is explained by the fact that the greater the number
of agents that can potentially affect the effective value,
the more reluctant the agent is to extend its exploration
in an effort to improve the value it individually finds.
Consequently, the average expected benefit decreases
as k increases, as illustrated in 8(b).

Figure 9 illustrates the effect of the difference be-
tween the agents’ exploration costs on their individ-
ual and joint expected benefit, in a setting {(c1, (0, 1)),
(c2, (0, 1))}. The difference between the exploration
costs is captured by the ratios c1/c2 and c2/c1, keep-
ing the denominator fixed. Therefore, the intersection
point between parts (a) and (b) of the figure is in the
value 1 over the horizontal axis (i.e., c1/c2 = c2/c1 =

Fig. 9. The expected benefit of the agents when using sequential
multi-agent exploration as a function of the exploration costs ra-
tios: (a) c1/c2 (taking c2 = 0.01, fixed); and (b) c2/c1 (taking
c1 = 0.01, fixed). The setting used is {(c1, (0, 1)), (c2, (0, 1))}.

Fig. 10. (a) Maximum number of opportunities that agent A1 will
request to explore in 99.9% of the cases (the 99.9th percentile) as a
function of the exploration cost for different k values. (b) The ex-
pected number of opportunities that agent A1 will request to explore
as a function of the exploration cost for different k values.

1). As expected, the increase in exploration costs is as-
sociated with a decrease in the expected benefit of both
agents (as performance is also influenced by the reduc-
tion in the reservation value used by the other agent).
The most interesting observation from Figure 9 is that
the increase in c1 substantially affects both agents’ per-
formance, while the increase in c2 affects mostly A2

and only has a slight effect on A1.
Finally, Figure 10 depicts the number of opportuni-

ties the agents choose to obtain as a function of the
exploration cost, in a setting where all agents’ dis-
tribution functions are defined over (0, 1) for differ-
ent amounts of agents. Figure 10(a) depicts the 99.9th

percentile (i.e., the maximum number of opportunities
that will need to be evaluated in 99.9% of the cases).
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The second depicts the expected number of opportuni-
ties obtained. From the two figures, we observe that for
most reasonable values of c, the number of opportu-
nities that will need to be evaluated is relatively mod-
erate. The importance of this observation is twofold:
first, it shows that even when the number of opportu-
nities available is quite moderate, the probability that
an agent will request to evaluate more than those avail-
able (if allowing the agent to evaluate as many oppor-
tunities as they request) is, in most settings, negligible.
Second, it reassures that the sequential exploration is
applicable latency-wise, as the number of opportuni-
ties evaluated is tightly correlated with the overall la-
tency of the process.

3.3. Comparison to the “naive” strategy

Based on the analysis given above, we can now com-
pare the expected-benefit maximizing strategy for set-
tings of sequential multi-agent exploration with value
restrictions with the “naive” one (i.e., the one that does
not take into consideration the value restriction result-
ing from the exploration of former and consequent
agents).

One prominent difference between the two is in the
exploration sequence. While both strategies rely on as-
signing a reservation value for each opportunity, the
calculation of the reservation values is different in both
cases, resulting in a different exploration sequence.
Consider, for example, the case of two agents: A1 and
A2. AgentA1 can explore 2 opportunities: opportunity
o11 with a uniform distribution of values over the inter-
val (0, 3) and the exploration cost is c11 = 0.65, and
opportunity o21 with a uniform distribution of values
over the interval (0, 1) and exploration cost c21 = 0.01.
Agent A2 can explore only one opportunity, o12, whose
value is derived from a uniform distribution, defined
over the interval (0, 1), and its exploration cost is c12 =
0.01. The reservation values for o11 and o21 when using
the “naive” exploration strategy (according to (1)) are
r11 = 1.03 and r12 = 0.86. Therefore, opportunity o11
ought to be explored first, and only if the value found
is lower than 0.86 will opportunity o21 be explored. In
contrast, when using the sequential multi-agent explo-
ration with a value restriction strategy (calculated ac-
cording to Theorem 2), the reservation values to be
used are r11 = −0.18 and r21 = 0.69. Therefore, the
sequence in this case is different from the “naive” se-
quence: opportunity o21 ought to be explored and o11 is
never explored.

Fig. 11. The expected benefit as a function of the exploration cost
when A2 uses the expected-benefit maximizing strategy with value
restriction and A1 uses either the “naive” strategy or the the expect-
ed-benefit maximizing strategy with value restriction: (a)A1’s ex-
pected benefit; (b)A2’s expected benefit.

Figure 11 depicts the expected benefit of agent A1

and agent A2 as a function of the exploration cost, in
a setting {(c1 = c, (0, 1)), (c2 = c, (0, 1))}, when A2

always uses the expected-benefit maximizing explo-
ration strategy based on the value it receives from A1,
distinguishing between the case whereA1 uses “naive”
strategy and when using the expected-benefit maxi-
mizing strategy under value restriction. As expected,
the expected benefit of agent A1 increases when it
switches from the “naive” strategy to the expected-
benefit maximizing strategy according to Theorem 2.
The expected benefit of agentA2 in this case decreases
as a result of the change in A1’s strategy. While this
may seem intuitive (since if A1 realizes the values it
finds are constrained by the best value found by A2

it bounds its extent of exploration), this is not true in
general. We demonstrate this with the following ex-
ample: consider a setting of two agents with numer-
ous opportunities. Opportunities available to A1 yield
the values 100 and 110 with an equal probability, and
those available to A2 yield 90 and 110 with an equal
probability. The exploration cost is 5 for both agents.
In this case, when A1 is not constrained by the explo-
ration of A2, it sets a reservation value of 100 and thus
its expected benefit is also 100. The reservation values
set by A2 in this case are r2 = 90 when receiving a
value v1 = 100 from A1 and r2 = 100 when receiv-
ing 110. The expected benefit of A2 when A1 uses the
“naive” strategy is thus 95. When A1 switches to the
expected-benefit maximizing strategy, it sets its reser-
vation value to r1 = 100, thus the value transferred to
A2 is always v1 = 110. The expected benefit of A2
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Fig. 12. Differences (in percentages) between the agents’ expected
benefit under sequential multi-agent exploration and alternative ex-
ploration: (a) when the agents follow the “naive” strategy simultane-
ously; (b) when the agents follow the equilibrium parallel strategy.

in this case is also 100, which is greater than the 95 it
would have gained if A1 had used the “naive” strategy.

The differences, in percentages, between the ex-
pected benefit of the agents when using the “naive”
reservation values according to [52] and the sequen-
tial multi-agent exploration strategy (constraining the
values obtained in both cases) as a function of the ex-
ploration cost are given in Figure 12(a) for the setting
{(c1 = c, (0, 1)), (c2 = c, (0, 1))}. As can be observed
from the graph, the use of the sequential multi-agent
exploration strategy actually worsened the agents’ ex-
pected benefit compared to the use of the “naive” ex-
ploration strategies. While this may seem surprising,
one should keep in mind that the “naive” set of strate-
gies calculated by [52] is not in equilibrium, and each
agent has an incentive to deviate from it. This is ana-
lyzed in Subsection 3.4. A more suitable comparison
in this case is to multi-agent exploration using differ-
ent strategies that are in equilibrium. An alternative set
of exploration strategies that is in equilibrium is the
one where all agents explore in parallel, without get-
ting acquainted with the value individually found by
the exploration of any of the agents. Consider the case
of two agents that are not limited in the number of ho-
mogeneous opportunities they can explore. Since the
agents do not receive any new information along their
(parallel) exploration, their expected-benefit maximiz-
ing exploration strategy is reservation value based.

The reservation value in this case can be extracted
by solving the following Equations 7 and 8 for r1 and
r2:

c1 =

∫ ∞
y=r1

f1(y)(

∫ ∞
z=r2

(min(y, z)− r1)f2(z)dz)dy (7)

c2 =

∫ ∞
z=r2

f2(z)(

∫ ∞
y=r1

(min(y, z)− r2)f1(y)dy)dz (8)

Figure 12(b) depicts the difference in the expected
benefit of the agents when using the sequential multi-
agent exploration with value restriction strategies and
when using the equilibrium strategy for the case of
simultaneous exploration (in percentages, as a func-
tion of the cost used, for the same setting as in Fig-
ure 12(a)). As can be observed from Figure 12(b), the
sequential multi-agent exploration strategy has the po-
tential to substantially improve both agents’ expected
benefit.

3.4. Cooperative Behavior and Defection

In the above analysis, all agents were assumed to
be self-interested, i.e., each attempted to maximize its
own expected benefit. Nevertheless, in various real-
life settings, the agents may be cooperative, looking
to maximize the sum of their expected benefits, i.e.,∑k

i=1(E[v∗] − ECi[cost]). Naturally, the exploration
strategies that maximize the latter are different from
those used for the self-interested case. Furthermore,
while the expected overall joint benefit increases when
all agents explore cooperatively, there is often an in-
centive for some agents to deviate from the coopera-
tive strategy in order to improve their individual ex-
pected benefit. In the following paragraphs we present
the expected-benefit maximizing exploration strategies
to be used in a fully cooperative setting and discuss the
dynamics that occur when either of the agents defect
from the cooperative strategy.

3.4.1. Fully Cooperative Setting
In the cooperative setting an agent reasoning about

exploring an opportunity should consider not only the
marginal benefit from such exploration to itself, but
also the benefit that all other agents potentially gain
from the possible increase in the joint value v∗. In this
case we can prove that the joint expected-benefit max-
imizing strategy is to have all agents use a reservation
value based exploration strategy, though with reser-
vation values different from those used for the self-
interested case. The proof is identical to the one given
for Theorems 1 and 2, where the only change required
is the multiplication of the increase in the value v∗ by k
(more simply put, the value of cji should be divided by
k). The reservation value rjk ofAk in this case satisfies:

cjk =

∫ ∞
y=rjk

k(min(y, v∗k−1)− rjk)f jk(y)dy (9)
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and rji of each agent Ai, where 1 ≤ i < k, satisfies:

cji =

∫ ∞
y=rji

k(Ei+1[v∗|min(v∗i−1, y)] (10)

− Ei+1[v∗|rji ])f ji (y)dy

where: v∗0 =∞

As expected, the agents in the cooperative case are
likely to explore more extensively (overall), resulting
in a greater expected value v∗. This is formally proved
in Proposition 2.

Proposition 2. Both the individual accumulated costs
and the expected value E[v∗] at the end of the ex-
ploration process, in the fully cooperative case, are
greater than those resulting from the self-interested
case. Overall, the expected difference among the two
components (i.e., sum of expected values minus accu-
mulated costs) is greater in the cooperative case.

Proof. It is easy to see from (2-3) and (9-10) that
the reservation value rji for any value v∗i−1 obtained
by Ai−1 (where 1 < i ≤ k) is greater in the co-
operative case. Therefore agent Ai, upon receiving a
value v∗i−1, will necessarily explore more than in the
self-interested case (incurring a greater cost) and its
exploration will result in finding a greater expected
value. Consequently, agent A1 receives greater values
for each value with which it terminates its exploration,
and according to (10) its reservation value r1j necessar-
ily increases. The increase in rji suggests a longer ex-
ploration process, i.e., greater exploration costs. Since
Ai receives higher values with increased probability,
and rji increases as v∗i−1 increases, Ai ends up ex-
ploring more, overall, and terminates its exploration
process with a greater expected value in comparison
to the self-interested case. Finally, the joint expected
benefit in the cooperative case is greater simply be-
cause the agents attempt to directly maximize the sum∑k

i=1(E[v∗]−ECi[cost]) rather than separately max-
imizing each of its parts.

Furthermore, even under the permissive assumption
that the “naive” reservation values are used, despite not
being in equilibrium, the cooperative sequential multi-
agent exploration method may substantially improve
the joint performance. This is illustrated in Figure 13
for the setting {(c1 = c, (0, 1)), (c2 = c, (0, 1))}.
Here, the expected joint (aggregate) benefit, when us-
ing the expected-benefit maximizing with value re-

Fig. 13. The expected joint benefit as a function of the exploration
cost c, when using the sequential multi-agent strategy with value re-
striction while the agents are self-interested, when cooperative and
when using the “naive” exploration strategy. The setting used is
{(c1 = c, (0, 1)), (c2 = c, (0, 1))}.

Fig. 14. (a) The optimal reservation values of agent A1 as a function
of the exploration cost c for different amounts of cooperative agents.
(b) The average expected benefit (per agent) as a function of the
exploration cost c for different amounts of cooperative agents. The
setting used is {(c1 = c, (0, 1)), .., (c4 = c, (0, 1))}.

striction self-interested strategies, is greater than in
the case where the “naive” strategies are applied and
smaller than the case where the cooperative strategies
are applied.

It is notable that the joint expected benefit does not
necessarily improve in comparison to the use of the set
of “naive” strategies when using the cooperative new
method. For example, when using the reverse setting
{(c1 = c, (0, 2)), (c2 = c, (0, 1))}, the joint expected
cooperative benefit is 1.11, while the use of the “naive”
strategies yields 1.69. Still, the “naive” set of strategies
will never hold in equilibrium.

Figure 14 is the cooperative equivalent of Figure 8.
It illustrates the expected joint benefit and the reserva-
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Fig. 15. Differences (in percentages) between the agents’ expected
joint benefit when using sequential multi-agent exploration and al-
ternative exploration: (a) when the agents follow the “naive” strategy
simultaneously; (b) when the agents follow the equilibrium parallel
strategy.

tion value used by A1 as a function of the exploration
cost when all agents use the cooperative strategy, in
the setting {(c1 = c, (0, 1)), .., (c4 = c, (0, 1))}. Each
curve is correlated with a different number of agents.
As expected, as the number of agents that participate
in the exploration process increases, the expected joint
benefit decreases (14(b)). This is explained by the fact
that as the number of agents increases, more explo-
ration needs to take place in order for all agents to
obtain a desired value and thus the expected effective
value decreases.

The reservation value used byA1, on the other hand,
decreases as the number of agents increases (14(a)).
This is in contrast to the behavior observed for the self-
interested case (in Figure 8(a)). This is explained by
the fact that in this example the k, when using Equation
10, has more influence over rji than the decrease in
Ei+1[v∗|min(v∗i−1, y)].

Figure 15 is the cooperative equivalent of Figure
12 (using the same setting), illustrating the differ-
ence in percentages between the joint expected benefit
when using the sequential multi-agent with value re-
striction exploration strategy as opposed to using the
“naive” strategies (15(a)) and using the cooperative
parallel strategies (15(b)). Here, in contrast to the self-
interested case, the sequential multi-agent with value
restriction strategy improves the performance, not only
in comparison to the parallel case, but also in compar-
ison to the “naive” case.

Finally we present Figure 16, which is the coopera-
tive equivalent of Figure 10 (using the same setting), il-
lustrating the number of opportunities that agentA1 re-
quests to explore as a function of the exploration cost,

Fig. 16. (a) The maximum number of opportunities that agent A1

will request to explore in 99.9% of the cases (the 99.9th percentile)
as a function of the exploration cost for different k values. (b) The
expected number of opportunities that agent A1 will request to ex-
plore as a function of the exploration cost for different k values.

for different numbers of agents. Figure 16(a) depicts
the 99.9th percentile while 16(b) depicts the expected
number of opportunities obtained. Here again we ob-
serve that for most reasonable values of c, the number
of opportunities that will need to be evaluated is rela-
tively moderate.

3.4.2. Incentives to Defect from Cooperation
The cooperative strategies are beneficial when the

cooperation can be enforced or when the agents are
obligated to the same goal (e.g., working for the same
user or users from the same organization). When the
cooperation cannot be guaranteed, it will never hold
and the agents will use reservation values different
from those derived from Equations (9) and (10). For
example, regardless of the strategy used by the former
i−1 agents, agent i can use a reservation value ri,defect

j

according to (2) and (3), rather than ri,cooperative
j accord-

ing to (10) and (9), as this strategy maximizes its ex-
pected benefit for any value v∗i−1 received. If agent Ai

uses its self-interested strategy, then we should distin-
guish between the case where the rest of the agents be-
lieve that Ai is cooperative and when they believe it is
not cooperative. Naturally the number of possible de-
fecting scenarios is combinatorial.

Figure 17 describes the expected individual and
joint benefit as a function of the exploration cost used
by the agents for the different variations of cooperation
compared to the set of self-interested strategies. The
setting used in the figure is {(c1 = c, (0, 1)), (c2 =
c, (0, 1))}. One of the curves on each graph represents
the case in which both agents use the fully coopera-
tive strategy. Two other curves represent the case in
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Fig. 17. The case of using the cooperative strategy versus non-cooperative variations: (a) Expected individual benefit for A1; (b) Expected
individual benefit for A2; and (c) expected joint benefit. The variations used are: (1) A1 and A2 are cooperative. (2) A2 is cooperative and
believes A1 is cooperative, however A1 is non-cooperative. (3) A1 is cooperative and believes A2 is cooperative, however A2 is non-cooperative.
(4) A1 and A2 are non-cooperative, however they believe that the other one is cooperative. (5) A1 and A2 are self-interested. The setting used
is: {(c1 = c, (0, 1)), (c2 = c, (0, 1))}.

which one of the agents uses the cooperative strat-
egy, while the other is self-interested and takes ad-
vantage of the fact that the first is being cooperative.
The fourth curve represents the case where both agents
are self-interested. Finally, the last curve represents
the case where both agents are self-interested, though
each of them believes the other agent is cooperative.
As expected, each agent benefits the most from act-
ing non-cooperatively while the other agent is acting
cooperatively (and vice versa, each agent suffers the
most when acting cooperatively while the other acts
non-cooperatively). Nevertheless, the joint expected-
benefit is maximized when both agents are coopera-
tive. In the latter case, the joint expected benefit is sub-
stantially better compared to any of the other cases.
The case where both agents defect from cooperation is
associated with a decreased expected benefit for both
agents (compared to acting cooperatively or using the
self-interested strategy while assuming the other agent
does the same), though it is not as bad as when only
one agent defects from cooperation.

3.5. The Use of Side-Payments

As observed in Figure 17 and discussed in former
paragraphs, the cooperative set of strategies produces
a greater joint benefit. However, it is not stable if the
agents are self-interested.

Still, if side-payments are allowed, some agents may
benefit from offering other agents to deviate from their
expected-benefit maximizing strategy to a different
one, more beneficial for the first, and compensate them

Fig. 18. The difference in the agents and in the joint expected benefit
as a function of the reservation value used by A1 rather than its ex-
pected-benefit maximizing strategy’s reservation value. The setting
used is {(c1 = 0.1, (0, 1)), (c2 = 0.1, (0, 1))}.

for their expected losses. An example of such a case is
given in Figure 18, depicting the difference in the ex-
pected benefit of each agent and in the joint expected
benefit given the reservation value used byA1 (the hor-
izontal axis) rather than its expected-benefit maximiz-
ing strategy’s reservation value. The setting used in the
example is {(c1 = 0.1, (0, 1)), (c2 = 0.1, (0, 1))}.
The expected-benefit maximizing strategy’s reserva-
tion value for agent A1 is r1 = 0.48 (in which case
all three curves reach zero). As can be observed from
the figure, if A1 deviates from using r1 = 0.48 to
any other value from the interval (0.48, 0.67), the im-
provement achieved in A2’s expected benefit is greater
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than the decrease in A1’s expected benefit. Therefore,
in any of these cases, A2 can fully compensate A1 for
deviating to the new reservation value while keeping a
positive surplus.

4. Related Work

In many multi-agent environments, autonomous
agents may benefit from cooperating and coordinat-
ing their actions. Cooperation is mainly useful when
an agent is incapable of completing a task by itself
or when operating as a group can improve the over-
all performance [28]. Consequently, group-based co-
operative behavior has been suggested in various do-
mains [49,10,50,54,47,18]. The recognition of the ad-
vantages encapsulated in teamwork and cooperative
behaviors is the main driving force of many coali-
tion formation models in the area of cooperative game
theory and MAS [29,45,9,2]. Overall, the majority of
cooperation and coalition formation MAS-related re-
search tends to focus on the way coalitions are formed,
and consequently concerns issues such as the optimal
division of agents into disjoint exhaustive coalitions
[43,53], division of coalition payoffs [53] and enforce-
ment methods for interaction protocols [34]. Only a
few authors have considered the problem of determin-
ing the strategy of a group once formed [22], and no
work to date considers exploration strategies for a co-
operative exploration of the nature described in this
paper.

The problem of an agent engaged in exploration in
a costly environment, seeking to maximize its long-
term utility, is widely addressed in classical economic
search theory (e.g., [40,30,32] and references therein).
Over the years, several attempts have been made to
adopt search theory concepts for agent-based elec-
tronic trading environments associated with explo-
ration costs [7,26]. Despite the richness of search the-
ory and its implications, most models introduced to
date have focused on the problem of a single agent that
attempts to maximize its own expected benefit. Few
studies have attempted to extend the exploration prob-
lem beyond a single goal, e.g., attempting to purchase
several commodities while facing imperfect informa-
tion concerning prices [16,6,4]. Some even consid-
ered multi-agent cooperative exploration for multiple
goals [44,31]. However, none of these works applies
any constraints on the values obtained along the explo-
ration process. The only constraint on the values ob-
tained by an agent that can be found in a related work

in this area is the availability of recall (i.e., the abil-
ity to exploit formerly explored opportunities) [6,32].
To date, to the best of our knowledge, a model of a
multi-agent exploration in which one agent’s explo-
ration process is constrained by the findings of other
agents, as in the cognitive radio application, has not
been introduced in this research domain.

Multi-agent exploration can also be found in “two-
sided” models (where dual exploration activities are
modeled) [46,5,33]. The exploration in these models is
used solely for the matching process between the dif-
ferent agents, i.e., for forming appropriate stable part-
nerships. The value of each agent from a given partner-
ship depends on the partnership itself (e.g., the char-
acteristics of the other agent with whom it partners).
In our model, however, the partnership is given a pri-
ori and the value of the partnership is derived from an
external exploration process performed independently
by each agent.

From the Dynamic Spectrum Access application
point of view, various spectrum sensing approaches
have been proposed, including a cooperative sensing
scheme based on distributed detection theory [15], an
adaptive MAC layer spectrum sensing [8] and a prac-
tical sensing technique that was evaluated in a testbed
[38]. Several papers used game theory notions to com-
pare the cooperative and non-cooperative behavior of
spectrum sensing and sharing (e.g., [23,25] and refer-
ences therein). In particular, [20] proposes a scheme in
which users exchange “price” signals that indicate the
negative effect of interference at the receivers, [21,36]
deal with cases in which operators compete for cus-
tomers as well as portions of available spectrum and
[3] analyzes the power control and channel selection
problem as a Stackelberg game. Moreover, [24] stud-
ies a dynamic spectrum leasing paradigm and [37]
proposes a distributed approach, where devices nego-
tiate local channel assignments aiming for a global
optimum. Finally, [41] models collaborative spectrum
sensing as a nontransferable coalitional game and pro-
poses distributed algorithms for coalition formation,
and [51,42] studies the collaborative sensing problem
using an evolutionary game framework. Unlike our ap-
proach, most of the previous work in the area of Dy-
namic Spectrum Access and Cognitive Radio focuses
on scenarios in which the SUs are in the same geo-
graphic area, sense the same set of channels and try to
either agree on the same channel or on a set of non-
interfering channels. To the best of our knowledge,
searching for channels such that the overall perfor-
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mance is tied to the worst channel selected has not
been studied before.

5. Discussion and Conclusions

The sequential multi-agent exploration model ex-
tends the traditional exploration models to the case
where the process involves several agents that need to
engage in individual exploration, and the value of each
agent from the process depends on the minimum value
found. As discussed throughout the introduction, such
a setting arises in various real-life applications and par-
ticularly in Dynamic Spectrum Access Systems. The
analysis given in this paper proves that the expected-
benefit maximizing set of strategies to be used by the
agents when using a sequential multi-agent exploration
protocol is reservation value based. While this prop-
erty aligns with a single agent exploration strategy, the
equilibrium set of reservation values in the new model
are different from those that ought to be used for the
single agent case. This also implies that the sequence
according to which the different opportunities are ex-
plored is often different from the one used in the sin-
gle agent case. Moreover, a strategy derived accord-
ing to the latter model can never be in equilibrium, as
the remaining agents always have an incentive to use
a reservation value lower than the value they obtain.
This should thus be taken into considerations by any
of the agents.

The sequential nature of the exploration process
used enables some level of separation in the analysis:
each agent’s expected-benefit maximizing strategy is
found as a function of the minimum value obtained by
former exploring agents and the exploration strategy
that will be used by the remaining agents along the
sequence. This enables calculation of the equilibrium
strategies by solving the resulting Stackelberg game.

While the cooperative setting is highly favorable, it
is applicable only when the agents have a joint goal
(e.g., when considering family members). In other set-
tings, this set of strategies is not stable, and, as ex-
pected, the worst expected joint benefit is obtained
when each agent operates self-interestedly while be-
lieving that the other agents are cooperative. Another
important observation is the substantial effect of the
order in which the sequential multi-agent exploration
process takes place over the individual and joint ben-
efit. While this issue was left beyond the scope of the
analysis, we believe that appropriate methods can be
suggested for the agents to negotiate over the order in

which they will explore (and possibly come up with
schemes for alternating orders in repeated settings) in
order to improve the joint and individual expected ben-
efit. Furthermore, the use of side-payments within this
context can result in substantial benefits as illustrated
in the analysis section.

Additional directions for future research include the
development of other multi-agent exploration model
variants, e.g., operating simultaneously (as used to a
limited extent for illustration purposes), exchanging
information throughout the exploration process and
even re-initiating exploration by each agent based on
the findings received from the other agents. Finally, ap-
plying the results to Dynamic Spectrum Access Net-
works will require taking into account several realistic
considerations. These include the exchange of channel
quality information between the SUs, the possible op-
eration of a few interfering SUs in the same area (all
searching for available channels) and channel mobil-
ity resulting from the arrival of PUs claiming back-
channels used by the SUs.
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Appendices
A. Proofs

A.1. Proof of Theorem 1

Proof. The structure of the proof follows the one given
in [52] for the case where no restrictions are made on
the value found and augments it to our case.

The reservation value rjk set by agent Ak is nec-
essarily smaller than v∗k−1 because otherwise no ex-
ploration will take place by that agent, and the agent
needs to explore at least one opportunity in order for
the partnership to be formed. In order to prove that rjk,
which satisfies (2) always exists, we consider the term
Hj

k(rjk) =
∫∞
y=rjk

(min(y, v∗k−1) − rjk)f jk(y)dy. The

functionHj
k(rjk) is continuous and monotonic decreas-

ing in rjk. Since rjk < v∗k−1, it satisfies: Hj
k(−∞) =

∞, Hj
k(∞) = 0.

For the inductive part, we begin with the case of hav-
ing a single opportunity. Here, the right-hand side of
(2) can be interpreted as the expected additional gain
from obtaining the minimum between the value of that
opportunity and v∗k−1, if the agent is already guaran-
teed a value rjk < v∗k−1. Obtaining the value of the
opportunity in this case is thus beneficial only if the
expected additional gain is greater than cjk. Since Hj

k

is monotonic decreasing in rjk, the opportunity should
be explored whenever the value that can be guaranteed
from Ak’s exploration so far is less than rjk and rjk is
in fact a reservation value.

Assume that the reservation-value based strategy is
optimal for the case of n′k < nk unexplored oppor-
tunities when the best value found so far by Ak is
y. We need to prove that for the case of n′k + 1 un-
explored opportunities and best known value y, the
expected-benefit maximizing exploration strategy is
also reservation-value based and obeys Equation 2.
Consider the opportunity ojk associated with the high-
est reservation value (calculated according to Equation
2) among the n′k+1 unexplored opportunities. In order
to reason about exploring that opportunity we distin-
guish between two cases. The first is where y ≥ rjk for
each opportunity ojk which has not been explored yet.
The second is where there exists an unexplored oppor-
tunity ojk for which y < rjk. In the first case (y ≥ rjk
for each unexplored opportunity ojk), if exploring one
of the unexplored opportunities, the agent is left with
n′k opportunities whose reservation values are neces-
sarily less than y. Therefore, according to the inductive
assumption, the exploration should terminate. The de-
cision in that case of whether or not to explore an op-
portunity ojk should thus be made solely based on the
benefit of exploring ojk (constrained by v∗k−1) and the
cost cjk. The value of exploring ojk (and terminating the
exploration right after) is given by Hj

k . For the case of
y ≥ rjk, this cost is necessarily less than cjk (sinceHj

k is
monotonic decreasing in rjk) and thus the opportunity
should not be explored.

For the case where there exists an unexplored oppor-
tunity ojk for which y < rjk, it is guaranteed that at least
one opportunity should be explored (since according
to Equation 2, exploring ojk and terminating the explo-
ration is preferable to not exploring at all). Therefore
all that is needed is to prove that first exploring the op-
portunity associated with the largest reservation value
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out of the n′k + 1 unexplored opportunities (according
to Equation 2), denoted ozk, rather than any other op-
portunity obk 6= ozk, yields a better expected benefit.

The expected benefit from obtaining the value of
ozk and then following the optimal strategy for the re-
maining n′k opportunities according to the induction
assumption is greater than obtaining the value of any
opportunity ozk (i 6= z) and then following the optimal
strategy for the remaining n′k opportunities according
to the induction assumption. Let ohk denote the oppor-
tunity associated with the second largest reservation
value of the n′k + 1 unexplored opportunities.

We define the following two strategies:

– Strategy A - explore opportunity ozk. If the value
obtained is greater than the reservation value of
opportunity ohk , then the exploration should be
terminated. Otherwise explore opportunity obk.
Notice that the expected benefit from this strat-
egy is necessarily less than the expected benefit of
the optimal strategy that follows the exploration
of ozk, since the exploration according to A con-
tinues with obk rather than ohk according to the in-
ductive assumption.

– Strategy B - explore opportunity obk 6= ozk. If the
value obtained from obk is smaller than rzk, then
explore ozk next (according to the induction as-
sumption for n′k unexplored opportunities).

In order to prove that the expected benefit of strategy
A is greater than the expected benefit of strategy B the
following assisting notations are used:

πz=prob(xz≥rzk), wz=E[min(xz, v
∗
k−1)|xz≥rzk]

πb=prob(xb≥rzk), wb=E[min(xb, v
∗
k−1)|xb≥rzk]

λz=prob(rhk≤xz<rzk)

vz=E[min(xz, v
∗
k−1)|rhk≤xz<rzk]

ϑz = E[min(max(xz, y), v∗k−1)|rhk ≤ xz < rzk]

λb = prob(rhk≤xb<rzk)

vb = E[min(xb, v
∗
k−1)|rhk≤xb<rzk]

ϑb = E[min(max(xb, y), v∗k−1)|rhk ≤ xb < rzk]

µb = prob(rbk ≤ xb < rhk )

ub=E[min(xb, v
∗
k−1)|rbk≤xb<rhk ]

d = E[min(max(xz, xb, y), v∗k−1)|

|rhk ≤xz<rzk; rhk ≤xb<rzk]

Since according to v∗k−1 and rjk’s definition v∗k−1 >
rjk, therefore:

vz=E[xz|rhk≤xz<rzk]

ϑz = E[max(xz, y)|rhk ≤ xz < rzk]

vb = E[xb|rhk≤xb<rzk]

ϑb = E[max(xb, y)|rhk ≤ xb < rzk]

ub=E[xb|rbk≤xb<rhk ]

d = E[max(xz, xb, y)|rhk ≤xz<rzk; rhk ≤xb<rzk]

In addition, we use φ to denote the expected benefit
from resuming the exploration after exploring opportu-
nities ozk and obk if the maximum of y, xz and xb is less
than rhk . The expected benefit of strategy A, denoted
EA, is:

EA=− czk+πzwz+λzϑz (11)

+(1− πz−λz)[−cbk+πbwb+λbϑb]

+(1−πz−λz)(1−πb−λb)φ

The expected value of strategy B is:

EB=−cbk+πbwb (12)

+λb[−czk+πzwz+λzd+(1−πz−λz)ϑb]

+(1−πb−λb)[−czk+πzwz+λzϑz]

+(1−πb−λb)(1−πz−λz)φ

Subtracting (12) from (11) obtains:

EA−EB =(πz+λz)[cbk−πbwb] (13)

+πb[πzwz+λzϑz − czk] +λbλz(ϑz−d)

Now, based on Equation 2, the following should hold:

czk = πz(wz − rzk) (14)

cbk = πb(wb − rbk) + λb(vb − rbk) + µb(ub − rbk)

Substituting (13) in (14), we obtain:

EA − EB = πbπz(rzk − rbk) + πzλb(vb − rbk) (15)

+ λzπb(ϑz − rbk)+µb(πz + λz)(ub − rbk)

+ λbλz(vb + ϑz − rbk − d)
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Fig. 19. An illustration of the cases:
(a)rjk < v∗k−1 < rj

′

k < v∗
′

k−1;(b)rjk < rj
′

k < v∗k−1 < v∗
′

k−1

Notice that by definition rzk > rbk, vb > rbk, ϑz > rbk
and ub > rbk. Therefore, in order for EA − EB to be
positive, the following should hold: (vb + ϑz − rbk −
d) ≥ 0. The latter is obtained by showing that d ≤
vb+ϑz−rhk ≤ vb+ϑz−rbk. According to the definition
of d above, the following holds:

d=rhk+E[max(max(xz, y)−rhk , xb−rhk )

|rhk≤xz<rzk; rhk≤xb<rzk]

≤rhk+E[(max(xz, y)−rhk+xb−rhk )

|rhk≤xz<rzk; rhk≤xb<rzk]

= vb + ϑz − rhk ≤ vb + ϑz − rbk

which proves that EA − EB > 0, and therefore ozk
should be explored in that case.

A.2. Proof for Proposition 1

Proof. We prove that for any two pairs (v∗k−1, r
j
k) and

(v∗
′

k−1, r
j′

k ) satisfying Equation 2 and v∗
′

k−1 > v∗k−1
the relation v∗

′

k−1 − v∗k−1 ≥ rj
′

k − r
j
k holds. Assume

otherwise, i.e., v∗
′

k−1 − v∗k−1 ≥ rj
′

k − rjk. Since rjk
increases as v∗k−1 increases, rj

′

k > rjk and thus we
only need to consider two cases. The first is when
rjk < v∗k−1 < rj

′

k < v∗
′

k−1 (Figure 19(a)) and the sec-

ond is when rjk < rj
′

k < v∗k−1 < v∗
′

k−1 (Figure 19(b)).

For the case rjk < v∗k−1 < rj
′

k < v∗
′

k−1, the follow-
ing holds (according to (2)):

cjk=

∫ v∗k−1

y=rjk

(y − rjk)f jk(y)dy+(v∗k−1 − r
j
k)

∫ ∞
y=v∗k−1

f jk(y)dy

(16)

cjk=

∫ v∗
′

k−1

y=rj
′

k

(y−rj
′

k )f jk(y)dy+(v∗
′

k−1−r
j′

k )

∫ ∞
y=v∗

′
k−1

f jk(y)dy

Notice that:

∫ v∗
′

k−1

y=rj
′

k

(y − rj
′

k )f jk(y)dy+(v∗
′

k−1 − r
j′

k )

∫ ∞
y=v∗

′
k−1

f jk(y)dy

(17)

<(v∗
′

k−1−r
j′

k )

∫ v∗
′

k−1

y=rj
′

k

f jk(y)dy+(v∗
′

k−1−r
j′

k )

∫ ∞
y=v∗

′
k−1

f jk(y)dy

= (v∗
′

k−1 − r
j′

k )

∫ ∞
y=rj

′
k

f jk(y)dy

and since rj
′

k > rkj :

(v∗
′

k−1−r
j′

k )

∫ ∞
y=rj

′
k

f jk(y)dy<(v∗k−1 − r
j
k)

∫ ∞
y=v∗k−1

f jk(y)dy<cjk

(18)

which contradicts (16). Similarly, for the case rjk <

rj
′

k < v∗k−1 < v∗
′

k−1, according to (2):

cjk=

∫ rj
′

k

y=rjk

(y−rjk)f jk(y)dy+

∫ v∗k−1

y=rj
′

k

yf jk(y)dy (19)

− rjk
∫ v∗k−1

y=rj
′

k

f jk(y)dy+(v∗k−1−r
j
k)

∫ ∞
y=v∗k−1

f jk(y)dy

cjk =

∫ v∗k−1

y=rj
′

k

yf jk(y)dy−rj
′

k

∫ v∗k−1

y=rj
′

k

f jk(y)dy (20)

+

∫ v∗
′

k−1

y=v∗k−1

(y−rj
′

k )f jk(y)dy+(v∗
′

k−1−r
j′

k )

∫ ∞
y=v∗

′
k−1

f jk(y)dy

=

∫ v∗k−1

y=rj
′

k

yf jk(y)dy−rj
′

k

∫ v∗k−1

y=rj
′

k

f jk(y)dy

+

∫ v∗
′

k−1

y=v∗k−1

(y−rj
′

k )f jk(y)dy+(v∗
′

k−1−r
j′

k )

∫ ∞
y=v∗k−1

f jk(y)dy

− (v∗
′

k−1 − r
j′

k )

∫ v∗
′

k−1

y=v∗k−1

f jk(y)dy
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Subtracting (20) from (19) obtains:

0 =

∫ rj
′

k

y=rjk

(y−rjk)f jk(y)dy +(rj
′

k −r
j
k)

∫ v∗k−1

y=rj
′

k

f jk(y)dy

(21)

+ (v∗k−1−r
j
k − (v∗

′

k−1−r
j′

k ))

∫ ∞
y=v∗k−1

f jk(y)dy

+

∫ v∗
′

k−1

y=v∗k−1

(v∗
′

k−1−y)f jk(y)dy

Since all elements in (21) except for (v∗k−1−r
j
k −

(v∗
′

k−1 − rj
′

k ))
∫∞
y=v∗k−1

f jk(y)dy are positive, the latter
term must be negative in order for the equation to hold.
Therefore v∗k−1 − r

j
k < v∗

′

k−1 − r
j′

k , which contradicts
the initial assumption.

A.3. Proof for Theorem 2

Proof. In order to prove the Theorem, we first prove
that the expected effective value increases as the value
any of the agents receives along the way increases.
While this may seem intuitive, it requires a formal
proof as given in Lemma 1.

Lemma 1. Ei+1[v∗|min(v∗
′

i−1, y)]

≤ Ei+1[v∗|min(v∗i−1, y)] for any v∗i−1 and v∗
′

i−1 satis-
fying v∗

′

i−1 < v∗i−1.

Proof. Assume otherwise, i.e., Ei+1[v∗|min(v∗
′

i−1, y)]
<Ei+1[v∗|min(v∗i−1, y)]. Obviously agentAi can per-
form its exploration assuming it had received the value
v∗
′

i−1 and transfers the value v∗i = min(y, v∗
′

i−1). In
this case the values returned by the remaining k − i
agents, vi+1, ..., vk, remain the same as if Ai origi-
nally received v∗i−1. However, the effective value in
this case is actually min(v∗i−1, y, vi+1, ..., vk), as op-
posed to min(v∗

′

i−1, y, vi+1, ..., vk) in the case where
Ai received v∗

′

i−1. Since v∗
′

i−1 < v∗i−1, it follows that
Ei+1[v∗|min(v∗

′

i−1, y)] < Ei+1[v∗|min(v∗i−1, y)] can-
not hold.

Corollary 1. Ei[v
∗′ |v∗′i−1] ≤ Ei[v

∗|v∗i−1] for any
v∗i−1 and v∗

′

i−1 satisfying v∗
′

i−1 < v∗i−1.

The above facilitates a proof for Theorem 2 accord-
ing to the methodology used in the proof of Theorem

1 with the appropriate modifications of expected value
calculation.

The relation rji < v∗i−1 holds for the same consider-
ations give in the proof for Theorem 1. Similarly, the
existence of rji results from the continuity and mono-
tonicity of the term

∫∞
y=rji

(Ei+1[v∗|min(v∗i−1, y)] −
Ei+1[v∗|rji ])f ji (y)dy in rji and its values for rji = −∞
and rji =∞.

For the case of the single opportunity, the correct-
ness derives from comparing the cost cji with the ad-
ditional expected gain from moving on to the next
agent’s exploration process after exploring that op-
portunity (i.e. Ei+1[v∗|min(v∗i−1, y)]) in comparison
to the case of not exploring that opportunity (i.e.
Ei+1[v∗|rji ]).

For the inductive part of the proof, the analysis of
the case of y ≥ rji remains unchanged. Similarly, for
the case where y < rji , the same alternative strategies
A and B are defined. This time, in order to prove that
the expected benefit of strategy A is greater than the
expected benefit of strategy B, the notations’ defini-
tions need to be augmented as follows:

πz = prob(xz ≥ rzi )

wz = E[Ei+1[v∗|min(xz, v
∗
i−1)]|xz ≥ rzi ]

πb = prob(xb ≥ rzi )

wb = E[Ei+1[v∗|min(xb, v
∗
i−1)]|xb ≥ rzi ]

λz = prob(rhi ≤ xz < rzi )

vz = E[Ei+1[v∗|min(xz, v
∗
i−1)]|rhi ≤ xz < rzi ]

ϑz=E[Ei+1[v∗|min(max(xz, y), v∗i−1)]|rhi ≤xz<rzi ]

λb = prob(rhi ≤ xb < rzi )

vb = E[Ei+1[v∗|min(xb, v
∗
i−1)]|rhi ≤ xb < rzi ]

ϑb=E[Ei+1[v∗|min(max(xb, y), v∗i−1)]|rhi ≤xb<rzi ]

µb = prob(rbi ≤ xb < rhi )

ub = E[Ei+1[v∗|min(xb, v
∗
i−1)]|rbi ≤ xb < rhi ]

d=E[Ei+1[v∗|min(max(xz, xb, y), v∗i−1)]

|rhi ≤ xz < rzi ; rhi ≤ xb < rzi ]
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Since v∗i−1 > rji , the following hold:

vz = E[Ei+1[v∗|xz]|rhi ≤ xz < rzi ]

ϑz = E[Ei+1[v∗|max(xz, y)]|rhi ≤ xz < rzi ]

vb = E[Ei+1[v∗|xb]|rhi ≤ xb < rzi ]

ϑb = E[Ei+1[v∗|max(xb, y)]|rhi ≤ xb < rzi ]

ub = E[Ei+1[v∗|xb]|rbi ≤ xb < rhi ]

d=E[Ei+1[v∗|max(xz, xb, y)]|rhi ≤xz<rzi ; rhi ≤xb<rzi ]

The notation φ is left unchanged. The expected ben-
efit of strategiesA andB, denotedEA andEB , respec-
tively, remain unchanged and are given by Equations
11 and 12. Consequently, their subtraction yields the
same term given in Equation 13.

Now, based on Equation 3, the following should
hold:

czi = πz(wz − Ei+1[v∗|rzi ]) (22)

cbi = πb(wb − Ei+1[v∗|rbi ]) + λb(vb − Ei+1[v∗|rbi ])

+ µb(ub − Ei+1[v∗|rbi ])

Substituting (13) in (22), we obtain:

EA − EB = πzλb(vb − Ei+1[v∗|rbi ])

+ µb(λz + πz)(ub − Ei+1[v∗|rbi ])

+ πbπz(Ei+1[v∗|rzi ]− Ei+1[v∗|rbi ])

+ πbλz(ϑz − Ei+1[v∗|rbi ])

+ λbλz(ϑz + vb − Ei+1[v∗|rbi ]− d)

Notice that according to Lemma 1, Ei+1[v∗|rzi ] >

Ei+1[v∗|rbi ]. Furthermore, based on the notations’ def-
initions: vb > Ei+1[v∗|rbi ], ϑz > Ei+1[v∗|rbi ] and
ub > Ei+1[v∗|rbi ]. Therefore, in order for EA − EB

to be positive, the following should hold: (vb + ϑz −
Ei+1[v∗|rbi ]− d) ≥ 0. The latter is obtained by show-
ing that d ≤ vb + ϑz − Ei+1[v∗|rhi ] ≤ vb + ϑz −
Ei+1[v∗|rbi ]. According to the definition of d above,

the following holds:

d = E[max(Ei+1[v∗|max(xz, y)], Ei+1[v∗|xb])

|rhi ≤ xz < rzi ; rhi ≤ xb < rzi ]

=Ei+1[v∗|rhi ]+E[max(Ei+1[v∗|max(xz, y)]

−Ei+1[v∗|rhi ], Ei+1[v∗|xb]−Ei+1[v∗|rhi ])

|rhi ≤ xz < rzi ; rhi ≤ xb < rzi ]

≤ Ei+1[v∗|rhi ] + E[Ei+1[v∗|max(xz, y)]

− Ei+1[v∗|rhi ] + Ei+1[v∗|xb]

− Ei+1[v∗|rhi ]|rhi ≤ xz < rzi ; rhi ≤ xb < rzi ]

= ϑz + vb − Ei+1[v∗|rhi ] ≤ vb + ϑz − Ei+1[v∗|rbi ]

which proves that EA − EB > 0, and therefore ozi
should be explored in that case.
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B. Nomenclature

Notation Meaning
k The number of individual agents that need to establish an ad-hoc partnership
Ai The ith agent i in the exploration process (1 ≤ i ≤ k)
ni Number of opportunities available to agent Ai (i = 1, . . . , k)
Oi The set of opportunities available to agent Ai (i = 1, . . . , k)
Ōi The set of opportunities which values have not been obtained yet out of those available to

Ai (Ōi ⊆ Oi)
oji The j th (1 ≤ j ≤ ni) opportunity available to agent Ai (i = 1, . . . , k)
vi The value seen in the partnership by agent Ai

v∗ The minimum among the values seen in the partnership by all agents (“effective value”)
v∗i The minimum among the values seen in the partnership by the first i agents in the sequence
f j
i (y), F j

i (y) The probability density function and cumulative distribution function of opportunity oji
(1 ≤ j ≤ ni) available to agent Ai (i = 1, . . . , k)

cji The exploration cost of opportunity oji (1 ≤ j ≤ ni) available to agent Ai

rji The reservation value that agent Ai assigns to opportunity oji (1 ≤ j ≤ ni)
(v∗i−1, w, Ōi) The state of agent Ai, where v∗i−1 is the minimum value obtained by the previous i − 1

agents that have already finished their exploring, w is the best value found so far by Ai and
Ōi is the set of opportunities which values have not been obtained yet

Ei[v
∗|(v∗i−1, w, Ōi)] The expected effective value if agent Ai is about to start its exploration process, given state

(v∗i−1, w, Ōi)
Ei[v

∗|v∗i−1] The expected effective value if agent Ai is about to start its exploration process after re-
ceiving a value v∗i−1

E[v∗] The expected effective value obtained eventually by each agent from the partnership
Pi(j) The probability that agent Ai will eventually obtain, along its exploration process, the value

of the opportunity associated with the j th (1 ≤ j ≤ ni) highest reservation value
ECi[cost|v∗i−1] The expected cost of agent Ai, given the value it receives v∗i−1

ECi[cost] The expected accumulated cost of agent Ai

EBi The expected benefit of agent Ai


