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Abstract.
The paper focuses on mining clusters that are characterized by a lagged relationship

between the data objects. We call such clusters lagged co-clusters. A lagged co-cluster
of a matrix is a submatrix determined by a subset of rows and their corresponding lag
over a subset of columns. Extracting such subsets may reveal an underlying govern-
ing regulatory mechanism. Such a regulatory mechanism is quite common in real life
settings. It appears in a variety of fields: meteorology, seismic activity, stock market
behavior, neuronal brain activity, river flow and navigation, are but a limited list of
examples. Mining such lagged co-clusters not only helps in understanding the relation-
ship between objects in the domain, but assists in forecasting their future behavior. For
most interesting variants of this problem, finding an optimal lagged co-cluster is NP-
complete problem. We present a polynomial-time Monte-Carlo algorithm for mining
lagged co-clusters. We prove that, with fixed probability, the algorithm mines a lagged
co-cluster which encompasses the optimal lagged co-cluster by a maximum 2 ratio
columns overhead and completely no rows overhead. Moreover, the algorithm handles
noise, anti-correlations, missing values, and overlapping patterns. The algorithm is ex-
tensively evaluated using both artificial and real-world test environments. The first
enable the evaluation of specific, isolated properties of the algorithm. The latter (river
flow and topographic data), enable the evaluation of the algorithm to efficiently mine
relevant and coherent lagged co-clusters in environments that are temporal, i.e., time
reading data, and non-temporal.
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1. Introduction

In order to benefit from the continuous improvements in digital data collection
capabilities, efficient data mining and analysis tools are required. One impor-
tant tool in this context, which has numerous applications is clustering (Jain,
Murty and Flynn, 1999). Following seminal work by Cheng and Church (Cheng
and Church, 2000) in the area of gene expression using microarray technology,
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substantial focus has been placed in recent years on co-clustering (Madeira and
Oliveira, 2004; Jiang, Tang and Zhang, 2004). Co-clustering extends clustering
by allowing simultaneous clustering of the rows and columns of a data matrix,
aiming to identify a subset of rows which exhibit similar behavior across a sub-
set of columns, or vice versa. Many co-clustering techniques have been proposed
over the years (kernel based, exhaustive enumeration, spectral analysis, greedy,
CTWC, bayesian networks and others). Yet, only few have considered the prob-
lem of finding co-clusters involving lagged correlations between the behavior
of a subset of rows (objects) over a subset of columns (Yin, Zhao, Zhang and
Wang, 2007; Wang, Yin, Zhao and Mao, 2010). This latter case, which may re-
veal an underlying regulatory mechanism governing the value of the participating
objects, is of great importance as it is quite common in real life settings. For ex-
ample, consider the problem of identifying a group of people coordinating their
movements in a crowd (e.g., trying to get from point A to point B). If the group
keeps its original formation, then the trajectories of the members’ spatial posi-
tions over time form a lagged pattern. Similarly, consider the application of oil
and gas exploration based on reflection seismology (Yilmaz and Doherty, 2001).
Here, seismometers are placed on the surface, recording seismic waves. A sin-
gle initiated explosion creates a wave which is reflected from each underground
layer with varying time differences (depending on the depth and structure of that
layer). Therefore, an appropriate time lagged analysis of the reflections received
by different seismometers placed in different locations on the ground may reveal
the structures and dimensions of the layers (Yilmaz and Doherty, 2001).

We denote this problem of extending co-clusters to capture lagged correla-
tions between a subset of rows over a subset of columns as a ‘lagged pattern’
(see Figure 1, based on (Yin et al., 2007)). While the idea of finding lagged
patterns between different streams of data is not new, existing methods are
inherently limited to comparing pairs of objects (Kenett, Shapira and Ben-
Jacob, 2009; Granger, 1969) or mining clusters consisting of contiguous columns
(Ji and Tan, 2005; Madeira, Gonçalves and Oliveira, 2007; Huang, 2006) and
thus cannot be successfully applied to the general lagged co-clustering problem.

As in most clustering problems, there are various measures for the quality
of clusters found (e.g., perimeter, area). Given the fact that co-clustering is a
specific case of lagged co-clustering, with a zero lag, the problem is NP-complete
for any measure for which the non-lagged co-clustering problem is NP-complete.
In particular, we base our model on (Cheng and Church, 2000; Madeira et al.,
2007), a variant proved to be NP-complete, adding to it a lag aspect, which is
also proved to be NP-complete.

The main contribution of this paper is a polynomial-time Monte-Carlo al-
gorithm for mining lagged co-clusters, denoted LC. To the best of our knowl-
edge, this is the first attempt to develop a polynomial approximation to the
problem. The LC algorithm takes as input a real number matrix and a maxi-
mum error value and outputs lagged co-clusters whose errors do not exceed a
2 ratio of the pre-specified value. As part of the analysis, we prove that with
fixed probability the algorithm mines a lagged co-cluster which encompasses the
optimal lagged co-cluster with a maximum 2 ratio columns overhead and com-
pletely no rows overhead. This guarantee holds for any monotonically increasing
objective function defined over the cluster dimensions. The LC algorithm han-
dles many of the inherent shortcomings common to non-lagged data (Tanay,
Sharan and Shamir, 2005). For example, it overcomes noise (erroneous reading
due to local noise, equipment accuracy, experimental or human error), anti-
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c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 4.1 1 3.2
r2 2 4.2 3.1 1.1
r3 17.1 4.4 12.5
r4 2.1 4.2 3.2 1.1
r5 8.6 2.2 6.4
r6 6.3 12 9.3 3.1
r7 10.7 20.3 15.5 5.2
r8 4.1 8.3 6.3 2.1
r9

r10 4 1.1 3.3

(a) Dataset

Hj 2 4 3 1 1 3
Gi Ti c1 c2 c3 c4 c5 c6 c7 c8 c9

1 0 r2 2 4.2 3.1 1.1
5 0 r7 10.7 20.3 15.5 5.2
2 -1 r8 4.1 8.3 6.3 2.1
3 -2 r6 6.3 12 9.3 3.1
1 1 r4 2.1 4.2 3.2 1.1
1 0 r1 4.1 1 3.2
4 0 r3 17.1 4.4 12.5
2 0 r5 8.6 2.2 6.4
1 0 r10 4 1.1 3.3

r9

(b) Lagged dataset

0

5

10

15

20

c3 c4 c5 c6 c7

r1 r3 r5 r10

(c) Co-cluster

0

5

10

15

20

25

c1 c2 c3 c4 c5 c6 c7 c8

r2 r7 r8 r6 r4

(d) Lagged co-cluster

Fig. 1. Example dataset: (1a) example of matrix dataset. For simplicity, certain
cells have been left blank in the table. (1b) the same matrix after row permuta-
tion. Two clusters emerge from (1b): A decadent type of lagged co-cluster, with
no lag, located at the lower part of the matrix, marked with black fonts, blue
shadow and orange dashed envelope, (visually presented in (1c)); and lagged co-
cluster, located at upper part of the matrix, marked with red fonts, gray shadow
and black solid envelope (visually presented in (1d)).

correlations (down-regulated, adapting gene expression terminology), missing
values (e.g., due to equipment malfunction) and overlapping patterns. Further-
more, the lagged co-clusters are mined even if the amplitude of the reflected val-
ues fades along columns (as in the seismometers example). The output’s structure
is application dependent (e.g., maximum cluster, minimum coverage). Therefore,
it is up to the application to decide how to utilize the LC algorithm Monte-Carlo
nature of mining independent lagged co-clusters (i.e., collect into a list, set, or
just, on-line processing).

The algorithm and its properties are extensively evaluated using artificial
data and real-world data from two different domains (topographic data and
river flow data). The artificial data is used mainly to demonstrate the efficiency
of the algorithm in mining relevant and coherent lagged co-clusters, to verify
the theoretical bounds and to show actual performance (e.g., run-time, hit rate).
The data from the two other domains are used to demonstrate the ability of the
algorithm to produce relevant and valid clusters based on overlapping, partially
missing and noisy real data.
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The remainder of the paper is organized as follows: in the following section
we review related work. In Section 3 we formally introduce the model and show
that for most interesting variants of the problem it is NP-complete. Section 4
presents the algorithm while Section 5 gives a proof of the probabilistic guarantee
to efficiently mine relevant lagged co-clusters. Section 6 analyzes the running
time. Section 7 presents an extension to the model while Section 8 presents the
experiments conducted and their results. We conclude with a discussion and
directions for future research in Section 9.

2. Related Work

A wealth of research has been undertaken studying clustering (see a survey by
(Jain et al., 1999)), emerging from a variety of fields: biology, physics, economics,
computer science and more. A typical clustering problem considers the case of
extracting clusters from a matrix dataset where the rows represent objects and
the columns represent the features of the object (Jain et al., 1999; Jiang, Tang
and Zhang, 2004).

Simple mining techniques look for fully dimensional clusters: subsets of rows
over all columns, or subsets of columns over all rows (Kenett et al., 2009; Erdal,
Ozturk, Armbruster, Ferhatosmanoglu and Ray, 2004, inter alia). These tech-
niques have several inherent vulnerabilities, e.g., difficulty in handling the com-
mon presence of irrelevant, noisy or missing features, and inaccuracy due to the
‘curse of dimensionality’ (Bellman, 1966; Moise, Zimek, Kroeger, Kriegel and
Sander, 2009); all these may be counter-productive as they increase background
noise (Jiang, Tang and Zhang, 2004; Madeira and Oliveira, 2004).

To overcome these obstacles, one has to find the relevant subspace for a par-
ticular pattern and ignore the rest, i.e., mining clusters contained in subset of
rows over a subset of columns. This type of clustering is known as biclustering,
co-clustering, co-regulation or simply clustering. The different approaches for co-
clustering (see surveys by (Madeira and Oliveira, 2004; Tanay et al., 2005; Moise
et al., 2009)), are based on various models: additive vs. multiplicity, axis align-
ment, rows over columns preferment, cluster scoring function, overlapping, etc.;
and, algorithmic strategies: greedy (Cheng and Church, 2000; Ayadi, Elloumi
and Hao, 2011), kernel based (Lonardi, Szpankowski and Yang, 2006; Procopiuc,
Jones, Agarwal and Murali, 2002; Yang, Wang, Wang and Yu, 2003), exhaus-
tive enumeration (Tanay, Sharan and Shamir, 2002), spectral analysis (Kluger,
Basri, Chang and Gerstein, 2003), CTWC (Getz, Levine and Domany, 2000),
bayesian networks (Barash and Friedman, 2002), etc. Substantial effort has been
directed at non-lagged co-clustering of datasets with temporal nature (Jiang,
Pei and Zhang, 2003; Bar-Joseph, Gifford, Jaakkola and Simon, 2002; Jiang,
Pei, Ramanathan, Tang and Zhang, 2004; Moller-Levet, Klawonn, Cho, Yin and
Wolkenhauer, 2005, inter alia), surveyed by (Roddick and Spiliopoulou, 2002),
utilizing time as a natural ordering on the columns.

The lagged co-clustering model generalizes the co-clustering model by intro-
ducing lags (shifts) between the dataset’s objects. Most algorithms that aim to
mine lagged co-clusters do so by working on pairs of rows (Wu, Li and Chen, 2007;
Zeng and Liu, 2008; Ramsey, Klemm, Zak, Kennedy, Thorsson, Li, Gilchrist,
Gold, Johnson, Litvak et al., 2008; Chuang, Jen, Chen and Shieh, 2008). They
differ in the correlation techniques being used: cross-correlation, normalized,
Granger, Pearson, partial and others (Kenett et al., 2009; Granger, 1969; Baralis,
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Bruno and Fiori, 2011, inter alia). Extending these algorithms to mine clusters
of more than two rows requires combinatorial solutions (e.g., merging), which
are both time consuming and heavily depend on the closeness merit function. In
addition, correlated pairs do not necessarily have the transitive property (Kenett
et al., 2009).

Among the few studies that have considered a lagged co-clustering model
involving clusters of more than two rows, most are focused on a decadent variant
where the goal is to find a subset of the rows over a sequential subset of the
columns (Ji and Tan, 2005; Madeira et al., 2007; Huang, 2006; Xu, Lu, Tan and
Tung, 2008).

One algorithmic approach for the sequential variant is to discretize the real
number input matrix by transforming into a finite alphabet Σ. The resulting
matrix, Σm×n, enables the use of fast string matching techniques that run in a
polynomial time (see q-cluster algorithm (Ji and Tan, 2005; Huang, 2006) and
the CCC-Biclustering algorithm (Madeira et al., 2007)). The main drawback
of this approach is the alphabet size. Since it requires data discretization, a coarse
abstraction using a small alphabet may lead to greater errors and finer clusters
being missed. Using large |Σ| will have a dramatic influence on the run-time as
it is exponentially dependent on |Σ|.

Another approach suggested for the sequential variant uses a dynamic pro-
gramming method. It first searches for small coherent clusters to serve as building
blocks. Then, it hierarchically merges them, while activating pruning methods
(see S2D3 algorithm (Xu et al., 2008)). The main drawback of this approach is
an exponential run-time.

The work most relevant to our research is the ts-Cluster algorithm pro-
posed by (Yin et al., 2007) and its recently evolvement, the td-Cluster al-
gorithm, by Wang et al. (Wang et al., 2010). The ts-Cluster algorithm uses
dynamic-programming and hierarchical-merging (with pruning) approach in or-
der to mine lagged co-clusters. Its main drawback is the reduction to a small
alphabet, Σ={up, non, down}, resulting with clusters representing trends rather
than a more subtle model. This limitation was later removed by the td-Cluster
algorithm that mines clusters of the type used in this paper. Still, the running
time of both algorithms is exponential.

We note that all works cited here were also unable to find substantial previ-
ous reference to the lagged co-clustering problem and that the state-of-the art
algorithms for this problem has exponential run-time (Yin et al., 2007; Wang
et al., 2010).

3. Model

In order to present the lagged co-clustering model, we augment the legacy co-
cluster definition (Cheng and Church, 2000) to include the lagging aspects. A
lagged co-cluster of an m× n real number matrix X, is a submatrix determined
by a subset I of the rows and their corresponding lags, denoted T (|T | = |I|), over
a subset of the columns J , aligned to some extent to a lagged mechanism (see
Figure 1). A lagged regulatory mechanism holds if for every two rows i1, i2 ∈ I
and their corresponding lags Ti1 , Ti2 , the proportion between the entries over
all j ∈ J is constant, independent of J : Xi1,j+Ti1

/Xi2,j+Ti2
= Ci1,i2 ∀j ∈ J ,

revealing: a latent variable Gi indicating object i’s regulation strength; a latent
variable Ti indicating the influencing-lag of object i and a latent variable Hj
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indicating the regulatory intensity in sample j (see Figure 1b).1 Therefore, in a
lagged co-cluster, we expect the submatrix elements to comply with the relation:
Xi,j ≈ GiHj+Ti

for all (i, j) ∈ (I, J). A particular measure for the deviation in
Xi,j from the approximation GiHj+Ti

is the modification of the relative error
criteria used for non-lagged co-clusters (Wang et al., 2010): GiHj+Ti/Xi,j . Our
goal is to mine large submatrices, following a lagged regulatory mechanism, with
a relative error below a certain pre-defined threshold:

1

η
≤ GiHj+Ti

Xi,j
≤ η, ∀ i ∈ I, j ∈ J. (1)

To facilitate analysis, we switch from a multiplicative model to an additive
model by applying logarithm transformation, setting Ai,j = logXi,j , Ri = logGi,
Cj+Ti = logHj+Ti and ε = log η. Therefore, our problem translates to finding
Ri, Ti and Cj such that for all i, j,

−ε ≤ (Ri + Cj+Ti)−Ai,j ≤ ε.
Notice that for lagged-anti -correlations, i.e., Xi,j ≈ Gi/Hj+Ti , one should use:

−ε ≤ (Ri − Cj+Ti)−Ai,j ≤ ε.
We note that other models, such as derivative or power-law, can be easily in-

corporated in the above formulation.
The optimal size submatrix depends on the merit function f(|I|, |J |) used. We

can rank a submatrix by its perimeter, |I|+ |J |, area, |I| · |J |, or any other trade-
off between the number of rows and the number of columns. Previous work (e.g.,
(Procopiuc et al., 2002)) mainly handled biological datasets characterized by
thousands of rows over tens of columns (Jiang, Tang and Zhang, 2004). Therefore,
it was reasonable to consider a trade-off µ(|I|, |J |) = |I|/ψ|J|, 0 < ψ < 1, as in
the case of m � n the inclusion of an additional column is worth the exclusion
of a relatively large number of rows. In contrast, lagged co-cluster datasets are
often characterized by time readings. This results in hundreds or thousands of
columns, or, in an on-line version, an infinite stream of columns. Therefore, any
assumption regarding the relation between the number of rows and the number
of columns is futile. Consequently, we allow the use of any monotonically growing
objective function µ(|I|, |J |). Our problem thus turns into finding an optimal size
submatrix with a relative error below a certain threshold.

Definition 1. The sleeve-width of a submatrix A, defined by a subset J of
columns, a subset I of rows and their corresponding lag T , is:

swT (I, J) = 2 min
R,T,C

max
i∈I,j∈J

|Ai,j −Ri − Cj+Ti | (2)

The notion of sleeve-width reflects the extent to which an entry i, j in the lagged
co-cluster is allowed to deviate from being considered as the summation of Ri +
Cj+Ti . The sleeve, therefore, represents the minimal “envelope” surrounding
the deviating entries.

At this point, we have all we need in order to formally define a lagged co-
cluster. However, we extend the model to include two additional parameters,
β and γ, that allow the user to specify the minimum dimensions of the mined

1 Based on the standard co-cluster model definition, according to which ∀j ∈ J, Xi1,j/Xi2,j =
Ci1,i2 (multiplicative model (Wang et al., 2010); additive model (Cheng and Church, 2000)).
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cluster: we denote by β the minimum number of the rows, expressed as a fraction
of m and by γ the minimum number of the columns, expressed as a fraction of
n.

Definition 2. Given 0 < β < 1 and 0 < γ < 1, constants independent of the
matrix dimensions m, n. A lagged co-cluster of matrix A with a sleeve-width
w > 0 is a triple (I, T, J), with J a subset of the columns, I a subset of the rows
and T their corresponding lag, that satisfies the following:

–Size: The number of the rows is 2 ≤ βm ≤ |I| = |T | and the number of the
columns is 2 ≤ γn ≤ |J |.

–Sleeve-width: swT (I, J) ≤ w. i.e., for all i ∈ I and j ∈ J there are Ri, Ti
and Cj , such that |Ai,j −Ri−Cj+Ti

| ≤ w/2. Ri, i ∈ I will be called a column
profile, Ti, i ∈ I will be called a lagged column profile and Cj , j ∈ J will be
called a row profile.

Therefore, lagging and shifting row i by Ti and Ri, respectively, will place each
column j ∈ J within a sleeve-width of w surrounding the row profile. For the
specific case where Ti = 0, we obtain a definition equivalent to the one used for
non-lagged co-clustering (Melkman and Shaham, 2004).

Before analyzing the problem complexity we want to emphasize an important
feature of the model: independency in the amplitude of an object’s data. This
feature is important for many applications where lagged co-clusters are likely
to be found. For example, consider the seismometers application. A shock is
an amplitude function Hj . Due to soil resistance, a shock fades with distance,
resulting in amplitude at location Ti as Hj ∗ g(distancei), where g is some de-
creasing function. Therefore, a seismometer i will present the shock readings as a
function of GiHj+Ti , where Gi = g(distancei). Thus, two seismometers i1 and i2
with distancei1 < distancei2 from the shock’s source, will be located in a lagged
co-cluster, with T1 < T2 and G1 > G2.

3.1. Problem Complexity

Several papers have shown that even the simplified problem of finding the largest
co-cluster is NP-complete (Lonardi et al., 2006; Cheng and Church, 2000). In this
subsection we generalize this result by presenting few inapproximability results
regarding various optimization versions of the lagged co-clustering problem. We
address two optimization problems: (1) Finding the largest single lagged co-
cluster; and (2) Finding the minimal set of lagged co-clusters which covers all
patterns in the data.

Observation 1. The lagged co-clustering problem (I, T, J) can be reduced to a
non-lagged co-clustering problem (I, J) such that any hardness (or inapproxima-
bility) results for the non-lagged problem implies the same results for the lagged
problem.

Proof. Any valid input for the co-clustering problem can be seen as a degener-
ate case of the lagged co-clustering problem (lag = 0). We reduce the lagged
co-clustering problem (I, T, J) to a non-lagged co-clustering problem (I, J) by
converting the lagged-matrix, A, of size [m × n], into a non-lagged one, A′, as
follows. Randomly choose a row p ∈ A. For every other row i ∈ A, create 2n new
entries in A′, each with a different lag in comparison to p (i.e., −n ≤ lag ≤ n).
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Null entries resulting from such alignments are marked as missing values. The
resulting non-lagged matrix A′ is of size [2nm× 3n].

Observation 2. Any unweighted graph G(V,E) can be represented as an input
to the lagged co-clustering problem.

Proof. A graph G (|V | = n) can be presented as a neighbors matrix M(G) ∈
{0, 1}n×n: M(G)[i][j] = M(G)[j][i] = 1 iff there is an edge between vertex i and
vertex j in G. We construct a co-clustering problem (I, J) by creating a matrix
A and assigning Ai,j = 0 if M(G)[i][j] = 1 and Ai,j = (n · i+ j) otherwise. This
co-clustering correlation matrix is the same as M(G) for small enough sleeve-
width, w < 1

n2 (as the assigned values for Ai,j are in the range 1 to n2). Finally,
using Observation 1 we move to the lagged co-clustering problem.

Theorem 1. It is NP-complete to approximate the size of the largest combina-
torial square co-cluster with an approximation factor of n1−ε.

Proof. For general graphs, it is NP-complete to approximate the size of the
Max-Clique with an approximation factor of n1−ε (H̊astad, 1999; Khot, 2002).
Following Observation 2, any approximation algorithm for finding the maximal
combinatorial square in the lagged co-clustering problem can be used to approx-
imate the Max-Clique problem with the same approximation factor. Thus, it can
not be approximated with a factor of n1−ε, unless P = NP .

Theorem 2. It is NP-complete to approximate the size of the minimal sequen-
tial cluster-set for the co-clustering problem within a constant factor (Max-SNP-
Hard).

Proof. In this limited case, only sequential clusters may be considered, which can
be seen as geometric rectangles (opposed to combinatorial rectangles clusters in
the general case). It is NP-complete to approximate the minimal set of geometric
rectangles covering a rectilinear polygon with holes with a constant factor ratio
(Anil Kumar and Ramesh, 2003; Berman and DasGupta, 1997). Any rectilinear
polygon with holes P (|P | = n) can be translated to a corresponding matrix
M(P ) ∈ {0, 1}n×n (Anil Kumar and Ramesh, 2003). Therefore, any algorithm,
with a constant approximation factor to the limited co-clustering problem, can
be used to approximate the rectilinear polygon covering problem with a constant
factor approximation ratio.

Theorem 3. It is NP-complete to approximate the minimal set of combinatorial
squares (co-cluster set) with an approximation factor of n1−ε.

Proof. In General graphs it is NP-complete to approximate the minimum clique
partition (MCP ) with an approximation factor of n1−ε (Zuckerman, 2007). Using
Observation 2, any clique in G will be represented as a combinatorial square in
M(G). Therefore, approximating the minimal set of combinatorial squares with
factor of n1−ε, enables the approximation of the minimum clique partition with
the same approximation factor.

4. The LC Algorithm

In this section, we present the LC algorithm, a polynomial time Monte-Carlo
algorithm. Naturally, the design of LC is mostly influenced by solution concepts
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introduced for non-lagged co-clustering problems (Lonardi et al., 2006; Melkman
and Shaham, 2004). The input of the algorithm is: a matrix A of real numbers; a
sleeve-width w; the minimum fraction of the rows β; and the minimum fraction
of the columns γ. The algorithm outputs lagged co-clusters that comply with the
specified w, β and γ. We show that, with fixed probability, the output contains
a lagged co-cluster that encompasses the optimal lagged co-clusters. The mined
cluster reveals the lagged rows of the optimal cluster with a maximum 2 ratio
of its columns (i.e., a maximum addition of J columns) and a maximum 2 ratio
of its sleeve. The algorithm makes use of random projection, which is a common
technique for mining co-clusters (Lonardi et al., 2006; Procopiuc et al., 2002).
It inherently handles noise and overlapping: noise by allowing the lagged co-
cluster to be of some maximal pre-specified sleeve-width; overlapping by utilizing
the independent random projection to reveal sub-dimensions relevant only to a
specific cluster. Missing values are overcome by calculating the coherence of a
lagged co-cluster on the non-missing values of the submatrix (Yang et al., 2003;
Melkman and Shaham, 2004).

Figure 2 presents the LC algorithm. Generally, the algorithm can be divided
into the following phases: (1) Initialization: randomly choose a discriminating
row and a discriminating set of columns as seeds; (2) Row addition: go over
all rows and lags and add those that comply with the sleeve-width criteria; (3)
Column addition: go over all the columns and add the ones that comply with the
sleeve-width criteria. The inclusion of a row or a column only after complying
with the sleeve-width criteria, guarantees that only relevant rows and columns
are added to the lagged co-cluster.

The calculation of swT (I, J) (in lines 7, 9) is done by computing sw(I, J)
(Melkman and Shaham, 2004) on the non-lagged submatrix. Such a non-lagged
submatrix is obtained by lagging each row i ∈ I relative to p by Ti (Tp = 0).
Null entries resulting from the lagging process are marked as missing values.

5. Optimality of LC Algorithm

Next we show some guarantees of the LC algorithm’s ability to efficiently mine
relevant and coherent lagged co-clusters. These guarantees are demonstrated
experimentally in Section 8. We prove the LC algorithm guarantees finding with
a fixed probability, in a polynomial number of iterations, a lagged co-cluster that
encompasses an optimal lagged co-cluster. The mined lagged co-cluster will have
the same lagged rows as the optimal one with a maximum 2 ratio of its columns
and sleeve. The structure of the proof is inspired by (Melkman and Shaham,
2004) and consists of two major stages. First, we show that an optimal lagged
co-cluster can be mined using a log-size discriminating set with a probability
of at least 0.5. Based on this capability, we then show that when running the
LC algorithm in a polynomial number of iterations, it mines a lagged co-cluster
encompassing the optimal lagged co-cluster with probability of at least 0.5.

The proof relies on the important insight that a sufficient size for a discrim-
inating set is logarithmic in the size of the set (Procopiuc et al., 2002; Lonardi
et al., 2006). This latter result enables the use of a small subset, of O(log(mn))
size, randomly chosen from the columns, which discriminates the participating
rows and their lags.

The definition of a discriminating set for the lagged model is given as follows.
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LC Algorithm
Input: X, a m× n matrix of real numbers; w ≥ 0, the maximum
acceptable sleeve-width; β, the minimum fraction of rows and γ,
the minimum fraction of columns.
Output: A collection of (I, T, J), each defining a lagged co-cluster
based on the columns in J , the rows in I and their corresponding
lags T , having a sleeve-width that does not exceed 2w.
Initialization: Setting N and |S| is thoroughly discussed in
the following section.

1: loop N times
2: randomly choose row p : 1 ≤ p ≤ m;
3: randomly choose a set of columns S;
4: set (I, T )← (p, 0);
5: set J ← S;
6: for each (i, t) : 1 ≤ i ≤ m, −n ≤ t ≤ n do
7: if swT (I ∪ {i}, J) ≤ w then

add (i, t) to (I, T );
end for

8: for each j : 1 ≤ j ≤ n do
9: if swT (I, J ∪ {j}) ≤ 2w then

add j to J ;
end for

10: if |I| < βm or |J | < γn then discard (I, T, J);
end loop

11: return a collection of (I, T, J);

Fig. 2. LC algorithm for finding lagged co-clusters

Definition 3. Let (I, T, J) be a lagged co-cluster of sleeve-width w, and p ∈ I.
S ⊆ J is a discriminating set for (I, T, J) with respect to p if it satisfies:

1. swT ({i, p}, S) ≤ w for all (i, t) ∈ (I, T ).

2. swT ({i, p}, S) > w for all (i, t) /∈ (I, T ).

We next show that for an optimal lagged co-cluster (I∗, T ∗, J∗), there are many
small sets of size O(log(mn)), each of which is a discriminating set with a prob-
ability of at least 0.5. This latter result is important since upon selecting p ∈ I∗
and S ⊆ J∗, we can deduce I∗, T ∗ and J∗. Furthermore, the capability of finding
a discriminating set with a probability of at least 0.5, is later used by Theorem 5
to mine a lagged co-cluster encompassing the optimal lagged co-cluster, in a
polynomial number of iterations.

Theorem 4. Let (I∗, T ∗, J∗) be an optimal lagged co-cluster of sleeve-width w,
with γ ≤ (|J∗|/n) < γ′, and let p ∈ I∗. Any randomly chosen subset S of J∗,
of size |S| ≥ log(4mn)/ log(1/3γ′), is a discriminating set for (I∗, T ∗, J∗), with
respect to p with a probability of at least 0.5.

Proof. We show that for any S that satisfies the above, condition (1) of Defini-
tion 3 always holds and the probability that condition (2) does not hold is less
than 0.5.

Let R∗i , i ∈ I∗, be a column profile, T ∗i , i ∈ I∗ a lagged column profile,
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and C∗j , j ∈ J∗, a row profile for (I∗, T ∗, J∗). Condition (1) of definition 3 is
always satisfied, since {i, p} ⊆ I∗ and S ⊆ J∗, so swT ({i, p}, S) ≤ swT∗(I∗, S) ≤
swT∗(I

∗, J∗) ≤ w.
Moving to condition (2) of Definition 3 we note that S fails to be a dis-

criminating set for (I∗, T ∗) with respect to p, only if there exists a lagged row
(i, t) /∈ (I∗, T ∗) such that swT ({i, p}, S) ≤ w. We next show that the probability
of this for a particular row i and lag t is at most (3|J∗|/n)|S| < (3γ′)|S|.

According to Definition 2, swT ({i, p}, S) ≤ w means that there are Ri, Ti,
Rp, Tp(= 0), and Cj , j ∈ S, such that:

|Ai,j −Ri − Cj+Ti
| ≤ w

2
, |Ap,j −Rp − Cj+Tp

| ≤ w

2
, ∀j ∈ S.

Shifting row i ∈ I (in the first inequality) by Ti and subtracting the second
inequality (of row p) we obtain |Ai,j − Ap,j − R| ≤ w for all j ∈ S, and some
R(= Ri − Rp). Due to the lagged co-cluster optimality, we show that there are
no more than 3|J∗| columns j that satisfy this inequality.

If |Ai,j − Ap,j − R| ≤ w then: −w ≤ Ai,j − Ap,j − R ≤ w. After adding
(Ap,j − C∗j −R∗p) to both sides we obtain: (Ap,j − C∗j −R∗p)− w ≤ Ai,j − C∗j −
R∗p−R ≤ (Ap,j−C∗j −R∗p)+w. Since (I∗, T ∗, J∗) is an optimal lagged co-cluster,
|Ap,j − C∗j −R∗p| ≤ w/2 for all j ∈ J∗, it follows that:

−3

2
w ≤ Ai,j − C∗j −R∗p −R ≤

3

2
w.

Lemma 1. Let J ⊆ J∗, and let (i, t) /∈ (I∗, T ∗). If |Ai,j − C∗j − r| ≤ w/2 for
some r and all j ∈ J , then J ⊂ J∗.

Proof. The lagged co-cluster (I, T, J), with J ⊇ J∗, I = I∗ ∪ {i} and T =
T ∗ ∪ {t}, is a lagged co-cluster of sleeve-width w satisfying µ(I, J) > µ(I∗, J∗),
contradicting the optimality of (I∗, T ∗, J∗).

Therefore, for a lagged row (i, t) /∈ (I∗, T ∗), and for each of the intervals:
[− 3

2w,−
1
2w], [− 1

2w,
1
2w] and [ 12w,

3
2w], there are at most |J∗| columns j such

that Ai,j −C∗j −R∗p − r lies in that interval, summing to at most 3|J∗| columns
satisfying |Ai,j −Ap,j −R| ≤ w.

Therefore, the occurrence probability for some lag t (−n ≤ t ≤ n) and
some row i (1 ≤ i ≤ m) is bounded (after substituting |J∗|/n < γ′ and |S| ≥
log(4mn)/ log(1/3γ′)) by 2mn(3J∗/n)|S| < 0.5.

According to Theorem 4, any set of size |S| ≥ log(4mn)/ log(1/3γ′), randomly
selected, is a discriminating set with probability of at least 0.5.

Corollary 1. The bound of |S| is very hard to set as γ′ is unknown. In Subsec-
tion 8.1.2 we show experimentally that a random subset of size 0.4 log(4mn) + 2
will do, freeing the user from specifying the γ′-trade-off.

Corollary 2. The minimum probability of the set S to discriminate is 0.5 and
is regulated by its size. In Subsection 8.1.3 we show the relation between the
discriminating set size and its discriminating probability. Moreover, in Subsec-
tion 8.1.5 we show experimentally that using a large enough discriminating set
enables an exact mining of the optimal lagged co-cluster.
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Theorem 5. Let S be a discriminating set for an optimal lagged co-cluster
(I∗, T ∗, J∗) of sleeve-width w. Provided N ≥ 2 ln 2/βγ|S|, with a probability of
at least 0.5, the LC algorithm will mine a lagged co-cluster (I,T,J) such that:
I = I∗, T = T ∗, J ⊇ J∗ and |J | ≤ 2|J∗|. The sleeve-width of the lagged co-
cluster is bounded by swT (I, J) ≤ 2w.

Proof. Since |I∗| ≥ βm, the probability of choosing a row that satisfies p ∈ I∗ is
at least β. The probability of satisfying the columns discriminating set S ⊆ J∗

is at least γ|S|, since |J∗| ≥ γn. Following Theorem 4, any given S ⊆ J∗ is a
discriminating set with a probability of at least 0.5 with respect to p. Therefore,
the probability that all N iterations fail to find a discriminating row p and a
columns discriminating set S (using the inequality (1 − 1/x)x < 1/e for x ≥ 1)
does not exceed (1− 0.5βγ|S|)N < 0.5. It follows that LC’s chances of mining a
lagged co-cluster upon a p ∈ I∗ and S ⊆ J∗ is at least 1/2. When such a lagged
co-cluster is mined, we obtain from the discriminating property of S that I = I∗

and T = T ∗.
We now show that J contains J∗ and that |J | is a maximum 2 factor of

|J∗|. A column j is added to J only if (see line 9 in the LC algorithm 2):
swT (I, J ∪ {j}) ≤ 2w. Meaning that ∀i ∈ I and ∀j ∈ J there exists Ri, Ti, and
Cj such that: −w ≤ Ai,j − Ri − Cj+Ti ≤ w. Since I = I∗, T = T ∗ and initially
J = S ⊆ J∗, we obtain from (I∗, T ∗, J∗) optimality that for each of the intervals
[−w, 0] and [0, w], there are at most |J∗| columns j satisfying Ai,j−Ri∗−Cj+Ti

∗ .
Thus, J accumulates up to a maximum of 2|J∗| columns. We next show that
J∗ ⊆ J . For each j ∈ J∗, we obtain from the optimality of (I∗, T ∗, J∗) that
|Ai,j −Ri∗ − C∗j+Ti

∗ | ≤ w/2, therefore, j will be added to J , namely j ∈ J .

The extensive experimentation reported in Section 8.1 shows that for most
cases J = J∗. Hence, in practice, the LC algorithm manages to mine the optimal
lagged co-clusters with no columns or sleeve-width overhead.

6. Running time

The total number of iterations of the LC algorithm, is bounded according
to Theorem 5 by N = O(1/(βγ|S|)). Using the method for calculating the
sleeve-width (Melkman and Shaham, 2004), the inner for-loops running time
is: O(β(m|S| + nγ)mn), where |S| = O(log(mn)) (see Theorem 4). In all, the
running time is polynomial and independent of β: O((mn)2−log γ), for some con-
stant 0 < γ < 1 independent of m, n. Experiments reported in Section 8 show
that a good default value for |S| is 0.4 log(4mn)+2 and that the actual run-time
is O((mn)1−log γ max{m,n}).

7. Model Extensions

The lagged co-clustering model presented in Section 3, assumes a multiplicative
(scaling) or additive (shifting) model with constant lags. Although such a model
is well rooted in many fields (e.g., gene expression (Jiang, Tang and Zhang,
2004)), it can be generalized. In this section we present two important model
extensions: (1) stretched lagging: a non-constant lag mining; and (2) vertical
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transformation: a non-shift (non-scale) mining. As the extensions are based on
the model described in Section 3, their analysis shares much of that given in
Section 5. Therefore, we only give an outline of the algorithms with detailed
explanations on the differences. The extensions are orthogonal to each other.
Therefore, their consolidation results in a general and powerful lagged co-cluster
model.

7.1. Stretched Lagging

The lagged co-clustering model assumes a constant lag. The meaning of a con-
stant lag, in the context of a lagged co-cluster (I,T,J), is that the relative lag
between two rows i1, i2 ∈ I, will be constant (= Ti1 − Ti2) over all j ∈ J . The
motivation for finding a non-constant lag, arises from several fields. Consider for
example an ocean wave being recorded at different distances from the source.
Each station, is not only recording the wave at a different time lag, but also, due
to wave stretch, with a different wave spread (Mei, Stiassnie and Dick, 2005).

Previous work (see Section 2) considered a constant lag model of the form:
Ai,j ≈ Ri+Cj+Ti

= Ri+Cϑi(j)+Ti
, with ϑi(j) = j. We extend the model to some

general, user given, stretch functions ϑi(j). For example, ϑi(j) = 2j means that
the lagged (Ti) signal is stretched by a factor of 2.

In order to do so, we need to modify the sleeve-width calculation method. In
the regular model, a sleeve-width of swT (I, J) ≤ w means the existence of some
Ri, Ti and Cj such that −w ≤ Ai,j − Ri − Cj+Ti

≤ w, for all i ∈ I and j ∈ J .
This can be represented as a system of 2|I||J | inequalities of |I|+ |J | variables.
Thus, given the user function ϑi(j), one needs to solve a system of inequalities
of the form: −w ≤ Ai,j − Ri − Cϑi(j)+Ti

≤ w. To solve such a system, one can
use any linear programming (Dantzig, 1998) or CSP (Kumar, 1992) method.

7.2. Vertical Extension

The regular multiplicative model assumes (according to 1):

1

η
≤ GiHj+Ti

Xi,j
≤ η, ∀ i ∈ I, j ∈ J.

This means that for each object i ∈ I, there is a constant factor Gi scaling it
from the lagged (Ti) row profile Hj , j ∈ J . We extend the model to allow not
only a scale by constant factor, but any user given transformation functions
ξi, such that Xi,j−Ti ≈ Giξi(Hj). For example, consider the case of ξi(Hj) =
Hj

αi . This popular transformation is known as the law of the 80%-20% (also,
the power-law (Zipf, 1949)). One can find that law governing many fields, e.g.,
economics, social behavior, computer science and more (Faloutsos, Faloutsos
and Faloutsos, 1999; Kang, Tsourakakis and Faloutsos, 2010). Another example
is setting αi = −1, obtaining the private case of anti-correlation 3: Xi,j−Ti

≈
Gi/Hj .

In the context of the non-lagged co-clustering model, the power-law trans-
formation was investigated by (Zakov, 2007) and termed Power CoClustering.
The heuristic presented there is a kernel based technique, searching for a cluster
complying with the power-law model with no optimality guaranteed. The linear
transformation model was investigated by (Xu, Lu, Tung and Wang, 2006; Xu
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et al., 2008) and termed shift-and-scale. Their methods “grow” co-clusters from
small coherent building blocks. Then, use hierarchical merging while pruning.
The run-time of these methods is, however, exponential in the number of the
input columns.

The LC algorithm 2 has two phases: (1) (row, lag) addition (see lines 6, 7);
and (2) column addition (see lines 8, 9). The proposed algorithm, introduces
another discriminating set: a row discriminating set, denoted P (in addition to
the column discriminating set S), and it has three phases: (1) finding the lags,
TP , of the rows in the set P ; (2) finding a subset of columns J such that (P, TP , J)
is a lagged co-cluster; and (3) finding lagged rows, (I,T), such that (I, T, J) is a
lagged co-cluster. The addition of the first phase is imperative, so as to ensure a
correct addition of columns (see following explanations).

The first phase aims at finding the lags of the rows in the row discriminating
set P . It is similar to phase (1) of the LC algorithm, though limited to the rows
of P :
1: randomly choose row p, p ∈ P ;
2: for each (i, t) : i ∈ P , −n ≤ t ≤ n do

if swT ({i, p}, S) ≤ w then
add (i, t) to (I, T );

end for
3: if |I| < |P | then try again with different discriminating sets;
To calculate the sleeve-width (in the presence of ξi), we use the same technique
described in the previous section (e.g., linear programming or CSP; see 7.1).
Similar to the regular model analysis (see Proof 4), S is a discriminating set
with probability of at least 0.5.

Now that we have the lagged rows of P , we can add columns fitting a lagged
co-cluster. Therefore, the second phase uses P to discriminate columns being
governed by the transformation function ξi. Similar to phase (2) of the LC
algorithm, we add columns in the following manner:
1: initialize J ← S;
2: for each j : 1 ≤ j ≤ n do

if swT (P, J ∪ {j}) ≤ w then
add j to J ;

end for
Similar to Proof 4 (only using rows instead of columns), the probability that P
is a discriminating set is at least 0.5. When it is a discriminating set, from the
discriminating property of P we obtain that J = J∗.

In the third phase we add the remaining rows and their lags. This is done in a
similar manner to phase (1) of the LC algorithm, except for using a sleeve-width
of 2w instead of w:
1: initialize I ← P ;
2: for each (i, t) : 1 ≤ i ≤ m, −n ≤ t ≤ n do

if swT (I ∪ {i}, J) ≤ 2w then
add (i, t) to (I, T );

end for
Similar to Proof 5, the resulting lagged co-cluster have the following properties:
J = J∗, I ⊇ I∗ and |I| ≤ 2|I∗|. The mined lagged co-cluster is of maximum 2w
sleeve-width.
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8. Experiments

The LC algorithm is extensively evaluated using both artificial and real-world
data. The use of artificial data, which naturally enables tighter control of the
experiments, is important as it facilitates the examination of specific, isolated
properties of the algorithm. Complementary experiments with real-world data
include river flow and topographic data. The latter experiments demonstrate the
LC algorithm’s capability in mining both temporal, i.e., time reading data, and
non-temporal datasets.

8.1. Experiments with Artificial Data

The advantage of using artificial data is that we have the maximum control in
verifying the validity of clusters found (in comparison to real-world data). Specif-
ically, the contributions of the experimentation used for the LC algorithm with
artificial data are threefold. First, it establishes a “best practice” for the setting
of parameters. Secondly, it enables the verification of theoretical bounds Finally,
through the experiments, the actual run-time of the algorithm is demonstrated.2

8.1.1. Sleeve-width default

An artifact cluster is a submatrix that was not formed due to some hidden
regulatory mechanism but as a mere aggregation of noise. Such artifacts are
undesirable as they add irrelevant output. We wish to examine the lagged model
from the aspect of finding artifact lagged co-clusters, i.e., whether it is common
to mine such artifacts. In order to answer the question, one must specify the
desired sleeve-width and the required cluster dimensions.

Given a uniformly distributed random matrix, the probability of mining an
artifact lagged co-cluster (I,T,J), depends on several parameters: (1) the matrix
dimensions, [m × n]; (2) the lagged co-cluster dimensions, [|I| × |J |]; and, (3)
the sleeve-width w, 0% ≤ w ≤ 100%. Intuitively, the larger the sleeve-width and
the larger the original matrix, the greater the chance of mining artifact clusters
(with an increasing probability for smaller lagged co-clusters). To examine the
correlation between these parameters, we present the following upper bound
probability analysis. Assume we know the column profile p. The probability of
all columns j ∈ J of a lagged row i ∈ I to be within a sleeve-width surrounding p
is: w|J|. Thus, the probability for all rows I to form a lagged co-cluster is w|I||J|.
The probability of not having such a lagged co-cluster is therefore 1−w|I||J|. The
standard representation of a lagged matrix of size [m × n] as a non-lagged one,
results in a matrix of size [2mn×3n] (see 3.1). Thus, the number of combinations
to choose a set size |I| out of 2mn rows is

(
2mn
|I|

)
. Similarly, choosing a set size |J |

out of 3n columns has
(
3n
|J|
)

combinations. Therefore, the probability that none

of the possible sub-matrices of this size in the matrix forms a lagged co-cluster

is: (1− w|I||J|)(
2mn
|I| )(3n

|J|). Hence, an upper bound for the probability that at least

2 While the number of iterations is proved to be polynomial, we want to make sure that the
actual performance for large inputs is feasible.
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Fig. 3. Probability of an artifact lagged co-cluster in a matrix of [1000× 1000]
with sleeve-width of 5%. The x-coordinate is |I| while the y-coordinate is |J |.
Figure 3a presents a 3D view of the probability. The interesting fact is the “cliff-
edge” probabilities, falling from 1.0 to 0.0. Figure 3b presents a top view of 3a.
We can see the lagged co-cluster’s area governing the probability curve change
from 1.0 to 0.0. From both figures, we can see that a lagged co-cluster of size
greater than 0.0012% of the matrix size has a probability of 0.0 to randomly
appear.

one such lagged co-cluster exists is:

1− (1− w|I||J|)(
2mn
|I| )(3n

|J|)

To simplify understanding of the formula, we present the following charts
(generated using Wolfram|Alpha (Wolfram|Alpha, access Dec 31, 2010)). We re-
port here only on results with a matrix of size 1000× 1000, as the results for the
other matrix sizes were insignificantly different.

Figure 3a and 3b present the probability of having an artifact lagged co-
cluster of sleeve-width 5% as a function of its size. The conclusion from Figure 3 is
that the lagged co-cluster’s size governs the probability of its random appearance.

To emphasize that fact, we present Figure 4 which depicts the relationship
between the sleeve-width and the lagged co-cluster’s size (|I| = |J |). Figure 4
reveals several insights: (1) the larger the sleeve-width the greater the probabil-
ity of a larger artifact; (2) practically speaking, even for high sleeve-width, the
probability of a relevant lagged co-cluster artifact is negligible. Take for example
a sleeve-width of 50%. Lagged co-clusters of size greater than 60, which is 0.006%
of the matrix size, have a probability of 0.0 to appear.

To conclude, lagged co-clusters of small dimensions (less than 0.006% of the
matrix size) have an insignificant probability to be noise. Thus, lagged co-clusters
representing a regulatory mechanism, which are naturally large in dimensions,
have an insignificant probability to be noise. Therefore ordinary mining using
practical dimensions, has an insignificant probability of mining artifacts.

It is notable that the sleeve-width highly depends on the “nature” of the
dataset being mined. A sleeve-width of 5% of the matrix range, has been shown
(Cheng and Church, 2000; Melkman and Shaham, 2004) to be a good trade-off
for a non-lagged model, levelling between mining relevant co-clusters and not
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Fig. 4. Sleeve-width w vs. lagged co-cluster size s. The lower area (light pink
color) represents probability of 1.0%. The upper area (red color) represents prob-
ability of 0.0%.

having artifact, falsified co-clusters, due to noise. Thus, in the absence of any
prior knowledge, a sleeve-width of 5% is a good default value to use.

8.1.2. Discriminating set size

The discriminating set size, |S|, directly affects the run-time of the LC algorithm.
Theorem 4 provides us with the following bound: |S| ≥ log(4mn)/ log(1/3γ′),
where γ′ specifies the ratio between the number of columns in an optimal lagged
co-cluster and the number of matrix columns. The bound undesirably depends
on γ′, a parameter of which the user has no knowledge. In order to get a sense
of what the value of |S| is in practice, we conducted the following experiment.
We first created random matrices of various sizes: from small ones of [10 × 10]
to large ones of [100000 × 100]. We set the dimensions of the cluster size to
β, γ ∈ {0.1, 0.4, 0.6, 0.8}. Then we generated a random lagged co-cluster within
the specified dimensions and put it at a random location in the matrix, overriding
the existing values. Then, a subset of the lagged co-cluster columns was chosen at
random 100, 000 times, and checked whether it was a discriminating set according
to Definition 3. We consider a set of size |S| to be discriminating, if it can
successfully discriminate in all of the 100, 000 times.

Figure 5 depicts the relationship between |S| and log(4mn). We observe the
reconstruction of the linear relationship derived from Theorem 4. In addition,
we obtain from Figure 5 an easy-to-use, γ′ free, formula for setting |S|: |S| =
0.36 log2(4mn) + 2.33 ≈ 0.4 log2(4mn) + 2.

8.1.3. Discriminating probability vs. discriminating set size

Experiment 8.1.2 considered a set of size |S| to be discriminating, if it can suc-
cessfully discriminate all N time (N = 100, 000). In this experiment, we wish to
explore the relationship between |S| and its discriminating probability (in how
many of the N times did the set actually discriminate). The experiment was
conducted in the same manner as the previous one, only recording different sizes
of |S| and their discriminating capabilities.

Figure 6 describes the percentage of cases in which the subset |S| discrim-
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Fig. 5. Discriminating column set size |S| as a function of log2(4mn).
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Fig. 6. The probability to discriminate as a function of the discriminating set
size |S|.

inated. We present here only the results for γ = 0.8, as the results for other
lagged co-clusters sizes, were insignificantly different.

As expected from Experiment 8.1.2, the discriminating probability for |S| =
10 is of ≈ 100% (the matrix is of size [1000× 1000]). An important finding from
the experiment, is that also for smaller sizes of |S|, we can have a high discrim-
inating probability (e.g., 92% for |S| = 9). Since |S| appears as an exponent
in the estimated running time, choosing smaller |S|, will reduce the run-time,
without having a major negative effect on the results. Figure 6 also shows also
that a lagged co-cluster with fewer rows requires larger discriminating sets. The
reason is that the discriminating set has to filter out more rows not belonging
to the lagged co-cluster.

8.1.4. Characteristic of the discriminating set

In the previous experiments, we examined different aspects of the discriminating
set. Nevertheless, in all the experiments, we choose the discriminating set, S, out
of the planted lagged co-clusterś columns J∗ (S ⊆ J∗). In this experiment, we
wish to examine whether a random set of the columns, S ⊆ n (not necessarily
S ⊆ J∗), will discriminate.

The experiment was conducted in a similar manner to the previous ones.
Table 1 presents different S sizes and how many of its members were contained
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Table 1. Discriminating set for lagged co-clusters of β = 0.8 and γ = 0.8 in a
matrix of size [1000× 1000] with S ⊆ n.

|S| 0/J∗ 1/J∗ 2/J∗ 3/J∗ 4/J∗ 5/J∗ 6/J∗ 7/J∗ 8/J∗ 9/J∗

2 0% 0% 0%

3 0% 0% 0% 0%

4 0% 0% 0% 0% 0%

5 0% 0% 0% 0% 0% 4%

6 0% 0% 0% 0% 0% 0% 38%

7 0% 0% 0% 0% 0% 0% 0% 81%

8 0% 0% 0% 0% 0% 0% 0% 0% 96%

9 0% 0% 0% 0% 0% 0% 0% 0% 0% 99%

in J∗ (i.e., S ∩ J∗). We present here only the results for a lagged co-cluster of
size β = 0.8 and γ = 0.8, planted in a matrix of size [1000× 1000], as the results
for the other matrix sizes were not significantly different.

As can be observed from table 1, a high discriminating probability is ob-
tained for |S| = 9 (see last column of the last row). Such value is expected for
a matrix of size [1000 × 1000] (see Experiment 8.1.2). Also, as expected from
Experiment 8.1.3, the larger |S|, the better the discriminating probability.

The most important finding from this experiment is that S discriminates only
if S ⊆ J∗. The explanation is that random noise is unlikely to extend a lagged
co-cluster (also see Experiment 8.1.1). Therefore, only columns in J∗ manage to
discriminate the cluster.

The overall observation from the current experiments and the previous ones
is that there is a trade off that needs to be considered when setting the size of
the discriminating set S. One should choose a set large enough to discriminate
(see Experiment 8.1.3) but small enough to have a high probability of being in
J∗ (see Experiment 8.1.4). This balance is approximated by the formula given
in Experiment 8.1.2.

We wish to illuminate an interesting phenomenon related to the above ex-
periment. When working on small lagged co-clusters, planted in a small matrix,
one may get a subset S 6⊆ J∗ that does discriminate. Table 2 shows the result
of a lagged co-cluster of β = 0.1 and γ = 0.1, planted in a small matrix of size
[100 × 100]. We can see from Table 2, in contrast to Table 1, that there are,
with small probability, discriminating sets of S 6⊆ J∗. Two major characteristics
arise: (a) The more members of S that are not in J∗, the greater the discrim-
inating probability of the set; (b) The larger |S|, the greater its discriminating
probability.
The explanation for this phenomena is rooted in the existence of small dimen-
sion random lagged co-clusters (Irand, Trand, Jrand). Since the lagged co-cluster
is of small dimensionality, such “white noise” clusters may appear (the smaller
the cluster dimensions and the greater the allowed sleeve width, see Experi-
ment 8.1.1). The explanation for (a) is that a random cluster is unlikely to over-
lap with the planted lagged co-cluster. Each cluster lies in its own dimensions,
having low probability of overlap with the other. Thus, the more columns of S
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Table 2. Discriminating set for lagged co-clusters of β = 0.1 and γ = 0.1 in a
matrix of size [100× 100] with S ⊆ n.

|S| 0/J∗ 1/J∗ 2/J∗ 3/J∗ 4/J∗ 5/J∗ 6/J∗ 7/J∗ 8/J∗

2 0.0% 0.0% 0.0%

3 0.1% 0.0% 0.0% 0.0%

4 0.3% 0.2% 0.1% 0.0% 0.0%

5 0.7% 0.4% 0.2% 0.1% 0.0% 25%

6 1.1% 0.7% 0.4% 0.2% 0.1% 0.0% 73%

7 1.5% 1.1% 0.7% 0.4% 0.2% 0.0% 0.0% 100%

8 1.9% 1.5% 1.1% 0.7% 0.4% 0.2% 0.0% 0.0% 100%

that are not in J∗ (but in Jrand), the better S discriminates the random lagged
co-cluster. (b) The random cluster is still a valid lagged co-cluster; i.e., the larger
the discriminating set the higher discriminating probability it will have.

8.1.5. Run-time, Number of Iterations and Hit Rate

Theorem 5 states that for N ≥ 2 ln 2/(βγ|S|) tries, we are guaranteed to find a
factor 2 optimal lagged co-cluster, with a probability of at least 0.5. The following
experiment was conducted in order to test the practical behavior of the following
boundaries: (1) The 0.5 probability boundary; (2) The number of iterations N ;
(3) The actual run-time it takes to find a lagged co-cluster (in ms).

For these purposes we generated a random matrix of size [m × n], m =
1000, n = 1000, with values in the range of [100, 1100]. Inside the matrix, a
random lagged co-cluster was randomly placed, overriding the original values.
The lagged co-cluster was of a random size β ∈ [0.05 − 0.9], γ ∈ {0.3, 0.5, 0.8}
and a sleeve width of 5%. |S| was set to 10, using the previous experimental
result (see 8.1.2), for a matrix of size [1000× 1000]. Setting N to the limit given
in Theorem 5, and repeating the execution of the algorithm 100 times for each
cluster size, we counted: (1) Hit rate: how many times out of the 100 repetitions
the algorithm managed to precisely mine the planted cluster; (2) Iterations:
how many iterations it took in practice to mine the cluster; (3) Run-time: how
long (in ms) it took to mine the cluster. The experiments were conducted using
the platform: Intel core i7 (920) @ 2.67GHz CPU with 6GB RAM, Windows 7
64 bit. The algorithm was programmed in Java 1.6. The results obtained are as
follows.

– Hit Rate: While the theoretical bound is set for 50%, the actual average
hit rate is 99%. Setting |S| to 10 promises such a high hit rate (see 8.1.2).
Moreover, although theoretically the mined lagged co-clusters are of maximum
2 ratio of the optimal lagged co-cluster, we manage, in all runs, to precisely
mine the planted lagged co-cluster, i.e., (I, T, J) = (I∗, T ∗, J∗). This is due to
the fact that matrix’s entries of random values have a very low probability in
joining a lagged co-cluster.

– Number of Iterations: Figure 7 presents the actual number of iterations
needed to mine a lagged co-cluster in relation to the theoretical boundary.
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Fig. 8. A random walk illustrating the Trivial Match phenomena.

We present here only results of γ = 0.8, as the results for the other γ values
were insignificantly different. Since both γ and |S| were held fixed at 0.5 and
10, respectively, both theoretical and practical situations present a behavior
of N = O(1/β).

– Run-time: The boundary specified in Section 6 is: t = O((mn)2/γ|S|). Fitting
the actual run-time to an equation of type: t = c/(βxγy) (t in ms), where
c = (mn)2, we obtain: x = −0.4, y = 8.9 and c = 325. As expected, the power
of β is almost 0 and the power of γ is close to 10 (|S| = 10). Also, the c value
indicates a dependency of O(mnmax{m,n}) rather than of O((mn)2).

To summarize, using the suggested discriminating set size, the LC algorithm
manages to mine the optimal lagged co-clusters in our test set with a probability
of 99% and do so in a feasible running time.

8.1.6. Trivial Match

Consider the random walk example illustrated in Figure 8 based on (Chiu, Keogh
and Lonardi, 2003). One can observe that the subset of columns in red (the
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Fig. 9. Discriminating breakdown for |S|=6. Figure 9a presents the non-
discriminating probability due to Trivial Match. Figure 9b presents the non-
discriminating probability excluding the Trivial Match cases. Figure 9c presents
the discriminating probability. Here, there is a high probability for non-
discrimination (9a) and (9c), or, an insignificant probability to discriminate (9c),
since |S|=6 is too small to discriminate for a matrix of size [1000 × 1000] (see
Experiment 8.1.2).

middle bold line), is very close in pattern to the subset lagged immediately
to the left (green) and to the right (purple). The phenomena is called Trivial
Match and is usually characterized by matching patterns located close to the
one mined. It mostly happens for smooth, slowly changing subsequences whereas
rapidly changing, noisy subsequences, will have very few such trivial matches,
if any. While (Chiu et al., 2003) investigate Trivial Match in the context of self
patterns in a time series, it may also arise in the lagged co-clustering model. Let
us consider the following special situation: our dataset contains a row that is a
discrete version of the function y = ax. If the discriminating set S has the form
of y = ax+ b, then all time-lags will pass the discrimination criteria. Therefore,
the row will appear O(n) times in the lagged co-cluster with different lags.

In the following experiment, we wish to examine the severity of the phenom-
ena in a lagged co-clustering model. The experiment was conducted in the same
manner as Experiment 8.1.2, on a [1000 × 1000] matrix, recording 10,000 cases
where the set was not a discriminating one (see Definition 3), either because:
(a) There exists a row i /∈ I such that swT ({i, p}, S) ≤ w; or (b) There exists
a row i ∈ I such that swT ({i, p}, S) > w. The latter case, is the case of Trivial
Match.

Figure 9 presents the breakdown of discriminating probability for |S|=6. Fig-
ure 10 presents the breakdown of discriminating probability for |S|=10. From
Figure 9, we can see the correlated increase in both β and Trivial Match prob-
ability. Since more and more rows belong to the lagged co-cluster, the use of
a small discriminating set (|S|=6) cause them to fail on Trivial Match. From
Figure 10, we can see that the probability to discriminate is high in all ranges
of β and γ and therefore, the probability for a Trivial Match is very low.

To conclude, although the phenomena of Trivial Match may result in a cor-
rupted lagged co-cluster, it can be easily avoided using a large discriminating
set. A good estimation for such size is given in Experiment 8.1.2.
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Fig. 10. Discriminating breakdown for |S|=10. Figure 10a presents the non-
discriminating probability due to Trivial Match. Figure 10b presents the non-
discriminating probability excluding the Trivial Match cases. Figure 10c presents
the discriminating probability. Here, there is a high probability to discriminate
(10c), or, an insignificant probability for non-discrimination (10a) and (10c).
Using |S|=10 is large enough to have a high discriminating probability for a
matrix of size [1000× 1000] (see Experiment 8.1.2).

(a) Smooth terrain with a stream (b) Highly complex noisy terrain

Fig. 11. Elevation maps - the brighter the greater the elevation. Each map is
of size 25 × 25 km2. Map (11a) represents a simple terrain with few dramatic
changes. Map (11b) represents a complex terrain with many hills, mountains,
canyons, etc.

8.2. Experiments on Topographic Data

A topographic map is a 3D representation of a surface (see Figure 11). Such a
map is often represented as a Digital Elevation Map (DEM) which is a grid-
based sample of the surface elevation. Detailed DEM maps are large datasets,
e.g., consider a 100 × 100 km2 map with 1 meter grid sample. Such a map
has 1010 elevation samples - or in other words such a map has 10 Giga pixels.
Manipulating and querying such datasets often requires sophisticated algorithms,
and in many cases due to the nature of the problem or the size of the dataset,
efficient heuristics rather than exact ones (Abraham and Roddick, 1999).

In this experiment, we wish to examine the capability of the LC algorithm
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Fig. 12. Skyline computation: (A) The original figure. (B) The horizon, only. (C)
Edge detection. (D) The Skyline blocking angle, X-axis represents horizontal
angle, Y -axis represents the vertical angle (blocking angle).

to cluster random viewpoints, i.e., skylines seen from different angles. The ex-
periment consisted of 17 different high-resolution elevation maps representing
various types of terrain such as plains, hills, mountains, lakes and dunes. Each
map represents a rectangular area of 100 × 100 km2, and includes 1.6 × 107

grid samples (sampling every 25m). For each terrain, 100-3000 random locations
were chosen within it using two steps: (1) Locating 10-50 random points as cen-
ters; (2) For each location, ascribing a random center from which the distance
is within a random range of [0.5-4] km. In order to overcome minor obstacles
within close range of the observer, a random height value in the range of [10-30]
meters above ground was assigned to each location. In order to create a view-
point, each location was assigned a random angle value a0 in the range of [0,60]
degrees representing the skyline starting angle. Each skyline consisted of 300
samples representing the angle range of [a0, a0 + 300] degrees. For each angle the
maximal z − blocking angle was computed, as shown in Figure 12.

The results obtained indicate that the algorithm can mine precise and valid
clusters. Figures (13a), (13b) and (13c) present lagged co-cluster results for vari-
ous terrain maps. Each black dot represents a viewpoint, while red lines represent
a lagged co-cluster, binding those viewpoints.

It would seem only natural for this dataset that, in every mined lagged co-
cluster, the angle between any two viewpoints will be equal to the lag between
them. Figure 14 presents the probability of occurrences of (Angle − Lag) (0
means Angle ≡ Lag) corresponding to the above terrain maps. The graph shows
that in all the different terrain maps, there is a very high chance of the mined
lag being very close to the angle of the viewpoint.

To strengthen our belief that clusters in such datasets can only be found
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(a) simple terrain map (b) complicated terrain map

(c) complex terrain map

Fig. 13. Lagged co-clusters in different terrain types. Map (13a) represents a
simple terrain. The terrain is characterized by tight, remotely situated centroids,
with condensed surrounding viewpoints. There are no artifact clusters found (no
inter-cluster line). Map (13b) represents a complicated terrain. The terrain is
characterized by clusters’ centroids being close to each other, while the clusters’
diameters are large (viewpoints are spread). The mined lagged co-clusters are still
relevant (belong to the same spatial cluster) and tight, as there are very few inter-
cluster connections. Map (13c) represents a complex terrain. The terrain contains
close, sometimes overlapping spatial clusters with highly scattered viewpoints.
This makes it hard in some cases, to even visually classify a viewpoint to a
spatial cluster. Here, we have a reasonable number of artifact clusters (inter-
cluster lines).

using the lagged model, we ran a non-lagged co-cluster algorithm (Melkman and
Shaham, 2004) on the same datasets, with the same clustering requirements. As
expected, in this latter experiment no co-clusters were found.

In conclusion, we have shown that, given a topographic map and a skyline
view, it is possible to derive the location from which the skyline was seen using
the mining of lagged co-clusters. The LC algorithm performed well in this case,
managing to successfully mine lagged co-clusters from different terrain types,
with a small number of artifact clusters. The algorithm can thus be used as a
classifier in this domain and even as a means of navigation if used continuously.
In addition to the derived spatial location, we can also infer the angle of the
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Fig. 14. Relative angle of viewpoint vs. relative lag. For the complex terrain map
(13c) there is a 70% chance of the lag being equal to the angle, and in total,
94% chance for the lag to be in the range ±1 from the angle of viewpoint. For
the complicated terrain map (13b) the chance of the lag equaling the angle rises
to 89% with a total chance of 99% of being in the range of ±1. For the simple
terrain map (13a) the chance of a lag equaling the angle is 97% with a total
chance of almost 100% of being in the range of ±1.

viewpoint. The failure of the non-lagged algorithm and the success of the LC
algorithm implies that the lagged co-clusters were mined due to their lagged
nature and not as a result of terrain properties. However, terrains that are very
flat (i.e., no reference points) or highly noisy (a slight location change may lead
to a significant skyline change due to the effect of hiding and distortions) can be
a challenge.

8.3. Experiments on River Flow Data

The final dataset used for our experiments was real-time water data obtained
from the U.S. Geological Survey (USGS) (USGS: Real Time Water Information
System, 2010). We compiled a dataset containing flow readings of rivers in the
states of New Mexico, Colorado and Nevada. There are 539 rows (objects) each
representing a gauge. The columns show the gauge’s discharge (ft3/s) readings
for March 2010, sampled every 15 minutes, resulting in 2877 columns.

A relevant lagged co-cluster will naturally be formed by readings from gauges
located along the same river, as water flowing downstream will present a corre-
lated flow between different measuring stations with a lag of time.

The flow of a stream depends on multiple parameters. Many of them change
dramatically over time and space: nature (local and global weather conditions,
joining and forking rivers, water evaporation, water loss through the river bed,
etc.) and human influence (dams, factories, irrigation pools, settlements, pump-
ing stations, sewage systems, etc.). In addition, the data is very noisy due to
human and equipment inaccuracy and characterized by a high missing data ra-
tio (23%) caused by various reasons: equipment malfunction, river conditions
(effect of ice, flood damage, zero flow), station only recording seasonally, etc.
Therefore, mining such datasets for lagged co-clusters is highly complicated.

We consider a cluster to be accurate if all the participating gauges are located
within the same basin. We note that it is unlikely to mine a cluster containing
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Fig. 15. Northern river - lagged co-clusters along the Pyramid river, Nevada,
USA. There are 7 stations and 14 lagged co-clusters marked by dotted green
balloons (gauge stations) and cyan lines (connecting cluster’s members). South-
ern river - a lagged co-cluster along the Carson river, Nevada, USA. Pink starred
balloons mark the gauges while an orange line marks connected cluster’s mem-
bers. For visibility purposes, the rivers’ routes are partially painted in blue.

all the gauges in a basin. For example, gauges located at the exit of a dam or
those which are malfunctioning would not be included.

Using the LC algorithm, we mined 488 lagged co-clusters (see example in
Figure 15). Of those, 461 clusters (94%) were in the same state. Manually check-
ing the 27 inter-state clusters, we found that at least one gauge is located at the
exit of a dam thus changing the flow of the river. 405 clusters (83%) were in the
same basin. Manually checking the 56 inter-basin clusters reveals the following
reasons for the mismatch: (1) Technical administrative division of basins into
upper middle and lower part (12 clusters); (2) Fork in a river: streams merging
from different basins (36 clusters); (3) Gauges are located in swampy areas (8
clusters). Therefore, we achieved an accuracy of 94% on a state granularity and
an accuracy of 93% on a basin granularity (considering (1) and (2) above as
valid), while providing relevant explanations for the artifact lagged co-clusters
(dams and swampy areas) enabling future pre-processing exclusion.

Since water flows downstream, we expect the lag difference between any two
stations to be positive if their altitude difference is also positive. Out of the 488
clusters found, 92% followed the above logic. The other 8% had the following
characteristics: (1) Human intervention, e.g., a dam or an irrigation area (35
clusters); (2) Environment factors, e.g., a high lake feeding two streams (6 clus-
ters). Therefore, the lag proved to be a good indication of the direction of water
flow.

As with the topographic data, we ran a non-lagged clustering algorithm
(Melkman and Shaham, 2004) on the above dataset, finding only 4 clusters (in
comparison to 488 found by the LC algorithm). All clusters were trivial and
caused by: (1) Irrigation area; (2) Station position at the exit of a dam; (3)
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Short distance between stations (i.e., river sampling of 15 minutes is a gross
granularity).

9. Discussion, Conclusions and Future Work

The importance of co-clustering is unquestionable and has been thoroughly dis-
cussed and demonstrated in cited prior work. The lagged co-clustering model
generalizes the co-clustering model, enabling the inclusion of an additional impor-
tant dimension, a lag aspect, in the regulatory paradigm. The real-life datasets
used in the former section were large, highly noisy, contained many missing values
and were rich in overlapping clusters. While the LC algorithm managed to find
precise, coherent and relevant lagged co-clusters in a practicable time and with
almost no artifacts, the use of a non-lagged co-clustering method did not result
in any relevant clusters. This encouraging result is important for model valida-
tion and suggests great potential for mining lagged co-clusters in many other
fields of science, technology and medicine, e.g., gene expression data (Kluger
et al., 2003; Getz et al., 2000), MRI data (Jain et al., 1999). It is notable that
not only datasets with a time aspect can benefit from such use of the algorithm,
and the lagged aspect can have various interpretations (e.g., in the topographic
dataset used in our experiment, the lagged aspect is the point of view).

As a generalization of the co-clustering problem, the lagged problem is NP-
complete for most interesting optimality measure. The LC algorithm presented
in this paper relies on a strong theoretical base, enabling a probability promise on
mining a near optimal lagged co-cluster and a theoretical bound to the number of
iterations it will take. Unlike other algorithms, LC does not assume any specific
scoring merit on the mined clusters. Experiments on artificial data shows that
practically, the LC algorithm manages to mine the optimal lagged co-cluster.
Since the LC algorithm iterations are independent, the use of parallel computing
or special hardware can boost the performance even further.

The algorithm has several configurable parameters, for which this paper
presents default values. As in non-lagged co-clustering models, one of the key
parameters that needs to be set carefully in order to mine meaningful clusters is
the sleeve-width. Setting it too high might result in many artifact clusters, while
setting it too low might preclude valid clusters. In order to choose an appropri-
ate value for this parameter, one can adopt any of the methods suggested for
non-lagged co-clustering, e.g., gradual increase, starting from a relatively small
sleeve.

As in non-lagged co-clustering, the ability to mine lagged co-clusters offers
important functionalities, e.g., using the tool as a classifier. Nevertheless, unlike
non-lagged co-clustering, the ability to mine lagged co-clusters encapsulates also
a forecasting functionality, which can be highly useful in numerous applications
ranging from meteorology to stock markets. While the current results supply
some basic forecasting functionality (following the lagged-pattern found), we
believe there is far more that can be developed in this aspect in terms of future
research.
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