
Utilizing Costly Coordination in
Multi-Agent Joint Exploration1

Igor ROCHLIN a,2, David SARNE b

a Department of Computer Science
Bar-Ilan University
Ramat-Gan, Israel

e-mail: igor.rochlin@gmail.com
b Department of Computer Science

Bar-Ilan University
Ramat-Gan, Israel

e-mail: david.sarne@gmail.com

Abstract. This paper studies distributed cooperative multi-agent explo-

ration methods in settings where the exploration is costly and the over-

all performance measure is determined by the minimum performance
achieved by any of the individual agents. Such an exploration setting

can commonly be found in multi-agent systems, e.g., in multi-channel
cooperative sensing where the quality of the overall connection is con-

strained by the individual qualities of the connections used by the dif-

ferent agents. The goal in such problems is to optimize the process as
a whole, considering the tradeoffs between the quality of the solution

obtained and the cost associated with the exploration and coordination

between the agents. The methods considered in this paper differ in the
level of coordination employed, ranging from no coordination to com-

plete coordination. The strategy structure in all cases is shown to be

threshold-based, and the thresholds which are analytically derived in
this paper can be calculated offline, resulting in a very low online com-

putational load. The analysis is extended to the case where coordina-

tion is supplied by a self-interested monopolist communication provider,
charging a fee that depends on the number of agents for which coordi-

nation is required. In this case, the agents’ expected-benefit-maximizing

cooperative exploration strategy is to have some sub-groups coordinate
their exploration (if at all) while the remaining agents explore individu-

ally with no coordination between them. We show that given the option
for side-payments, the exploring agents can improve their expected ben-

efit by compensating the communication provider to change the price
at which she offers her services. An illustration for the importance of
considering others’ findings in one’s strategy is given using the spectrum
sensing application, experimenting with real data.
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1. Introduction

In many settings, the benefits from the different alternatives available to an agent
are associated with some uncertainty. For example, in eCommerce, a shopbot does
not know a priori the pricing of a requested product among the different mer-
chants’ web-sites. Similarly, in the Mars exploration rover mission, the rover does
not know a priori the terrain conditions in the different locations it can potentially
visit. In both examples, the agents can explore the alternatives (denoted “oppor-
tunities” onwards) available to them, revealing the actual benefit (“value”) with
which they are associated, however incurring a cost (either monetary or in terms
of consuming some of their resources) as such exploration is inherently costly.3

The goal of the agent is not necessarily to find the opportunity associated with
the maximum value, but rather to maximize the overall benefit, defined as the
value of the opportunity eventually picked minus the costs accumulated along the
exploration process. This kind of exploration is standard in autonomous-agent
literatures [11,17,21].

This exploration process becomes more complex whenever conducted coop-
eratively by several agents. For example: when the agents are robots that need
to evaluate several potential locations for mining a certain mineral on the face
of Mars [17]; a group of buyers that need to evaluate several potential sellers for
buying different products [37]; and secondary users in Dynamic Spectrum Ac-
cess applications that need to evaluate different connections to a central server
in order to establish a common communication link [1]. The cooperative explo-
ration is more complex in the sense that the agents’ exploration is now affected
also by findings of other agents in the group. The agents thus need to coordinate
their exploration. The key for coordination is the ability to communicate, and
communication is inherently costly. Therefore the agents’ cooperative exploration
strategy also needs to take into consideration the overhead associated with the
coordination between them along the process.

In this paper, we formally introduce and analyze a model of a cooperative mul-
tilateral exploration in which exploration and communication (and consequently
coordination)4 are inherently costly and the performance of each agent is affected
by the results of the exploration carried out by all of the other agents. Specifically,
we focus on a type of problems where the benefit of each agent is the worse (e.g.,
the minimum benefit or the maximum delay) among the best results obtained
in any of the individual exploration efforts. For example, in Dynamic Spectrum
Access applications each agent evaluates different channels through which it will
connect to the central server that facilitates communication between the different
agents; hence the quality of service experienced by all of the agents depends on
the lowest-quality channel selected for the communication by any of the agents.
Another example concerns settings where several individuals need to meet at a
certain location on an ad-hoc basis. Upon deciding on the meeting, each indi-
vidual may evaluate different alternatives for getting there as soon as possible,

3Our use of the term “costly” does not aim to impose it is overpriced but rather that it is
“non-free”.

4In the remaining of the paper we will use “coordination” and “communication” interchange-

ably.
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however the earliest time the group will actually be able to meet is the longest

duration it will take any of the individuals to get there. A similar setting arises

in coordination-management applications (e.g., DARPA’s Coordinators project)

where the quality of performance of a task is commonly defined by a quality

accumulation minimum function over the sub-tasks [42,3]. Overall, in coopera-

tive exploration settings, the system’s performance, which the agents attempt to

maximize, is commonly the sum of the resulting individual benefits minus the

costs (of exploration and coordination) accumulated by the different agents along

the process. Therefore, given the cost of coordination, the agents may choose to

have only some of them coordinate their exploration efforts, while others explore

individually with no coordination whatsoever with the other group members.

The analysis provided in the paper is based on extracting a solution for two

extreme cases: the first is when the cost of coordination is insignificant, thus all

agents’ exploration efforts are coordinated, and the second is when the cost is

substantial to an extent that precludes any benefit from using it. These two cases

are then integrated to a combined (hybrid) case that applies to any coordination

cost structure, wherein not all the agents necessarily employ coordination. As

discussed in details in the related work section, former cooperative exploration

literature usually does not consider the overall quality to be a function of the

individual qualities of the different agents or does not take into consideration the

coordination costs. The very few models that do consider cooperative exploration

settings with constrained quality functions constrain the exploration in a way

that precludes the use of a hybrid exploration schemes of the type proposed in

this paper.

The model is further extended for the case where the coordination (if any)

that takes place between the agents is enabled through a third party (commu-

nication provider), who can self-interestedly set the fee for the coordination ser-

vice. We show how the communication provider can set her expected-benefit-

maximizing fee. One interesting implication of this analysis is that if an external

side-payments mechanism can be used, then the transfer of payments from the

agents to the communication provider, in a way that fully compensates her for

setting a fee different from her expected-benefit-maximizing one, can result in an

improvement of the agents’ expected benefit.

In the following section we formally introduce the model. The model analysis

is given in Section 3. Section 4 uses a tractable synthetic setting for illustrating

the optimal (expected-benefit-maximizing) cooperative exploration strategy and

its properties, as well as the effect of the different model parameters over the

overall performance. An experiment with real data, in the area of spectrum access

is reported in Section 5. Related work is reviewed in Section 6, emphasizing the

uniqueness of the analysis provided in the paper. Discussion and conclusions are

given in Section 7.
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Figure 1. A schematic illustration of the cooperative coordinated costly exploration process

- each agent executes an individual costly exploration and coordination is achieved through
sharing findings.

2. The Model

Cooperative Costly Exploration. We consider a setting where a group of k co-
operating agents attempt to achieve a shared goal.5 In order for the goal to be
achieved, each agent needs to engage in a costly exploration [11], i.e., to evaluate
different opportunities which values are a priori uncertain (see Figure 1). This
exploration of opportunities is considered costly (non-free) in the sense that elim-
inating the uncertainty associated with the value of any given opportunity incurs
a cost c (expressed in terms of opportunity values), as the agent needs to consume
some of its resources as part of this process. These individual exploration pro-
cesses are standard [17,21,27]. The uncertainty associated with each opportunity’s
value is modeled, as in most costly exploration literature [8,10,26,30], through a
probability distribution function f(x), i.e., the value of each opportunity in any
of the individual exploration processes is drawn from f(x). The model assumes
that the agents are not limited by the number of opportunities they can evaluate.
Once all agents have completed their individual exploration, the benefit of each of
the k agents from the resulting cooperative exploration process is the minimum
among the best results obtained in any of the individual exploration processes,
denoted v∗. The overall benefit is thus kv∗ minus the costs accumulated along the
individual explorations. Since the agents are cooperative, their goal is to maximize
the overall expected benefit.

Taking the Dynamic Spectrum Access application domain as an example,
each agent represents a terminal and all terminals are interested in establishing a
connection between them (e.g. for a conference call, document/video sharing or a

5See Appendix 8 for a summary of all the notations used in this paper.
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multi-player game). The terminals are located in different geographical locations
and each terminal can use different wireless channels to connect to a central
server supporting the requested application. Each terminal carries out a costly
exploration process in the form of sensing different channels of different qualities
until it selects a specific channel with a specific quality. The sensing is costly in
that the terminal needs to allocate some of its resources for the task (e.g., energy
or delay other transmissions). The quality of service provided by the application
depends on the qualities of all individual channels selected (e.g., if one of the
terminals ends up with a low quality channel, the experience of all of the users
will be negatively affected). Hence, the quality of service provided to all of the
terminals will be a function of the lowest quality channel selected by any of
the terminals. As for the ad-hoc meeting application domain, here each agent
represents an individual interested in having all group members arrive to the
meeting place as early as possible, once the meeting place was determined (e.g.,
three hungry students decide spontaneously to get together and have lunch at
a specific restaurant, hoping to get there as soon as possible). The agents are
located in different geographical locations and each can choose between various
different means of transportation for getting to the meeting place (e.g., by different
train, subway or bus lines, by car, considering different alternative routes, or
any combination of these means of transportation). Checking (i.e., exploring)
an alternative potentially involves several activities (e.g., looking at the map,
checking web-sites for route, checking timetables) thus is costly in the sense that
it takes time (hence further delaying the arrival). The benefit from the findings
depends on the time all agents have arrived to the meeting, hence it is the longest
time it takes any of them getting there.

The agents are assumed to be fully rational and acquainted with the distri-
bution function f(x), the number of agents k and the exploration cost c. Their
decision whether to evaluate an additional opportunity at any point along their
exploration process thus needs to take into consideration the tradeoff between the
marginal improvement in the value of v∗ and the cost incurred along the process.

Costly Coordination. The model assumes the agents can coordinate their coop-
erative costly exploration through sharing their findings along the process (see
Figure 1). The sharing of findings is typically facilitated through communication.
Specifically, we assume that in order to share findings, the agents need to pur-
chase coordination-facilitating communication services from an external operator
(communication provider). The model assumes that the cost of supplying j agents
with such coordination services between them (i.e., enabling j agents to share
their findings) is given by the function cm(j). The function cm(j) is assumed to be
non-decreasing in j. One natural cost function is cm(j) = cm ·j, meaning that the
cost of supplying any additional agent with coordination capabilities throughout
the exploration is cm.6 Given the cost of coordination, the goal of the agents is to
decide on the set of agents that will be equipped with coordination capabilities

6This cost structure is typical whenever the coordination is executed in the form of a central
server which distributes the information to the different subscribers. Alternatively, it can be
justified in physical worlds by the cost of a specific HW, e.g., a push-to-talk handheld device,

that will be used by any of the coordinating agents throughout the exploration.

5



(i.e., which exploration will be coordinated). For example, the agents can decide
to have k′ (k′ < k) of them operate as one coordinated subgroup, k′′ (k′+k′′ < k)
of them operate as a second coordinated subgroup and the remaining k− k′− k′′
agents operate individually, each executing its exploration in isolation. The co-
ordination cost in this case is cm(k′) + cm(k′′). At the end of the process, the
best results of all the k agents will be revealed and the individual agent benefit
minimum among them. Therefore the agents’ strategy in this case specifies both
the subgroups of agents which search will be coordinated and the way each sub-
group of agents will conduct its own coordinated exploration. The optimal strat-
egy is the one resulting in the maximum expected overall benefit, defined as kv∗

minus the coordination costs and the aggregate of costs accumulated along the
individual explorations.

The communication provider is assumed to be self-interested and attempts
to maximize her benefit, denoted Bp. The provider’s benefit, if the agents request
coordination services for w groups of sizes k1, .., kw (

∑
ki ≤ k), is given by: Bp =∑w

i=1(cm(ki) − cp(ki)), where cp(j) is the provider’s cost of serving j exploring
agents. The problem thus can be thought of as a Stackelberg game where the
communication provider is the first mover, publishing its offered coordination
service rates in the form of cm(j), and the agents are the followers.

3. Analysis

We first introduce the optimal (expected-benefit-maximizing) exploration strat-
egy for a single agent facing the exploration problem, i.e., without restricting
the value found by the other agents. We then augment that strategy and adapt
it to the case of k cooperating agents with the minimum value restriction. Our
analysis of the cooperative exploration considers three cooperative distributed
exploration strategies. The first relates to the case where the coordination cost is
substantially high, thus the agents prefer not to use the coordination service to
any extent. The second is when the coordination is free (i.e., cm(j) = 0 for every
j ≤ k), thus coordination is fully adopted. In both methods the opportunities
are evaluated sequentially (in a random pre-defined order, as they are all a priori
alike). The analysis of the two cases facilitates the analysis of the general case,
for any coordination cost structure cm(j), wherein not all the agents necessarily
employ coordination.

3.1. Optimal Costly Exploration Disregarding Others’ Findings

When relaxing the minimum-value restriction, each agent’s exploration problem
can be analyzed separately and solved as a classic sequential exploration problem
of the kind widely used in search theory [20,19,27,15,47]. In sequential exploration,
a single agent faces a stream of opportunities that arise sequentially, incurring
a cost c for revealing the value of each, where the values are associated with a
probability distribution function f(y). The agent needs to set her strategy as the
mapping from the value received to the set {terminate, resume}, i.e., a stopping
rule. The optimal stopping rule in this case, is a reservation-value rule [47,26] (i.e.,
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Figure 2. A schematic illustration of the strategy that does not use coordination, where vi,j
denotes the value obtained by agent i at time j, if the agent was exploring an opportunity then.

Here, v1 = max(v1,1, v1,2), vi = vi,1 and vk = max(vk,1, vk,2, vk,3, vk,4).

a threshold): the agent terminates the exploration once a value greater than a
reservation value r is revealed, where the expected-benefit-maximizing reservation
value r satisfies:

c =

∫ ∞
y=r

(y − r)f(y)dy (1)

Intuitively, r is the value where the agent is precisely indifferent: the expected
marginal benefit from obtaining the value of the opportunity exactly equals the
cost of obtaining that additional value. Interestingly, the decision rule expressed
by the optimal strategy according to (1) is myopic, i.e., the value of r does not
depend on the number of opportunities that can still be potentially explored [47]
but rather only on the characteristics of the opportunity (distribution of values
and exploration cost).

We denote the above exploration strategy as “disregarding others’ findings”
in the context of the multi-agent exploration with value restriction, since it does
not take into consideration the exploration of the other agents and the resulting
influence over the effective value. In the following paragraphs we investigate the
expected-benefit maximizing exploration strategy of an agent given the explo-
ration strategy of the other agents and the minimum value constraint. We show
that this latter strategy is qualitatively similar to the one given above, i.e, carried
out sequentially according to reservation values, though the reservation values
used are different.

3.2. Cooperative Non-Coordinated Costly Exploration

If the agents cannot coordinate whatsoever, then their exploration takes place
separately and can be perceived as performed in parallel, where the value of v∗ is
revealed only after all individual explorations have come to an end (see Figure 2).
The optimal cooperative strategy in this case is based on having each agent use a
reservation value for its individual exploration. Each agent will keep exploring as
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long as the best value found is below the reservation value it uses. The optimality
(in terms of overall expected-benefit-maximization) of the reservation-value-based
strategy in this case derives from the fact that the agent’s state depends solely on
the best value found so far. Therefore, if the agent finds it beneficial to explore
when the best value obtained so far is v, then it is inevitably beneficial to explore
if the best value found so far is v′ for any v′ < v (and vice versa).7

Theorem 1. The cooperative optimal exploration strategy with no coordination
between the agents is to have each agent Ai use a reservation value r that satisfies:

c=k

∫ ∞
y=r

f(y)
(∫ ∞

x=−∞
(min(y, x)−min(r, x))f̄(x)dx

)
dy (2)

where f̄(x) is the probability distribution function of the minimum among the best
values obtained by all other agents, i.e, min(x1, .., xi−1, xi+1, .., xk).

Proof. The overall expected benefit of the system from the cooperative exploration
is the expected value with which the agents end up, denoted EV , multiplied by
k, minus the accumulated costs along the exploration. Now consider the effect of
agent Ai’s exploration over EV . Given the distribution of the minimum among
the best values obtained by all other agents, f̄(x), the value of EV when Ai uses
a reservation value r is given by:

EV =

∫ r

y=−∞
EV f(y)dy +

∫ ∞
y=r

f(y)

∫ ∞
x=−∞
min(y, x)f̄(x)dxdy (3)

The above recursive equation captures the value of EV when agent Ai evaluates
an additional opportunity (i.e., when the best value the agent obtained so far is
below r) hence obtaining an additional value y. The first term relates to the case
where a value y < r is obtained through this additional exploration, in which case
agent Ai resumes its exploration process according to the reservation value rule.
Since Ai is not limited by the number of opportunities it can evaluate, it now
faces the exact same decision problem as before, resulting in an expected value
EV . The second term relates to the case where the value y obtained is above r, in
which case the agent terminates its exploration and the expected value EV is the
minimum value found among the value obtained by Ai, i.e., y, and the minimum
best value x obtained by the other agents (captured by the distribution function
f̄(x)).

The expected number of opportunities explored by agent Ai is 1
1−F (r) as

this becomes a Bernoulli sampling process with a success probability of the value
obtained being greater than the threshold used, i.e., 1− F (r). Consequently, the
expected cost accumulated along the exploration of Ai when using r is given by

c
1−F (r) . Therefore, the overall expected benefit of the system as a function of the

7The myopic and stationary natures of the reservation value derive from the fact that since
neither agent is limited by the number of opportunities it can explore, the rejection of the
current opportunity results in facing the exact same decision problem once again in the next

exploration round.
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reservation value r used by Ai, denoted B(r), is given by (after isolating EV in
Equation 3) and multiplying it by k:

B(r)=
k
∫∞
y=r

f(y)
∫∞
x=−∞min(y, x)f̄(x)dxdy

1− F (r)
− c

1−F (r)
−C (4)

where C denotes the expected cost accumulated along the other agents’ explo-
ration. In order to find the optimal reservation value r, we take the first derivative
of Equation 4 and set to zero:

dB(r)

dr
=
−k(f(r)

∫∞
x=−∞min(r, x)f̄(x)dx)(1− F (r))

(1− F (r))2
(5)

+
kf(r)

∫∞
y=r

f(y)
∫∞
x=−∞min(y, x)f̄(x)dxdy

(1− F (r))2
− cf(r)

(1− F (r))2
= 0

which after some mathematical manipulations becomes:

c = k

∫ ∞
y=r

f(y)
( ∫ ∞

x=−∞
min(y, x)f̄(x)dx

)
dy − k(1− F (r))

∫ ∞
x=−∞
min(r, x)f̄(x)dx (6)

and since (1− F (r)) =
∫∞
y=r

f(y)dy, Equation 6 is equivalent to (2).

Equation 2 also has the intuitive interpretation, as in 3.1, in the form of
indifference between the expected marginal utility from obtaining the value of
the opportunity (represented by the right-hand term of the equation), this time,
however, calculated for all group members (hence multiplied by k) and taking
into consideration the findings of others.

Since all agents face a similar setting (characterized by f(x) and c) they all
use the same reservation value r. This enables a simple formulation of the function
f̄(x):

f̄(x) =
d(1− (1− F returned(x))k−1)

dx
, (7)

where:

F returned(x) =

{
0 x ≤ r

F (x)−F (r)
1−F (r) x > r

(8)

The function F returned(x) returns the probability that the best value with which
an agent that uses a reservation value r ends up (i.e., in its individual exploration)
will be below x. The term (1 − (1 − F returned(x))k−1) is thus the probability
that the minimum among the results of the other k − 1 agents’ explorations will
turn out to be below x, and therefore its derivative is the probability distribution
function of the minimum among the best values obtained by all other agents.

Using Equation 2 we can now calculate r, and since all agents use the same
reservation value, the probability distribution function of the minimum among

9



Figure 3. A schematic illustration of the fully coordinated exploration strategy, where vi,j de-
notes the value obtained by agent i at time j, if the agent was exploring an opportunity then.

Here, v1 = v1,4, vi = vi,2 and vk = max(vk,1, vk,3).

the best values found by all agents (unlike with f̄(x) which apply to all agents

except one) is given by: d(1−(1−F returned(x))k)
dx . Therefore, the expected value the

agents end up with, EV , is thus given by:

EV =

∫ ∞
x=−∞

(
x · d(1− (1− F returned(x))k)

dx

)
dx (9)

As shown in the proof for Theorem 1, the accumulated cost along the explo-
ration process of each of the agents is given by c

1−F (r) , hence the system’s overall

expected benefit, denoted EB, is:

EB = k
(
EV − c

1− F (r)

)
(10)

3.3. Cooperative Fully Coordinated Costly Exploration

If the agents can coordinate without incurring a cost, then their exploration strat-
egy should take into consideration, at each step of the process, the values found
by any of the other agents. Furthermore, since the exploration is costly, it is ad-
vantageous for the agents to execute their exploration sequentially (having one
agent explore at a time) rather than in parallel (see Figure 3). Since the state of
the agents now depends on the vector of best values found by the different agents,
the optimal strategy is no longer based on a single reservation-value. Instead, as
we prove in this section, it assigns a different reservation value for each state and
applies it to (i.e., compares it with) the minimum among the set of best values
found by the different agents.

We represent the system’s state as a vector V = (v1, .., vk), in the k-
dimensional space, where vi (1 ≤ i ≤ k) is the best value found so far by agent
Ai.

8 We use S(V ) → {i, terminate} to denote the agents’ strategy, where i

8If agent Ai has not yet engaged in an exploration then vi = 0.

10



(1 ≤ i ≤ k) suggests that agent Ai needs to execute an exploration step next
and terminate means the exploration as a whole should be terminated. If the
exploration is terminated, then the value of v∗ is determined according to the
minimum value of V . For convenience we use Vmin to denote the minimum value
in V (i.e., Vmin = min(v1, .., vk)). Due to the nature of v∗ it is obvious that given
a state V , if the optimal strategy is to resume the exploration, then the agent who
should be evaluating an additional opportunity is the one whose highest value
is Vmin.9 This is simply because any increase in the best value obtained by any
other agent Ai associated with a best value vi > Vmin can affect v∗ only if it
is accompanied by findings greater than vi of agents currently associated with
best values lower than vi. The agents’ strategy can therefore be expressed as:
S(V )→ {resume, terminate}.

Proposition 1. For any state V = (v1, .., vk), if S(V ) = resume then inevitably
S(V ′) = resume for any V ′ differing from V only in the value of its minimum
element, where V ′min < Vmin (formally: V ′ = (v1, ..., vi−1, v

′
i < vi, vi+1, ..., vk)

where vi = Vmin).

Proof. Assume otherwise, i.e., S(V ′) = terminate. Since S(V ) = resume, then
once a state V is reached, the agent associated with Vmin will resume exploring
until a better value is obtained. From the system’s point of view, this is preferable
over terminating the exploration, i.e., over ending up with a value Vmin. Now
consider the option to resume exploration by the agent associated with value V ′min

when starting from a state V ′ until obtaining a value greater than Vmin. The
expected exploration cost and the distribution of the value with which the agent
will end up (i.e., above Vmin) is equal in both cases. Therefore, since terminating
the exploration process when in state V ′ yields V ′min < Vmin, the strategy S(V ′) =
terminate cannot be optimal (in terms of expected-benefit-maximization).

The main implication from Proposition 1 is that for all states that differ
only in the value of their minimum element there is a single reservation value for
determining whether to resume exploration. Whenever reaching a new state, each
agent needs to determine if the best value it had obtained so far is Vmin. The
agent associated with Vmin will calculate the reservation value according to the
current state V , denoted r(V ), and resume the exploration if its value is below
r(V ).

We use σ(V, y)→ V ′ to denote the new state to which the system transitions,
if it was initially in state V , after the agent associated with Vmin has obtained a
value y in its exploration. If vi is the minimum value in V (i.e., vi = Vmin) then:

σ(V, y) =

{
V y ≤ Vmin

(v1, ..., vi−1, y, vi+1, ..., vk) otherwise
(11)

The system’s expected benefit onwards, when in state V , denoted EB(V ), if
continuing according to the optimal strategy S(V ) is thus given by the following
recursive equation:

9In the case where two or more agents hold a value equal to Vmin there is no importance to

the selection of which of them will explore next.
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Figure 4. An example of 2-agent cooperative exploration with full coordination. The agents are

Ax and Ay , the exploration cost is c = 0.09 and the distribution of values is uniform (f(x) = 1,
over the interval (0, 1) and zero otherwise). The arrows represent two possible exploration paths,

where the letter in the circle is the exploring agent. The gray area represents all states in which
the exploration terminates.

EB(V )=

{
kVmin r(V )≤Vmin

−c+
∫ r(V )

y=∞EB(V )f(y)dy +
∫∞
y=r(V )

EB(σ(V, y))f(y)dy otherwise

(12)

where in the case r(V )≤Vmin the exploration necessarily terminates according
to the reservation value rule, hence the benefit is kVmin. For other cases, the
exploration resumes, thus incurring a cost c and obtaining a new value y. The
new state is thus either V (if y ≤ r(V )) or σ(V, y) (if y > r(V )).

Similarly we can formulate the expected overall number of opportunities ex-
plored, when in state V , denoted EN(V ):

EN(V )=

{
0 r(V )≤Vmin

1+
∫ r(V )

y=∞EN(V )f(y)dy +
∫∞
y=r(V )

EN(σ(V, y))f(y)dy otherwise

(13)

and the expected overall number of opportunities explored is given by EN(0, ..., 0).

Theorem 2. The optimal exploration strategy with full coordination, when in state
V , is to terminate the exploration if Vmin≥r(V ) and otherwise resume exploration,
where r(V ) is the solution to:

c =

∫ ∞
y=r(V )

(EB(σ(V, y))− kr(V ))f(y)dy (14)

12



The value r(V ) is the same for all states differing only by their minimum value
(thus can be calculated only once for these states).

Proof. In order to find the optimal (in terms of overall expected-benefit-
maximization) reservation value r(V ) we take the first derivative of Equation 12
and set it to zero:

dEB(V )

dr(V )
= f(r(V ))EB(V )− f(r(V ))EB(σ(V, r(V ))) = 0

resulting in EB(V ) = EB(σ(V, r(V ))). Since EB(σ(V, r(V ))) = kr(V ) according
to (12), and substituting EB(V ) according to (12), we obtain:

−c+ kr(V )F (r(V )) +

∫ ∞
y=r(V )

EB(σ(V, y))f(y)dy = kr(V ) (15)

and since (1− F (r(V ))) =
∫∞
y=r(V )

f(y)dy, Equation 15 is equivalent to (14).

The main implication of Theorem 2 is that the agents do not need to assign
a different reservation value to each vector of best values found. Instead only the
reservation value of states differing by their minimum value needs to be calcu-
lated. The “reservation” property in this case is thus actually of the form of a
reservation “frontier”, i.e., a sub-space of the state space where the exploration
should be terminated. Figure 4 depicts the strategy space in a two-agent cooper-
ative exploration with full coordination. Each point in the two-dimensional space
corresponds to a different state, differing in the best value obtained so far by
Agent X (horizontal axis) and Agent Y (vertical axis). The gray and white areas
represent states for which the optimal strategy is to terminate and to resume
exploration, respectively. For any state in the white area below the diagonal, the
agent that will perform the exploration is Agent Y (and above the diagonal, Agent
X).

The overall expected benefit of the system, EB, can be calculated using
Equation 12 when starting from the state where none of the agents has engaged
in exploration yet, i.e., EB = EB(0, .., 0).

3.4. Cooperative Coordinated Costly Exploration with Costly Coordination

Finally, we analyze the general case, i.e., where cm(j) is a general non-decreasing
function, wherein not all of the agents necessarily employ coordination. In this
case, it is possible that only a subgroup of agents will use coordination or that the
agents will divide into sub groups that coordinate their exploration separately.
For some cases, e.g., when cm(j) is linear in j or increases in a decreasing rate as j
increases, the optimal strategy is to have at most one group of agents coordinate
their exploration and to have the remaining agents execute their exploration in
isolation. This is because whenever two groups of agents merge and coordinate
their exploration, the overall coordination cost does not increase and the same
performance as with the two separate groups can be achieved even by using a sub-
optimal solution according to which each agent follows the exploration strategy it
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would have used if operating in its original group (hence the division into groups
cannot possibly improve the performance of a single unified group). In other
(though less common) cases, the optimal strategy is to have several subgroups
of agents coordinating their exploration separately (and potentially also some
individuals executing exploration completely by their own).

Consider the case where the k agents request coordination services for w
subgroups of sizes {k1, ..., kw} (

∑
ki ≤ k), such that the exploration of the agents

within each subgroup is coordinated and each of the remaining k −
∑
ki agents

explore in isolation. We use ri(V ) to denote the reservation value function used
by the agents of the i-th subgroup, upon reaching a state V = {v1, ..., vki} in
its coordinated exploration. We use F c

i (V, x) to denote the probability that the
agents in the i-th subgroup, exploring with coordination, end up with a minimum
value of x or below, given that they start from state V . The function F c

i (V, x)
can be calculated recursively according to:

F c
i (V, x)=


0 x < Vmin

1 x ≥ Vmin ∧ ri(V ) ≤ Vmin∫∞
y=−∞ F c

i (σ(V, y), x)f(y)dy otherwise

The case where x < Vmin is trivial since given a state V , the minimum value the
agents end up with is at least Vmin. Therefore, if x < Vmin the probability of
ending up with x or below is zero. Similarly, when ri(V ) ≤ Vmin the agents in
the i-th subgroup necessarily terminate and their value v∗ is Vmin. Hence, since
Vmin ≤ x the function obtains 1. In all other cases, the exploration resumes, hence
the probability is given recursively based on the new state σ(V, y) the agents will
be in after the following exploration.

Using F c
i (V, x) we can calculate the probability that the agents in the i-

th subgroup end up with a minimum value of x or below, denoted F c
i (x), as:

F c
i (x) = F c

i ((0, ..., 0), x). The latter function enables calculating the probability
distribution function of the minimum of the best findings of all agents other
than those in the i-th subgroup, denoted f̄ ci (x). This probability distribution
function is, by definition, the first derivative of the probability that the minimum
among the values returned by all agents other than those in the i-th subgroup

is equal to or lower than x, i.e.: f̄ ci (x) =
d(1−(1−F returned(x))k−

∑
ki

∏
j 6=i(1−F

c
i (x)))

dx ,
where F returned(x) is calculated according to (8). Finally, we can calculate the
probability distribution function of the minimum of the best findings of all agents,
except for one single agent out of the k −

∑
ki agents that explore in isolation,

denoted f̄ c(x), given by: f̄ c(x) =
d(1−(1−F returned(x))k−

∑
ki−1 ∏

(1−F c
j (x)))

dx .
Based on the above probability distribution functions, we can now calculate

the expected minimum value the k agents end up with when the process termi-
nates, EV . For this, we first calculate, EVi(V ), the expected minimum value with
which the agents end up given that the agents of the i-th subgroup are in state
V and no other a priori information regarding the findings of the other agents.
This value can be calculated as a modification of Equation 12, however taking
into consideration the results of the agents belonging to all other subgroups, thus
is given by:
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EVi(V )=

{∫ ri(V )

y=−∞EVi(V )f(y)dy +
∫∞
y=ri(V )

EVi(σ(V, y))f(y)dy ri(V )>Vmin∫∞
x=−∞min(x, Vmin)f̄ ci (x)dx otherwise

(16)

The first term in (16) in case ri(V ) > Vmin relates to the case where a value
y < ri(V ) is obtained through an additional exploration, in which case the agents
of the i-th subgroup resume their exploration process according to the reserva-
tion value rule. In this case, the expected value onwards is EVi(V ), as the state
remains V . The second term relates to the case where the value obtained is above
ri(V ), in which case the agents of the i-th subgroup resume their exploration
process according to the new state σ(V, y). In this case, the expected value is
EVi(σ(V, y)). For the case ri(V ) ≤ Vmin the agents of the i-th subgroup terminate
their exploration and the expected value is the minimum between the value Vmin

obtained by the agents of the i-th subgroup itself and the expected minimum
value returned by the other k − ki agents (associated with a distribution f̄ ci (x)).
The value of EV can thus be calculated as EV = EVi(0, .., 0) (resulting in the
same value for any i).

Now consider the i-th coordinated subgroup when reaching a state V . The
expected overall cost onwards, denoted ECi(V ), of that subgroup if using a reser-
vation value function ri(V ), can be calculated using a recursive equation similar
to (16):

ECi(V )=

{
−c+

∫ ri(V )

y=∞ ECi(V )f(y)dy +
∫∞
y=ri(V )

ECi(σ(V, y))f(y)dy ri(V )>Vmin

0 otherwise

(17)

The case ri(V ) > Vmin is a simple modification of (16). For the case ri(V ) ≤ Vmin,
no further exploration needs take place. As for the k −

∑
ki agents that ex-

plore with no coordination, the expected cost of each of them is c
1−F (r) . There-

fore, the expected overall exploration cost, denoted EC, is given by: EC =∑
i=1ECi(0, ..., 0) + (k −

∑
ki) · c

1−F (r) .

The overall expected benefit of the system, EB, can be calculated using
Equations 16 and 17:

EB = kEV − EC −
w∑
i=1

cm(ki) (18)

At this point, we have everything needed to introduce Theorem 3, which
specifies the optimal exploration strategy for the case where the coordination is
not completely free.

Theorem 3. The optimal exploration strategy when the agents use coordination
for w subgroups of sizes {k1, ..., kw} (

∑
ki ≤ k), is to set a reservation value r for

the k −
∑
ki agents exploring separately and a reservation value function ri(V )

for the ki agents of the i-th subgroup, for any i ≤ w, according to the solution of
the set of equations:
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c = k

∫ ∞
y=ri(V )

(EVi(σ(V, y))− EVi(ri(V )))f(y)dy (19)

(one equation for each subgroup i (i ≤ w)), and:

c=k

∫ ∞
y=r

f(y)
(∫ ∞

x=−∞
(min(y, x)−min(r, x))f̄ c(x)dx

)
dy (20)

Proof. The proof relies in large on the proofs given for the two previous cases
(Theorems 1 and 2), therefore we only detail the differences. Equation 19 aug-
ments Equation 14 in a way that considers the effect of the minimum best value
found by any of the agents that explore separately in parallel (i.e., without coor-
dination). It is obtained by taking the first derivative of Equation 18 according
to ri(V ), equating it to zero and applying some standard mathematical manipu-
lations. Equation 20 augments Equation 2 in a way that takes into consideration
in f̄ c(x) the minimum value found by the agents exploring in coordination in
addition to the minimum among those exploring individually in parallel.

In order to find the optimal exploration strategy, we need to extract the overall
expected benefit for potentially all possible divisions of the agents into disjoint
(non-overlapping) subgroups. The division for which the highest expected benefit,
EB, is obtained is the one by which the agents should operate. As discussed at
the beginning of the section, for many cm(j) cost functions (e.g., for the linear
case which is highly common), the optimal division of agents is necessarily of the
form of one coordinated group of size k′ ≤ k, and the remaining agents exploring
in isolation. Therefore in this case only k possible solutions need to be evaluated
(i.e., for k′ =0,2,3,..., k) according to Theorem 3. However, even when the cost
function cm(j) is of a different form, the exponential (combinatorial) number of
divisions that need to be evaluated is of small concern, since for most real-life
applications the number of exploring agents is relatively moderate.

3.5. Communication Provider’s Considerations

The goal of a self-interested communication provider is to maximize her expected
benefit, defined in Section 2 as Bp =

∑w
i=1(cm(ki) − cp(ki)), where k1, .., kw are

the sizes of the w groups for which coordination is requested and cp(j) is the
provider’s cost of serving j exploring agents, through the determination of the
service fee cm(j). The change in c(j) results in a different number and sizes of
agent subgroups for which the service is requested (and purchased). While this
may imply that the communication provider needs to optimize over all possi-
ble cm(j) non decreasing functions, for many functions the optimization is sub-
stantially simpler. For example, for the common case where cm(j) is linear in j
(meaning that each additional coordinated agent within the group increases the
coordination fee by a fixed amount cm) this can be done in O(k). This is because,
as discussed at the beginning of Section 3.4, the agents in this case are divided
into one group of coordinated agents, of size k′, and the remaining agents search
individually in isolation from all others. The number of agents using coordination
as a function of cm in this case is a step function and an increase in cm can only
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result in a decrease in the size of the group for which coordination is sought.
Therefore, the provider’s expected benefit as a function of cm can be divided into
k segments, each relating to a different k′ value, where Bp monotonically increases
within each segment, with a sharp change (a “step”) in the transition between
segments (this is illustrated for a specific case in Figure 8 in the next section).
Therefore the provider only needs to consider the set (of size k) of cm values for
which the agents transition to a new k′ value. The value c′m for which the agents
will switch from k′ to k′ − 1 equals the difference in EB when calculated with
cm = 0 for k′ and k′ − 1 according to the guidelines given in Section 3.4. This is
because this latter value captures the agents’ surplus from having another agent
coordination (in addition to the k′ − 1 already coordinated).

In such settings, if an external side-payments mechanism can be used, the
agents may find it beneficial to request the provider to reduce the fee she charges
for the coordination service from its benefit-maximizing fee structure, c∗m(j), to a
socially optimal fee structure csm(j). In exchange, the agents will fully compensate

the provider for the difference
∑w∗

i=1(c∗m(k∗i ) − cp(k∗i )) −
∑ws

i=1(csm(ksi ) − cp(ksi )),
where k∗1 , .., k

∗
w are the sizes of the w∗ groups for which coordination is requested

with the fee structure c∗m(j) and ks1, .., k
s
w are the sizes of the ws groups for which

coordination is requested with the fee structure csm(j). The fee structure the agents
will request to switch to is necessarily cp(j). This is because the agents and the
provider actually share the benefit produced through the cooperative exploration,
after subtracting the actual coordination expense

∑w
i=1 cp(ki). The maximum

“net” benefit is produced if the agents make their decision regarding the extent
of coordination based on the “true” cost of coordination cp(j). Therefore, since
the agents only need to ensure that the provider’s benefit remains the same, an
increase in the overall net benefit will necessarily increase their expected benefit.

4. Numerical Illustration

In order to illustrate the performance achieved with the different methods, we use
a tractable synthetic setting that simplifies calculations yet enables demonstrating
the main solution characteristics in a clean manner (i.e., eliminating the need to
isolate external phenomena that are commonly present in simulated or real-life
applications). The setting uses a uniform distribution function defined over the
interval (0, 1) (i.e., f(x) = 1, ∀0 ≤ x ≤ 1 and zero otherwise). The coordination
fee set by the communication provider is taken to be linear, i.e., cm(j) = j · cm.

We first demonstrate the improvement achieved by taking into considerations
other agents exploration in one’s strategy. For this purpose we introduce Figure 5
which depicts the expected benefit (per-agent) (graph (a)) and reservation value
(graph (b)) as a function of the number of agents, in a setting c = 0.2, for the
case where agents disregard others’ findings (which solution principles, as given
in costly exploration literature, are summarized in 3.1) and the cooperative non-
coordinated method (analyzed in 3.2). We emphasize that the latter method is the
one offering the least performance improvement, as when the coordination cost is
zero, as in this example, with some or full coordination better improvement can
be achieved. From the figure we observe that the performance improvement, even
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Figure 5. (a) Expected benefit as a function of the number of agents. (b) Reservation value as
a function of the number of agents. Both settings use c = 0.2 and cm = 0.

Figure 6. (a) Expected benefit (per agent) in a 3-agents’ exploration as a function of the explo-
ration cost. (b) Expected benefit (per agent) in a k agents’ exploration as a function of k (using

c = 0.01). Both settings use cm = 0.

with the non-coordinated method, can be substantial. As expected, the greater
the number of agents involved, the greater the reservation value used by the agents
when taking into consideration others’ findings. This is explained by the fact that
as the number of agents increases, the expected minimum among the best values
obtained individually decreases, therefore there is a greater benefit in increasing
the reservation value used by the agents.

Figure 6 depicts the effect of the increase in the exploration cost c and the
increase in the number of agents exploring cooperatively over the individual (per
agent) expected benefit using cm = 0. As expected, the fully coordinated case
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Figure 7. Expected benefit (per agent) as a function of the exploration cost, for k = 4, where
the cost of coordination services is: (a) cm = 0.25; (b) cm = 0.1.

dominates exploration with no coordination, as far as expected benefit is con-
cerned, and both the increase in exploration costs and in the number of agents ex-
ploring cooperatively result in a decrease in the expected benefit (per agent). The
correlation between the expected benefit and the number of agents is explained
by the fact that as the number of agents increases, the expected minimum of the
obtained values decreases and more exploration is required. The curve marked
“difference” depicts the difference between the individual expected benefit when
the agents are using full coordination and when exploring with no coordination
at all. When multiplied by the number of agents, this is the usage fee the commu-
nication provider should charge for an unlimited usage of coordination (i.e., for k
agents’ coordination), if its goal is to maximize expected revenue. This is also an
upper bound for the value of coordination in this case.

Figure 7 depicts the expected benefit as a function of the exploration cost
for k = 4, when each curve depicts a different number of agents using coordina-
tion services. The fee for coordination services is cm = 0.25 (Figure 7(a)) and
cm = 0.1 (Figure 7(b)), and the agents can choose to have 0, 2, 3, 4 of them op-
erate in coordination. As expected, when the coordination cost is high, agents
will explore in parallel with no coordination (Figure 7(a)), and when low, coordi-
nation is preferred to different extents (Figure 7(b); the number of agents using
coordination is depicted at the bottom). From Figure 7(b) it is notable that the
choice of how many agents will use coordination depends also on the exploration
cost — when the exploration cost is low, agents can compensate over the lack
of costly coordination with cheap extended exploration. As the exploration cost
increases, the value of coordination increases as the saving achieved in repeated
exploration becomes substantial.

Finally, Figure 8 illustrates the benefit of side-payments, using a setting
where: k = 4, c = 0.1 and cp = 0.08. Figure 8(a) depicts the communication
provider’s benefit as a function of the coordination cost cm she uses. The ben-
efit is determined according to the number of agents that uses the coordination
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Figure 8. (a) Provider’s benefit as a function of the coordination cost cm set. (b) Agents’ overall

expected benefit as a function of the coordination cost cm set. (c) Agents’ overall expected
benefit when side-payments are used, as a function of the coordination cost cm set. The setting

used is: k = 4, c = 0.1 and cp = 0.08.

service, given the cost cm set (depicted at the top of the figure). The provider’s
benefit is maximized for cm = 0.2 (yielding Bp = 0.24). Figure 8(b) depicts the
agents’ overall expected benefit as a function of cm. Finally, Figure 8(c) depicts
the agents’ overall expected benefit if the communication provider sets a differ-
ent cm value (horizontal axis) and the agents compensate her for the loss due
to switching to the new fee (i.e., the compensation is the difference between the
provider’s benefit with cm = 0.2 and the new cm according to 8(a)). As can be
observed from the figure, given the option of side-payments the agents will offer
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Figure 9. The maximum number of opportunities that will need to be evaluated in 99.9% of the
cases (the 99.9th percentile) as a function of exploration cost, for four exploring agents.

the provider to use cm = cp = 0.08 and compensate her accordingly (see Section
3.5). This way, the agents’ expected benefit increases from 1.173 to 1.2.

Before concluding, we note that the analysis was performed under the as-
sumption that the agents are not limited by the number of opportunities they can
potentially evaluate. While this is a standard assumption in costly exploration
theories [27,30,26], it is very likely that even a moderate number of channels will
do. Figure 9 depicts the 99.9th percentile of the number of opportunities that
will be requested by the agents (i.e., the maximum number of opportunities that
will need to be evaluated by any of the agents in 99.9% of the cases) as a func-
tion of the exploration cost, for the different options of dividing four exploring
agents into a coordinated and non-coordinated subgroups.10 The “no coordina-
tion” curve represents a scenario where all agents explore in isolation, with no co-
ordination throughout the exploration. The “4 agents with coordination” relates
to the case of full coordination. From the figure we observe that for most reason-
able values of c, the number of opportunities that will need to be evaluated is rel-
atively moderate (e.g., in this example when having 200 opportunities, in 99.9%
of the cases none of the agents will require exploring an additional opportunity,
according to the optimal strategy, for any cost of exploration c > 0.0001.11 The
importance of this observation is twofold: first, it justifies the use of a stationary
set of thresholds as a solution to the problem, since the probability that the num-
ber of opportunities that the agents will want to evaluate will exceed the number

10It is notable that the coordination cost cm has no effect over this figure since the curves

depict all the different subgroups divisions and not just the best among them.
11Meaning that only for costs of less than 0.0001 more channels will be required. A cost of

this magnitude is equivalent to 0.02%(!) of the mean of an opportunity’s value (which is 0.5 in

the uniform distribution case).
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of available opportunities is, in most settings, negligible. Second, it reassures that

the methods are applicable latency-wise, as the overall latency of the process is

tightly correlated with the number of opportunities evaluated.

5. Experiments with Spectrum Sensing

In this section we demonstrate how the methods introduced and analyzed in the

former sections can be applied in a real-world application. For this purpose we

use the spectrum sensing application which also enables demonstrating how the

analysis can be trivially adapted for the dual problem, i.e., when values represent

“costs” or “expense”, the value that can be used by all agents is the maximum

among those found, and the goal is to minimize the overall expected sum.

5.1. Application

The application we use is spectrum sensing, i.e., the evaluation of different chan-

nels or frequencies one can potentially use as the physical layer for communica-

tion. Consider the case of two students who are working on a course assignment

in the library12 and need to transfer a file between their laptops using the wire-

less network. Both the establishment of communication with the University wire-

less network and the communication associated with the file transfer are battery

consuming and the students are interested in draining their laptops’ batteries as

little as possible. Since the students are working on the same project, they are

cooperative and their goal is to minimize the overall expected batteries power

consumption which is equivalent to minimizing the overall expected time any of

the laptops are engaged either in establishing communication with the network or

actual file transmission. There are several available access points to the wireless

network (e.g., different routers service set identifiers (SSIDs) or different channels

that can be used with each router). These are the opportunities in our model,

each associated with a different bandwidth (depending on the router’s location,

number of users currently using it, the current traffic level through the specific

channel, noise, etc.). In many universities (e.g., at Bar-Ilan University which is

used for our experiments) there is a single virtual access point (SSID) to the net-

work, which can lead to any of the different physical access points (the choice of

which is beyond the user’s preferences or wills). In such cases, sequential attempts

to reconnect to the network result in different physical connections, differing in

the supported transmission bandwidth at the time of connection. The students

thus will establish communication to the network according to some strategy and

the effective transmission rate for transferring the file will be the minimum among

the transmission rates of the two connections formed.

12While the example uses two students/agents, it can be generalized to any number of agents,

k, as used in the analysis and results subsections that follow.
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5.2. Optimal Strategies

Since the goal in the application we use in this section is to minimize the overall
expected costs (i.e., the batteries draining) and the effective value used is the
minimum bandwidth found, which is equivalent to the maximum time needed for
transferring the file, the students actually engage with the dual problem to the
one analyzed in this paper. The transition from the original problem to the dual
one is straightforward as we show in the following paragraphs for the cooperative
non-coordinated exploration analyzed in 3.2.

The optimal reservation value when disregarding others’ findings (i.e., the
method summarized in 3.1) in its overall expense minimizing version is given by
[27]:

c =

∫ r

y=−∞
(r − y)f(y)dy (21)

Here, the exploration is resumed as long as the value obtained is greater than the
reservation value.

When taking into consideration the value restriction, the optimal reservation
value for the cooperative non-coordinated exploration that was analyzed in 3.2
can be derived from:

c=k

∫ r

y=−∞
f(y)

(∫ ∞
x=−∞

(max(r, x)−max(y, x))f̄(x)dx
)
dy (22)

where f̄(x) is given by:

f̄(x) =
d((F returned(x))k−1)

dx
, (23)

where:

F returned(x) =

{
1 x ≥ r

F (x)
F (r) x < r

(24)

Equations 22 and 23 can be obtained by following the proof given for Theorem
1 with the following changes. First, the expected value, EV , is calculated using
the following modifications of Equation (3):

EV =

∫ ∞
y=r

EV f(y)dy +

∫ r

y=−∞
f(y)

∫ ∞
x=−∞
max(y, x)f̄(x)dxdy (25)

Second, the expected cost accumulated along the exploration is given by c
F (r) , as

the resulting Bernoulli sampling process has a success probability of F (r). The
overall expected benefit of the system, EB, is a simple modification of (10) in a
way that the expected cost is added to (rather than subtracted from) the expected
value. Therefore, overall expected benefit is given by:
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EB = k ·
( ∫ ∞

x=−∞

(
x · d(F returned(x)k)

dx

)
dx+

c

F (r)

)
(26)

5.3. Experimental Design

We used the Bar-Ilan University wireless network, to empirically extract the dis-
tribution of connections’ transfer rates. For this purpose we used the IPERF
software (http://code.google.com/p/iperf/) which is a network performance
measurement utility that enables gathering information about the bandwidth of
connections established. Each connection establishment with that tool takes 1
second. We ran a script which established connection to the network 20400 times,
recording the bandwidth reported by the utility for each connection. Based on the
data collected, we formulated the empirical probability distribution function of a
random connection’s bandwidth. In order to assure that re-querying the network
gives a value according to that distribution (rather than having some dependency
between subsequent queries) we randomly picked two samples of 50 consequent
bandwidth readings, each starting at a random point at the stream of data. Then
we run the Wilcoxon rank sum test, a non parametric test aiming to test the
null hypothesis that the data in the two data sets are from the same distribution
([40], Chapter 2) and stored the p-value obtained. The null hypothesis that the
two samples were taken from the same distribution function can be rejected if
the p-value is substantially low (e.g., 0.01 or 0.05). We repeated the process 100
times, each time choosing two other random sequences of 50 consequent readings.
The results show that the average p-value obtained is 0.22 (with a standard devi-
ation of 0.31). This indicate that essentially there is a good reason to believe that
indeed the sampling captured a steady distribution of bandwidth values, with a
low dependency between subsequent readings (if at all). We repeated the process
for different sample sizes, and obtained similar qualitative results: (0.25 average
p-value, with a standard deviation of 0.31), (0.21 average p-value, with a standard
deviation of 0.29) and (0.15 average p-value, with a standard deviation of 0.28)
for 25, 100 and 500 sample sizes, respectively.

We assumed that the file that needs to be transferred is of size 10MB. There-
fore the connection bandwidth distribution could be expressed in terms of the
transmission time distribution. This latter distribution was used as an input for
extracting the expected-time-minimizing reservation values for the case where
agents disregard others’ findings (as summarized in 3.1) and the cooperative non-
coordinated method (see 3.2). As emphasized before, the latter method is the
one offering the least performance improvement and therefore was the one used
for comparison. This allowed us calculating the expected overall time spent on
communication establishment and transmission with the two compared methods.

5.4. Results

Figure 10(a) depicts the empirical bandwidth cumulative distribution function
obtained based on the 20400 random connections established. The maximum con-
nection bandwidth obtained was 2.46Mbps and the minimum was 0. Figure 10(b)
depicts the expected-time-minimizing reservation values as a function of the num-
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Figure 10. (a) The empirical bandwidth cumulative distribution function; (b) The expected over-
all time-minimizing reservation value as a function of the number of agents used (when having

to transfer a 10MB file and c = 1sec); and (c) the percentage of exploration expected overhead
improvement (reduction) for different theoretical bandwidth values when using the proposed
cooperative non-coordinated method rather than disregard others’ findings, as a function of the

number of agents (when having to transfer a 10MB file and c = 1sec).

ber of agents, for each method (expressed in terms of the bandwidth, above which
the exploration process should be terminated). As in Figure 5, and for the same
explanation given there, in the cooperative non-coordinated exploration case the
reservation value used by each agent increases as the number of cooperating agents
increases, whereas in the other method it is not affected by the number of agents.
The improvement achieved with the cooperative non-coordinated exploration is
depicted in Figure 10(c), measured as the percentage of exploration expected over-
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head improvement (reduction) for different theoretical bandwidth values. Notice
that the horizontal axis uses a logarithmic scale. The idea is that the improve-
ment that can be achieved is always bounded by the time the file is transferred,
and since the interval on which the bandwidth distribution is bounded then so
does the expected change in the overall time. For example, since the maximum
bandwidth that can theoretically be achieved is 2.46Mbps, transferring the file
itself will take at least 4.07 seconds, regardless of the exploration method used.
Therefore, the goal is to aim how much we manage to improve beyond the file
transfer time when using some theoretical bandwidth that one may obtain, de-
noted η. Given the theoretical bandwidth η, any time associated with the use of
any of the methods beyond 10Mbps/η is actually an overhead associated with
the exploration process. Given the expected times EB1 and EB2 when using the
two method, respectively, the percentage of overhead reduction for a theoretical
bandwidth η is given by: 1 − (EB1 − 10/η)/(EB2 − 10/η). We note that this
calculation method is very strict, as it assumes the agents can transfer the file at
rate η even without engaging with any exploration whatsoever. For Figure 10(c)
we used three such theoretical bandwidth values: η = 1.5Mbs, η = 2Mbps and
the maximum theoretical possible value of η = 2.4Mbps. As can be observed from
the figure, the percentage of overhead reduction achieved with the cooperative
non-coordinated method is substantial. The actual improvement (overhead reduc-
tion) is actually substantially greater, since, as explained above, this comparison
method assumes the agents can alternatively obtain an η bandwidth even without
exploration, and also the non-coordinated method is the one offering the least
performance improvement among those presented in this paper.

6. Related Work

In many multi-agent environments, autonomous agents may benefit from coop-
erating and coordinating their actions [34,43,44]. Cooperation is mainly useful
when an agent is incapable of completing a task by itself or when operating as
a group can improve the overall performance [24,23,38,13]. Consequently, group-
based cooperative behavior has been suggested in various domains [45,12,46]. The
recognition of the advantages encapsulated in teamwork and cooperative behav-
iors is the main driving force of many coalition formation models in the area of
cooperative game theory and multi-agent systems (MAS) [25,38,18,16]. Overall,
the majority of cooperation and coalition formation MAS-related research tends
to focus on the way coalitions are formed, and consequently concerns issues such
as the optimal division of agents into disjoint exhaustive coalitions [36,48,7], di-
vision of coalition payoffs [48] and enforcement methods for interaction protocols
[29].

The problem of an agent engaged in exploration in a costly environment,
seeking to maximize its long-term utility, is widely addressed in classical search
theory (e.g., [47,41,27,35,26] and references therein). Over the years, several at-
tempts have been made to adopt search theory concepts for agent-based elec-
tronic trading environments associated with exploration costs [37,17,21]. Despite
the richness of search theory and its implications, most models introduced to
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date have focused on the problem of a single agent that attempts to maximize
its own expected benefit. Few studies have attempted to extend the exploration
problem beyond a single goal, e.g., attempting to purchase several commodities
while facing imperfect information concerning prices [17,10,8]. Some even consid-
ered multi-agent cooperative exploration for multiple goals [37]. However, none
of these works applies any constraints on the values obtained along the explo-
ration process. The only constraint on the values obtained by an agent that can
be found in a related work in this area is the availability of recall (i.e., the ability
to exploit formerly explored opportunities) [10,27]. Furthermore, none of these
works considered costly coordination and its different aspects.

In prior work [33,32] we have considered multi-agent exploration in which
one agent’s exploration process is constrained by the findings of the other agents.
Yet, in these models the exploration scheme was constrained, either in the sense
that the agents are arbitrarily ordered and each agent can explore only after
the other agents ordered before it have fully completed their exploration process
(hence the coordination question becomes irrelevant) or by binding all agents to
the same opportunity at any given exploration step (hence full coordination is
mandatory). These constraints preclude the use of a hybrid exploration schemes
of the type proposed in this paper, where some of the agents coordinate their
exploration while others explore in isolation. These differences imply different
exploration strategies and substantially complicates the analysis. Furthermore,
since that prior work does not allow a partial coordination scheme, the modeling of
an external self-interested communication provider and the resulting appropriate
dynamics and side-payments aspects that are investigated in our paper becomes
irrelevant there.

Multi-agent exploration can also be found in “two-sided” models (where dual
exploration activities are modeled) [39,9,28]. The exploration in these models is
used solely for the matching process between the different agents, i.e., for forming
appropriate stable partnerships. The value of each agent from a given partnership
depends on the partnership itself (e.g., the characteristics of the other agent with
whom it partners). In our model, however, the partnership is given a priori and the
value of the partnership is derived from an external exploration process performed
independently by each agent.

Weakly related to our domain are the work on prize-collecting traveling sales-
man problems (PC-TSP) [4] and the graph searching problem (GSP) [22]. In PC-
TSP one needs to pick a subset of the nodes to visit in order to minimize the
total distance traveled while maximizing the total prize collected, given a graph
with prizes associated with the different nodes. Despite the similar elements of
the problem and its many variants [2,14], it substantially differ from our model
in the sense that prizes are not uncertain and there is no cooperative exploration
involved, hence findings are not affected/constrained by the performance of oth-
ers. In the graph searching problem (GSP), the agent needs to find an item which
location is associated with some probability function defined over the different
nodes of the graph. The goal is indeed to minimize the expected cost, however
the costs relate to the search itself and no tradeoff is given between findings and
search costs. More broadly, our problem can be seen as part of the field of plan-
ning under uncertainty, hence related to Markov decision processes (MDP) [5,31]
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and decentralized Markov decision processes [6]. In these models the goal is to
maximize the expected cumulative reward, which is also the objective in our case.
Still, the use of MDPs for our cases is applicable only for the case where oppor-
tunity value is associated with a discrete probability function and the number of
opportunities is finite. It does not provide a solution for a model of continuous
probability distribution function and an infinite decision horizon. More important,
our search-theory-based analysis and proofs result in a threshold-based solution
which both simplifies the strategy and state representation and its complexity is
substantially lesser than the one provided by MDPs.

7. Discussion and Conclusions

As common in MAS applications, coordination plays an important role in coop-
erative exploration, since it enables the agents to refine their exploration strategy
based on the findings of others. Yet, since coordination is inherently costly, the
agents should carefully reason about its extent of use. As the cost of coordination
increases, the agents may find it more beneficial to have only some of them (if
at all) coordinate their exploration. The analysis given in this paper enables the
agents to compute their optimal (expected-benefit-maximizing) exploration strat-
egy as a function of the coordination and exploration costs, for any extent of coor-
dination used. This facilitates their decision regarding the amount of coordination
they should apply.

The model and analysis extend traditional single-agent exploration models to
a cooperative exploration one, according to which several agents engage in indi-
vidual exploration, and the value of each agent from the process depends on the
minimum value found. As discussed throughout the introduction, such a setting
arises in various real-life applications. The analysis given in this paper proves
that the optimal strategy that should be used by the agents is reservation-value
based. Agents exploring in isolation (i.e., with no coordination with the others)
will use a stationary reservation value, whereas those that use the coordination
service will be using a state-based reservation value. The sequential nature of the
exploration process used enables some level of separation in the analysis. The
resulting set of equations that needs to be solved is actually based on each agent’s
best-response strategy given the distribution of the minimum value resulting from
the exploration strategies of the other agents. In some cases this would require
solving for an exponential divisions of the agents into sub-groups that need to
be coordinated. In others, including the mostly common case where the cost of
coordination is linear in the number of agents that consume it, we prove that the
optimal exploration scheme is to have a sub-group of agents using the coordina-
tion service and all other agents exploring with no coordination with the others.
In the latter case, thus, one only needs to extract the optimal exploration strategy
for a number of divisions as the number of agents.

One important implication of the analysis, as illustrated in the former section,
is that when including the strategic behavior of a self-interested coordination
provider, the agents can benefit from the side-payments they make to the provider
in exchange for charging a lower fee for the service. Doing so, the agents manage
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to increase the overall “net” benefit produced (having more agents coordinate
their exploration) and take over a greater part of it. We note that if the provider
could have priced the service in terms of bundles, it could have taken over all
the benefit that could be generated through the use of coordination. Similarly, a
mechanism for discounts could have been devised that would produce the same
result. Still, such solutions are often inapplicable whenever the service is offered
to many groups of agents of different sizes, and prices must similarly apply to all
agents.

Finally, we note that while the model analyzed in this paper assumes that
the coordination costs depend solely on the number of agents coordinated, there
is much room for further research considering other types of coordination cost
functions. For example, the self-interested communication provider may charge
per communication message. In this case the exploration itself will be of a different
structure, in comparison to the reservation-value based scheme used in this paper.
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8. Nomenclature

Notation Meaning

k The number of individual agents that engage in the cooperative exploration (the group’s
size)

f(x), F (x) The probability density function and cumulative distribution function from which the
values of the opportunities agents explore are drawn

c The exploration cost of an opportunity

v∗ The minimum among the best results obtained in any of the individual exploration pro-
cesses

cm(j) The cost of supplying j agents with coordination

Bp The communication provider’s benefit

cp(j) The provider’s cost of providing coordination between j exploring agents

f̄(x) The probability distribution function of the minimum among the best values obtained by
k − 1 other agents in the non-coordinated optimal exploration

r The optimal reservation value in a non-coordinated exploration

EV The expected value with which the agents end up

EB The system’s overall expected benefit

F return(x) The cumulative distribution function of the minimum value obtained throughout an agent’s
exploration

V The system’s state represented as a vector (i.e., V = (v1, .., vk)) where vi (1 ≤ i ≤ k) is
the best value found so far by agent Ai

S(V ) The agents’ strategy, mapping a state V to a decision to resume exploration of agent Ai

or terminate exploration

Vmin The minimum value in V (i.e., Vmin = min(v1, .., vk))

r(V ) The reservation value to be used when in state V

σ(V, y) The new state to which the system transitions, if it was initially in state V , after the agent
associated with Vmin has obtained a value y in its exploration

EB(V ) The system’s expected benefit, onwards, when in state V

ki The number of individual agents of the i-th subgroup exploring with coordination

ri(V ) The reservation value function used by the agents of the i-th subgroup, upon reaching a
state V = {v1, ..., vki

} in its coordinated exploration

fci (V, x) The probability distribution function of the minimum among the best values obtained by
the ki agents of the i-th subgroup exploring with coordination, given that they start from
state V

F c
i (x) The probability that the agents in the i-th subgroup end up with a minimum value (among

the best individually found) of x or below

f̄ci (x) The probability distribution function of the minimum of the best findings of all agents
other than those in the i-th subgroup

f̄c(x) The probability distribution function of the minimum of the best findings of all agents,
except for one single agent among those that explore in isolation

EVi(V ) The expected minimum value with which the agents end up given that the agents of the
i-th subgroup are in state V and no other a priori information regarding the findings of
the other agents

ECi(V ) The expected overall cost of the i-th subgroup if using a reservation value function ri(V )

EC The expected overall cost of all k agents
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