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Abstract
This paper considers the problem of cooperation between self-interested agents in acquiring

better information regarding the nature of the different options and opportunities available to them.
By sharing individual findings with others, the agents can potentially achieve a substantial im-
provement in overall and individual expected benefits. Unfortunately, it is well known that with
self-interested agents equilibrium considerations often dictate solutions that are far from the fully
cooperative ones, hence the agents do not manage to fully exploit the potential benefits encapsu-
lated in such cooperation. In this paper we introduce, analyze and demonstrate the benefit of five
methods aiming to improve cooperative information gathering. Common to all five that they con-
strain and limit the information sharing process. Nevertheless, the decrease in benefit due to the
limited sharing is outweighed by the resulting substantial improvement in the equilibrium individ-
ual information gathering strategies. The equilibrium analysis given in the paper, which, in itself
is an important contribution to the study of cooperation between self-interested agents, enables
demonstrating that for a wide range of settings an improved individual expected benefit is achieved
for all agents when applying each of the five methods.

1. Introduction

In many settings agents can benefit from cooperating in information gathering (Rochlin, Aumann,
Sarne, & Golosman, 2014; Kephart & Greenwald, 2002; Rochlin, Sarne, & Mash, 2014; Hazon,
Aumann, Kraus, & Sarne, 2013). For example, consider two travel agents, from the same city,
that plan to participate in an international tourism conference, taking place in a highly traveled
destination. There are many airlines offering flights to nearby destinations, each setting a price
according to various external factors such as seat availability and agreements it has with its airlines
partners. Similarly, depending on the airport of arrival, one can get to the conference by train, bus,
ferry, taxi or any combination of these for different segments of the trip. Each of these means of
transportation may be characterized by a different availability and fare, depending, for example, on
the time of the day when it is required. Checking the feasibility and cost of the different alternatives
for traveling to the conference, thus, potentially involves several time consuming activities, such
as checking locations on the map and checking the companies’ web-sites for routes, timetables,
fares and availability, and thus incurs some “opportunity cost”. Since both agents can benefit from
the information each of them gathers regarding the different options for getting to the conference,
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they have a strong incentive to share their findings, i.e., execute the information gathering process
(hereafter denoted IGP) cooperatively.

Cooperative information gathering is used in many real-life applications of different domains.
For example, consider two friends, both interested in buying a big TV screen. The friends can visit
the shopping mall, together, while each of them checks offers in different stores, and eventually
they meet and share their findings. Alternatively, consider an oil drilling company sending multiple
agents to explore possible drilling sites, in order to develop the best site discovered. Similarly
when a position needs to be filled, HR personnel can interview candidates in parallel and recruit the
best candidate found. Students can jointly look for references for an assignment they receive and
eventually use the best source found by any of them.

The benefits of multi-agent cooperative information gathering are twofold. First, since each
alternative (hereafter termed “opportunity”) reviewed can benefit many agents, the relative cost
of information gathering is reduced, while the overall welfare increases. Secondly, the task can
potentially be divided according to the expertise of the different agents, if such expertise exists.1

Cooperative information gathering can be seen as a type of a public goods game, where all
agents contribute through their individual IGP and the collective result influences the welfare of all
of them. Like in public goods games, the costs of IGP in cooperative information gathering, are
basically born by individual agents although benefits (better information in our case) are societal.
In public goods games, in general, inefficiencies in private giving commonly occur whenever the
agents are self-interested (de Jong, Tuyls, & Verbeeck, 2008; de Jong & Tuyls, 2011). Similarly,
we have shown in prior work that cooperative information gathering, carried out by self-interested
agents, does not result in the amount of cooperation as in the optimal fully cooperative case (Rochlin
et al., 2014). In particular we have demonstrated that methods and instruments (termed “enhancers”)
that are easily proved to be beneficial in the fully cooperative case, can actually have a negative
impact, both on individual and overall performance, in the self-interested case. These enhancers
included an increase in the size of the group of agents that gather information jointly, an increase
in the number of opportunities each agent has time to potentially gather information on, an im-
provement in some of the agents’ information gathering competence, an increase in the level of
heterogeneity in the individual information gathering competence of the group members and the
ability to communicate throughout the process. Alas, our prior work was mostly descriptive in the
sense that it outlined the potential problems that may arise in cooperative information gathering of
self-interested agent. The research reported in the current paper aims to provide solutions to these
problems, in the form of five somehow non-intuitive methods that essentially constrain and limit the
ISP such that the individual benefit of all participating agents substantially increase.

The five cooperative information gathering methods reported in this paper differ in the con-
straints they put on the information sharing process (henceforth denoted ISP). The first, denoted
“Enforced probabilistic information sharing” prevents individual agents from taking part in the ISP
according to some probabilistic function. The second, denoted “Threshold restricted information
sharing”, prevents all agents that have found highly favorable values along their individual IGP
from taking part in the ISP. The third, denoted “Cost filtered information sharing”, introduces some
cost for taking part in the ISP (where the proceeds are wasted and are not returned to the agents) and
allows agents to choose whether to take part in the ISP or not. The fourth, denoted “Random finding
sharing”, allows all agents to take part in the ISP, however restricts each of them to disclosing only

1. For buyers’ cooperation, the agents can also benefit from a volume discount through their cooperation; however this
property holds only for that specific domain.
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one of the values from the set known to each, in random. Finally, the fifth, denoted “Subgroup re-
stricted information sharing”, initially divides the agents into subgroups and allows only local ISPs,
i.e., information sharing in the subgroup level. Each of these methods may seem counter intuitive,
because the absence of some of the agents in the ISP or the restriction on the amount of information
that can be shared could be harmful to all agents. Yet, in many settings, the use of these methods can
be highly beneficial. This is because of the paradox embedded in the ISP option - while the sharing
of information benefits all agents, the very fact that all information gathered is going to be shared,
discourages agents from investing much resources in their individual IGP (Rochlin et al., 2014).
Therefore, with the use of these methods the individual benefit of each agent from taking part in
the ISP decreases, however the IGP carried out by the agent individually becomes more efficient.
Therefore, by intelligently managing the tradeoff between the two, a more beneficial equilibrium
can be achieved, which improves both the overall and individual benefits.

The paper provides a comprehensive analysis of the individual information gathering strategies
used by the agents, given the strategy of others, under the different methods. For the Enforced prob-
abilistic information sharing, Random finding sharing and Subgroup information sharing methods
the agents’ individual strategy is proven to be similar in structure to the one used with the standard
cooperative information gathering method — the agent will resume information gathering as long
as the best value obtained so far is lower than some reservation value (a threshold), regardless of
how much more information can potentially be gathered. For the Threshold restricted information
sharing method the agents’ individual strategy is proven to be threshold-based, however the thresh-
old changes as a function of the amount of information that potentially can still be gathered. For
the Cost filtered information sharing method, the individual strategies are proven to be based on a
single reservation value for determining the benefit in additional information gathering and a set of
intervals for deciding whether to take part in the ISP. These allow the characterization of the re-
sulting equilibria. Using synthetic environments, we numerically demonstrate that all five methods
result in substantial improvement to each of the agents’ individual expected benefit for a wide range
of settings.

The results contribute to the advancement of theories of cooperation in MAS. As discussed later
in the paper, the methods can be easily applied and their use can benefit both individuals planning
to engage in cooperative information gathering and designers of multi-agent systems (MAS) where
cooperative information gathering is likely to take place.

In the following section we formally introduce the cooperative information gathering model. In
Section 3 we detail the model analysis, the equilibrium strategies for the different model variants
considered and supply numerical examples for the benefit that can be achieved when using them.
Related work is reviewed in Section 4, emphasizing the uniqueness of the analysis provided in the
paper. Finally, we conclude and discuss directions for future research in Section 5.

2. The Model

Information Gathering Process (IGP). The model considers a set K = {A1, ..., Ak} of fully-
rational self-interested agents. Each of the agents needs to gather information pertaining to the value
(e.g., benefit) of different opportunities to which it has access and eventually choose one. The values
of the different opportunities are a priori unknown and information is gathered for one opportunity
at a time. The individual information gathering problem, as defined above, is standard and follows
the assumptions commonly used in literature (Chhabra & Das, 2011; Kephart & Greenwald, 2002;
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Hazon et al., 2013; Rothschild, 1974; McMillan & Rothschild, 1994; Morgan & Manning, 1985).
The uncertainty associated with the value of opportunities available to any agent Ai is modeled, as
in most costly information gathering literature (McMillan & Rothschild, 1994; Burdett & Malueg,
1981; Carlson & McAfee, 1984; Lippman & McCall, 1976; Morgan, 1983), through a probability
distribution function (p.d.f.) fi(x) (i.e., the value of each opportunity in the individual IGP of
Ai is drawn from fi(x)), with which all agents are familiar (Tang, Smith, & Montgomery, 2010;
Waldeck, 2008; Janssen, Moraga-Gonzalez, & Wildenbeest, 2005). Due to the resource consuming
nature of the process it is considered costly in the sense that revealing the value of an opportunity
incurs a fixed cost, denoted ci. The model assumes that any agent Ai is constrained by a number of
opportunities accessible to this agent, denoted ni. The cost ci, the distribution fi(x) and the number
of opportunities ni, are defined in the agent’s level to support settings where different agents have
different skills and capabilities. The agent thus needs to gather information, i.e., explore the value
of some of the opportunities and eventually pick one of the values revealed (i.e., recall is permitted)
(Carlson & McAfee, 1984; McMillan & Rothschild, 1994)).

Information Sharing Process (ISP). In settings where all opportunities are applicable to all
agents the agents have an incentive to cooperate in information gathering in the sense that all in-
dividual findings are eventually shared with all others. While there are many ways to share the
information, the focus of this paper is on setups where the ISP takes place at some pre-specified
time, after all agents have completed their individual IGPs and each needs to decide on the opportu-
nity it will choose. The choice of sharing findings at the end of the individual IGPs is mostly natural
and customary in real life. More importantly, the alternative of sharing information throughout the
process has a major setback in the sense that each individual agent finds information sharing to be
beneficial only when it is on the receiving end, i.e., it is the one being informed that a “favorable”
opportunity has been found; when it is on the reporting end, the agent loses from such commu-
nication since the report can potentially encourage the other agents to terminate their individual
information gathering. On the other hand sharing the information after concluding the individual
IGPs is always beneficial for the agent as it gains more information, and at the same time the in-
formation it discloses does not affect the behavior of others thereafter since they also have already
concluded their IGPs.

As in prior models of cooperative information gathering, we also assume that: (a) the agents are
truthful in the sense that they always report the true values they obtain;2 (b) each agent Ai has some
fall-back value vi0, i.e., even if not becoming acquainted with any opportunity values (in case of
not gathering any information individually and not receiving any of the others’ findings) the agent
can presumably benefit vi0;3 and (c) either the opportunities each agent can check are unique or the
agents can a priori divide the opportunities among them such that each will be assigned a different
set. It is assumed that information gathering costs and opportunity values are additive and each agent
Ai is interested in maximizing its expected benefit, denoted EBi. The benefit of an agent is therefore
the best value obtained by the group minus the costs accumulated individually along the agent’s
individual IGP. Finally, it is assumed that when engaging in a cooperative information gathering
process all agents are a priori acquainted with the probability distribution functions and information

2. The truthfulness assumption is commonly justified by a substantial potential reputation loss, and is easily enforceable
using fines.

3. And similarly, if taking part in the ISP then necessarily disclosing that value in the absence of any better one.
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Application Individual goal Opportunity Value Information gather-
ing cost

Source of uncertainty

Product ac-
quisition

Minimize indi-
vidual expense

Complex ser-
vice/product

Cost of pur-
chase

Time spent finding
options and evalu-
ating them

Sellers’ competition, sea-
sonal effects, service con-
straints

Choosing
an oil-
drilling
site

Maximize
oil revenues
minus cost of
exploratory
drills

Potential
drilling sites

Amount of
oil found

Time and resources
spent in the ex-
ploratory drills

Uncertainty regarding the
amount of oil in each
drilling site

R&D Minimize the
cost of produc-
tion and R&D
expenses

Production
technology

Cost of pro-
duction with
a specific
technology

R&D cost of spe-
cific technology

Uncertainty concerning im-
plementation aspects of a
desired technology

Information
Search
(student’s
assign-
ment)

Maximize in-
dividual utility
(grade minus
individual
effort)

Information
source (e.g.,
online, text-
book, library
resource)

Expected
grade if this
source is
used

Time spent eval-
uating different
sources

Differences in coverage of
the topic, relevance, accu-
racy, level of details

Table 1: The mapping of different applications to the cooperative information gathering problem.

gathering costs of all agents, i.e., the only possible difference in the information available to the
different agents throughout the cooperative IGP is their own findings and the findings of others.

The cooperative information gathering model as detailed above can be found in full or with
some variations in prior literature (Hazon et al., 2013; Rochlin et al., 2014; Gatti, 1999; Carlson &
McAfee, 1984).4 Taking the travel agents example, given in the previous section, the opportunities
represent different alternatives for reaching the conference location and their value is their total cost.
The information gathering cost is the agents’ cost of the time needed to explore the alternatives. The
goal of each agent is to minimize her expected expense, defined as the cost of the best alternative
found by the two plus the cost of the time spent individually to review the different alternatives.
Similarly, the model can be mapped to all the other applications mentioned in the introduction (e.g.,
see Table 1).

3. Analysis

We divide the analysis according to the five cooperative information gathering enhancing methods.
For each method, first we determine the individual optimal information gathering strategy of an
agent taking part in the process, as the best response to the other agents’ strategies. Then, we show
how the collective behavior is derived and extract the equilibrium set of strategies.

The appropriate equilibrium concept depends on how we define the type space. If we were to
define an agent’s type by the specific vector of values it would encounter if fully exhausting its
IGP, then the appropriate concept would be the ex-ante Bayesian Nash equilibrium, since agents
are a priori unaware of their types and this information is revealed to them (individually) along
the IGP. However, we prove in this paper that in this definition, an agent’s type would not affect
its strategy (strategies turn out to be based on thresholds that are set prior to conducting the IGP).
Therefore, while outcomes are stochastic, one could in theory build a direct stochastic mapping
from individual strategies to the global outcome and therefore there is no need to go through the

4. While some model variants consider the task to be executed by a representative agent, acting on behalf of the group,
the essence of gathering costly information and trading-off costs and benefit is the same.
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type in doing so. Therefore there is no added value here from the Bayesian Nash equilibrium
characterization. The equilibrium concept would then be subgame-perfection or Stackelberg (where
the system designer sets the rules for participation in the ISP, and then agents respond by choosing
their optimal strategies). All these result in a similar equilibrium characterization in our case.

Finally, we demonstrate how the expected individual benefit of all agents improves, when the
method is used, compared to the standard cooperative IGP. In order to illustrate the performance
achieved with the different methods, we use a setting where the agents are homogeneous in terms of
their information gathering environment. Meaning that each agent samples opportunities from the
same probability distribution function f(y) (i.e., f1(y) = .. = fk(y) = f(y)), that all agents are
constrained to the same number of opportunities n they can sample overall (i.e., n1 = .. = nk = n)
and they all share the same information gathering cost c (i.e., c1 = .. = ck = c) and same fallback
v0 (i.e., v10 = .. = vk0 = v0). Such setting is quite common in real-life as often (and especially in the
Internet age) people can potentially access the same opportunities and with a similar effort (e.g., time
spent navigating through a web-site). For example, in our travel agents running example, it is likely
that all agents have access to the same web-sites and resources that need to be used for identifying
and gathering information on the different options available for getting to the conference, and that
none of them, being a trained and experienced travel agent, has some specific advantage in doing
so. For simplicity and ease of exposition of the figures, we use f(y) to be the uniform distribution
function (between 0 and 1). We stress that even though such a homogeneous setting is standard in
costly information gathering literature (McMillan & Rothschild, 1994; Lippman & McCall, 1976),
and common in real-life ISP as argued above, its use in our case is merely for illustration purposes
and all the results concerning individual strategies and equilibrium structures that are given in this
paper are based on formal theoretical proofs.

3.1 Enforced Probabilistic Information Sharing

In this method each agent Ai is a priori assigned some probability P IS
i which, after it has completed

its individual IGP, is used to determine whether it is allowed to take part in the ISP. It is assumed that
all agents are a priori acquainted with the probabilities P IS

i used for enabling information sharing of
each agent. The determination whether an agent will take part in the ISP must be made in proximity
to the time information should actually be shared and requires some enforcing mechanism since
once the individual IGP is completed, agents obviously will benefit from taking part in the ISP,
as it does not incur any cost and at the same time can improve their best finding. Furthermore,
since the process takes place after all individual IGPs have been terminated, the information an
agent discloses has no influence over the individual IGP strategies used by the other agents. Such
enforcement is easy to achieve through simple means. For example, in our travel agents running
example this is equivalent to having all agents send their findings to a designated secured server. The
server will select those eligible for information sharing, according to the pre-defined probabilities,
and will remove from its database all the information coming from those that are not. Then, the
server will allow those eligible for information sharing access to the data it stores.

An agent’s state throughout its individual IGP is represented by the subset of opportunities on
which it has already gathered information, and their associated values, and consequently the remain-
ing opportunities for which the values are still unknown. An agent’s strategy is thus the mapping
from a world state to a choice {resume, terminate} where resume suggests that the agent needs
to gather information about an additional opportunity (a random one, since all opportunities avail-
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able to a given agent are a priori alike) and terminate means that the agent needs to proceed to the
ISP. Theorem 1 proves that the state representation in this case can be compacted to the best value
found so far (including the fallback vi0), v, and that the optimal strategy can be represented in terms
of a single reservation value, independent of the number of remaining opportunities.

Theorem 1. Given the probability distribution function of the maximal value obtained by all other
agents that take part in the ISP, denoted f̄i(x), agent Ai’s optimal individual information gathering
strategy is to set a reservation value ri ≥ vi0, where ri is the solution to:5

ci = P IS
i ·

∫ ∞
y=ri

fi(y)

∫ ∞
x=−∞

(max(y, x)−max(ri, x))f̄i(x)dxdy (1)

+ (1− P IS
i ) ·

∫ ∞
y=ri

(y − ri)fi(y)dy

The agent should always choose to gather information on an additional opportunity (if one is avail-
able) if the best value obtained so far is below ri and otherwise it should proceed to ISP.

Proof. See appendix A.

Theorem 1 specifies the optimal strategy of an agent given the strategy of others. The solution
of a set of k equations similar to (1), one for each agent Ai, will provide a set of pure equilibria of
the form {ri|1 ≤ i ≤ k} if any exist. A mixed equilibrium in our case is defined by a probability
pi(v, j) assigned to each state (v, j), defining whether the agent will resume or terminate informa-
tion gathering in that state. This may seem infeasible to extract, based on the infinite number of
states (as value distributions are continuous). Nevertheless, in order for such a solution to hold, the
agent’s expected benefit from both actions (resume and terminate information gathering when in
that state) must be equal. Based on the optimality of the reservation-value rule, this can hold only
for states where the value v equals ri as calculated according to (1). However, due to the continuous
nature of v, the probability of actually reaching states that satisfy the above condition is zero, thus
assigning such probabilities will have no effect on the other agents. The only exception for the
above is the agent’s strategy at the beginning of its individual IGP. Here, the state is a priori known
to be (vi0, 0) hence adding some probability for actually gathering information on one opportunity
and then continuing according to ri (or otherwise going straight to ISP due to the indifference to re-
suming or terminating information gathering) will have an actual effect on the others. Consequently,
a mixed equilibrium for our problem is of the form:

{(pi, ri)|1 ≤ i ≤ k}

where pi is the probability that agent Ai will initiate its individual IGP (0 ≤ pi ≤ 1) and ri is the
reservation value to be used by the agent. A solution will be considered stable (i.e., in equilibrium),
if none of the agents will find it beneficial to deviate from it individually. An equilibrium in pure
strategies for the problem would require pi ∈ {0, 1} ∀i. Any other solution is a mixed equilibrium
strategy.

5. Notice that if the equation has a solution then it is necessarily of the form vi0 ≤ ri. In case there is no solution to the
equation (e.g., in case of a substantial ci), onwards, then we can simply set ri = v0 and no information gathering
will take place.
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Now that the individual strategy in equilibrium has been defined in its complete form (i.e.,
including the probabilistic aspect), we can formulate f̄i(x) (the probability distribution function of
the maximal value obtained along the IGP of all other agents that will take part in the ISP). For
this purpose we make use of the probability that the maximum value that will be found by all the
agents that take part in the ISP, except Ai, will be smaller than or equal to x, denoted F̄i(x). The
calculation of F̄i(x) makes use of the probability that the maximum value obtained along the IGP of
an agent Aj (that chooses to engage in IGP and uses rj), is less than x, denoted F return

j (x), calculated
according to:6

F return
j (x) =


0 x < vj0

Fj(x)nj vj0 ≤ x ≤ rj

Fj(rj)
nj +

1−Fj(rj)
nj

1−Fj(rj)
(Fj(x)− Fj(rj)) x > rj

(2)

The case where x < vj0 is trivial, as vj0 is a lower bound for the best value the agent ends up with.
For the case where vj0 ≤ x ≤ rj , the value of all nj opportunities must result in a value below
x. When x > rj there are two possible scenarios. The first is where all nj opportunities result
in a value below the reservation value rj , i.e., with a Fj(rj)

nj probability. The second, is where
the information gathering terminates right after revealing value y at the lth opportunity such that
rj < y < x (otherwise, if y < rj the information gathering should resume) and all the former l− 1
values obtained are smaller than rj (otherwise the lth opportunity is not reached). The probability of
the latter case occurring (summing over all values of l ≤ nj) can be calculated using the geometric

series
∑nj

l=1(Fj(x)− Fj(rj))Fj(rj)
l−1 =

1−Fj(rj)
nj

1−Fj(rj)
(Fj(x)− Fj(rj)).

The probability distribution function of the maximum value obtained throughout agent Ai’s IGP,
denoted f return

i (x), is by definition, the first derivative of F return
i (x):

f return
i (x) =

d(F return
i (x))

dx

Thus, we can now formulate the probability that the maximum value that will be found by all
the agents taking part in ISP, except Ai, will be smaller than or equal to x, F̄i(x):

F̄i(x) =
∏

Aj∈K∧j 6=i

(P IS
j (pjF

return
j (x) + (1− pj)) + (1− P IS

j )) (3)

The calculation is based on the probability that any given agent will either: (a) not take part in the
ISP (hence it will not contribute any value) or, (b) take part in the ISP and its best value obtained in
its individual IGP will be below x. The probability of (a) is (1− P IS

i ). To calculate the probability
of (b) we first need to calculate the probability that an agent’s best value will be below x. This
can happen either if the agent initiated IGP and the best value it will obtain will be lower than (or
equal to) x, i.e., with a probability of pjF return

j (x), or if the agent opted out from IGP, i.e., with
a probability of 1 − pj . Therefore the probability of b is given by P IS

j (pjF
return
j (x) + (1 − pj)).

Consequently, the probability distribution function f̄i(x) is the derivative of F̄i(x):

f̄i(x) =
dF̄i(x)

dx

6. The maximum value found includes also the fallback vj0. In the degenerate case where Fj(v
i
0) = 0 we use

F return
j (x) = 0 for vi0 ≤ x ≤ rj .

8
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These enable us to calculate the expected benefit of agent Ai when the other agents use the set
of strategies {(pi, ri) |1 ≤ i ≤ k}. If agent Ai chooses to engage in IGP then its expected benefit,
denoted EBi(IGP ), is given by:7

EBi(IGP ) = P IS
i ·

∫ ∞
y=−∞

f return
i (y)

∫ ∞
x=−∞

max(vi0, y, x)f̄i(x)dxdy+ (4)

(1− P IS
i ) ·

∫ ∞
y=−∞

max(vi0, y)f return
i (y)dy − ci

1− Fi(ri)
ni

1− Fi(ri)

where the first term on the right hand side is the expected maximum between the best value found
by the agent itself (i.e., associated with a distribution f return

i (y)) and the best value returned by the
other agents (associated with a distribution f̄i(x)) if agent Ai participates in the ISP (i.e., with a P IS

i

probability). The second term is the expected “best” (i.e., maximum) opportunity-value found by
the agent along its information gathering if the agent is not allowed to take part in the ISP (i.e., with
a 1 − P IS

i probability). The last term is the expected cost incurred throughout the IGP carried out
by Ai, calculated as: ci

∑ni
j=1(Fi(ri))

j−1 = ci
1−Fi(ri)

ni

1−Fi(ri)
, as the number of opportunities on which

information is gathered is a geometric random variable bounded by ni, with a 1 − Fi(ri) success
probability — the IGP terminates only upon receiving a value greater than ri (or all ni opportunities
explored) and the probability for a value greater than ri is 1− Fi(ri).

When the agent opts not to execute individual IGP at all, its expected benefit, denoted EBi(¬IGP ),
is simply the expected value of the maximum value returned by the other agents, taking part in the
ISP, if it takes part by itself in the process, or otherwise vi0, i.e.:

EBi(¬IGP ) = P IS
i ·

∫ ∞
x=−∞

max(vi0, x)f̄i(x)dx+(1−P IS
i )·vi0 (5)

At this point, we have everything that is needed to formulate the equilibrium stability conditions.
A set of strategies {(pi, ri)|1 ≤ i ≤ k} will be in equilibrium only if the following conditions hold:

(a) For every agent Ai for which pi = 0, EBi(IGP ) ≤ EBi( ¬IGP ).

(b) For every agent Ai for which pi = 1, EBi(IGP ) ≥ EBi( ¬IGP ).

(c) For every agent Ai for which 0 < pi < 1, EBi(IGP ) = EBi(¬IGP ).

Therefore, in order to find the equilibrium, the stability of 3k possible solutions of type {(pi, ri)
|1 ≤ i ≤ k} differing in the value each pi obtains (pi = 0, pi = 1 and 0 < pi < 1) needs to be
checked. For every combination, the reservation values of the different agents and the probability
pi of each agent that uses a non-pure mixed strategy (i.e., with 0 < pi < 1) should be calculated by
solving a set of equations of type (1) (one for each agent characterized by pi = 0) and EBi(IGP ) =
EBi(¬IGP ) (one for every agent Ai for which 0 < pi < 1). Once the appropriate reservation
values and probabilities are obtained for a given set, the stability conditions need to be validated.

We note that there is no guarantee that an equilibrium will actually exist (either pure or mixed,
since there are an infinite number of strategies). Also, there is no guarantee that if one exists there

7. If none of the other agents engage in IGP (i.e., pj = 0 for all Aj 6= Ai) then f̄i(x) = 0 and therefore the expected
benefit EBi(IGP ) should be calculated as EBi(IGP ) =

∫∞
y=−∞max(vi0, y)f return

i (y)dy − ci
1−Fi(ri)

ni

1−Fi(ri)
, where

ri is the solution to ci =
∫∞
y=ri

(y − ri)fi(y)dy (according to a single agent’s optimal IGP (Rochlin et al., 2014)),
and EBi(¬IGP ) = vi0.

9
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Figure 1: Enforced probabilistic information sharing - effect of P IS on the individual expected
benefit, for different: (a) numbers of agents, k, in a setting: c = 0.35 and n = 5; and (b)
information gathering costs, c in a setting: k = 15 and n = 4.

will be no other equilibria (i.e., multiple equilibria may exist). In the latter case, if there is one
equilibrium that dominates the others in terms of the individual expected benefit each and every
agent obtains then it will likely be the one used. Otherwise, there is no way of deciding which of
the equilibria is the one to use, and this question is not included in the scope of the current paper.

We emphasize that the above analysis generalizes the analysis of the standard cooperative in-
formation gathering model (Hazon et al., 2013; Rochlin et al., 2014) in the sense that the latter is a
specific case of the first, where the probability each agent will be allowed to take part in the ISP is
one (i.e., P IS

i = 1 ∀1 ≤ i ≤ k). Furthermore, when the probability each agent will be allowed to
take part in the ISP is zero, the solution obtained is the same as the one known for the single-agent
information gathering problem (McMillan & Rothschild, 1994) (since each agent relies solely on
the values it obtains throughout its individual IGP).

Figure 1 depicts the agents’ individual expected benefit as a function of the probability P IS
i

used, for different group sizes (k) and information gathering costs (c). The setting used is the
homogeneous setting described at the beginning of the section and the value of P IS

i is the same for
all agents (i.e., P IS

i = P IS ∀i). The other model parameters were set to: c = 0.35 and n = 5
(Figure 1(a)) and k = 15 and n = 4 (Figure 1(b)). As depicted in the figure, the maximum expected
benefit (agent-wise, as all agents are alike in this case) is obtained when the participation of the
agents in the ISP is not certain but rather determined probabilistically (i.e., 0 < P IS < 1). The
typical pattern exhibited in the figure is an increase and then a decrease in the expected individual
benefit as the probability P IS increases. This is explained as follows. When P IS = 0 each agent
actually executes an individual IGP without any information sharing with others. As P IS increases,
the agent relies more on other agents’ findings. Thus, pi and ri become lower, which is bad for
the group since everybody gains less from the participation of the agent in the ISP. However, at
the same time the probability the agent will actually take part in the ISP increases, thus, overall,
the individual expected benefit increases. Nevertheless, for some value of P IS , the loss due to the
resulting decrease in pi and ri becomes more dominant than the benefit due to the increase in the
value of P IS .
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Another interesting behavior observed in Figure 1 is that the increase in information gathering
costs, c, and the increase in the number of agents, k, results in a decrease in the the value of P IS

that maximizes expected benefit. This may seem non-intuitive since the greater the information
gathering cost the greater the potential benefit that can be achieved by information sharing and
similarly, the greater the number of agents the greater the chances of obtaining favorable values in
the ISP. Therefore further limiting information sharing in settings with high k and c values may
seem unnatural. The phenomena is explained by the fact that the positive effect of the increase
in P IS over the participation probabilities pi and the reservation value ri used by each agent in
equilibrium in this case, which are substantially poor to begin with, is greater than the loss due to
the uncertain information sharing.

While the above method requires that an agent either completely avoid or fully participate in
the ISP, many other variants can be considered, e.g., partially limiting information sharing. For
example, an agent can be requested, with some probability, to contribute the information it has
gathered, without receiving the other group members’ information. Alternatively, an agent can be
allowed to receive information however not share its own gathered data. These variants can, in some
settings, result in substantially superior performance as we illustrate in Appendix B.

3.2 Threshold Restricted Information Sharing

With this method the agents that have found highly favorable values along their individual IGP are
prevented from taking part in the ISP. This is implemented by setting a threshold V IS

i , for each
agent Ai, which requires that the agent opt-out of the ISP if it obtained a value greater than V IS

i

in its individual IGP. It is assumed that all agents are a priori acquainted with the thresholds of all
agents. In our travel agents running example this can take the same form as with the Enforced prob-
abilistic information sharing, with slight modifications, e.g., having all agents send their findings to
a designated secured server. The server will select those eligible for information sharing, according
to the pre-set thresholds, and will remove from its database all the information coming from those
that are not. Then, the server will allow those eligible for information sharing access to the data it
stores.

The choice of excluding agents with findings that are greater than the threshold may seem
counter intuitive. Seemingly those with favorable findings, i.e., those that actually performed well
and can contribute most to the others are being punished. One may argue that a more suitable choice
would be to set the threshold such that agents that have not found good values would be excluded
from the ISP, thereby encouraging them to try harder. Nonetheless, this also suggests some discour-
agement to agents in their IGPs as they now will have greater expectations that high values will be
reported in the ISP. Obviously, at the time the ISP ought to take place, opting out is dominated by
taking part in the ISP, both individually and globally. All agents will benefit from the participation
of more agents in the ISP. Moreover, the fact that we require that agents with more favorable values
not to take part in the ISP seems to intensify the potential negative effect of this method as discussed
above. Nevertheless, since each of the agents may find itself in a situation where it is requested not
to take part in the information sharing, and due to the decrease in the potential for improvement
encapsulated in information sharing to those agents that will eventually take part in it, it is likely
that each agent will be individually motivated towards a more efficient IGP.

Overall, the Threshold restricted information sharing method is a bit more complicated to en-
force since agents may choose to declare a value different than the best they have found, in an effort
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Figure 2: A schematic illustration of the optimal strategy for Threshold restricted information shar-
ing.

to take part in information sharing. Nevertheless, whenever the true value can be validated (e.g., in
the travel agents example, each agent can be requested to post a receipt indicating the way she got
to the conference and the amount paid, after the ISP) then the method can be easily enforced using
fines.

In this case, as we prove in the following paragraphs, the agent’s strategy needs to take into
consideration not only the best value obtained thus far, but also the number of opportunities on which
information has already been gathered. This is because whenever a value v > V IS

i is encountered,
whereby the agent is excluded from the ISP, the agent can still benefit from resuming its individual
IGP, and the benefit from additional information gathering depends on the number of remaining
opportunities.

The structure of each agent’s optimal strategy, given the strategy of others, is given in Theorem
2.

Theorem 2. Given the probability distribution function of the maximal value obtained by all other
agents that take part in the ISP, f̄i(x), and the number of opportunities on which information has
already been gathered, j ≤ ni, agent Ai’s optimal individual information gathering strategy can
be described by the pair (ri(j), r

resume
i ), such that vi0 ≤ ri(j) ≤ V IS

i ≤ rresume
i (see Figure 2),

where:

rresume
i = max

(
V IS
i , r|ci =

∫ ∞
y=r

(y − r)fi(y)dy
)

(6)

and ri(j) is the solution to:

ci =

∫ V IS
i

y=ri(j)
fi(y)

∫ ∞
x=−∞

(max(y, x)−max(ri(j), x))f̄i(x)dxdy (7)

+

∫ ∞
y=V IS

i

(EBj+1
i (y)−max(ri(j), x))f̄i(x)dxdy

where the EBj
i (y) is given by:

EBj
i (v) =

{
v rresume

i ≤ v ∨ j > ni

−ci +
∫∞
y=−∞EBj+1

i (max(vi0, y, v))fi(y)dy v < rresume
i ∧ j ≤ ni

(8)

Given the best value obtained so far, v, Agent Ai should resume its IGP if v < ri(j) or V IS
i <

v ≤ rresume
i and otherwise terminate (and proceed to ISP if v ≤ V IS

i ).

12
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Proof. See appendix C.

Intuitively, the reservation value rresume
i is used to determine if the IGP should be resumed in

cases in which a favorable value v > V IS
i has been found and the agent will now be “on its own”.

The reservation value ri(j) is used to determine if the IGP should be resumed when v ≤ V IS
i , i.e.,

when the agent can still potentially take part in the ISP. Resuming the IGP in the latter case can lead
to better values, however at the same time can also lead to exclusion from the ISP, in which case
the agent will end up on its own. Since the fallback in case of a finding v > V IS

i depends on the
number of remaining opportunities j, we use a different reservation value ri(j) for each j value. In
case rresume

i = V IS
i , there is no benefit for the agent to resume the IGP once a value v > V IS

i is
found. In this case ri(j) = r for any j.

Once again, the solution of a set of equations consisting of (6-8) will provide a set of pure
equilibria of the form {(ri(1), .., ri(ni)), r

resume
i |1 ≤ i ≤ k}, if any exist. Similarly, for the

same considerations given in Section 3.1, a mixed equilibrium for this case will be of the form:
{(pi, (ri(1), .., ri(ni)), r

resume
i )|1 ≤ i ≤ k}.

While the equilibrium analysis in this case generally resembles the one given in 3.1, the cal-
culation of F return

i (x), which is the probability that the maximum value obtained by agent Ai’s
individual IGP (including vj0) will be less than x is substantially more complicated. In order to
formulate F return

i (x) we use F return
i (x, v, j) to denote the probability that agent Ai will obtain a

maximum value of x or below, given its current state (v, j), where v is the best value obtained so
far in its IGP (including vi0) and j is the number of opportunities on which information has been
gathered. The function F return

i (x, v, j) can be calculated recursively according to:

F return
i (x, v, j) =


0 v > x
1 v ≤ x ∧

(
ri(j) < v ≤ V IS

i ∨ rresume
i ≤ v ∨ j = ni

)∫∞
y=−∞ F return

i (x,max(vi0, y, v), j + 1)fi(y)dy otherwise
(9)

The case where x < v is trivial since the maximum value the agent will obtain will be at least
v. Therefore, the probability of obtaining x or below is zero. Similarly, when ri(j) < v ≤ V IS

i

or rresume
i ≤ v or when there are no additional opportunities (j = ni) the agent will inevitably

terminate its IGP (according to Theorem 2) and the maximum value that will be obtained will be
v. In such case, if v ≤ x the function obtains 1. In all other cases, the IGP resumes, hence the
probability is given recursively based on the new state (x,max(v, y), j + 1) the agent will be in
after gathering information on one additional opportunity. Using F return

i (x, v, j) we can calculate
the probability that the maximum value that will be obtained by agent Ai’s individual IGP will be
less than (or equal to) x, as: F return

i (x) = F return
i (x,−∞, 0).

Thus, we can now formulate the probability that the maximum value provided by agent Ai in
the ISP will be less than x, denoted F return′

i (x):

F return′
i (x) =


0 x < vi0

F return
i (x) + (1− F return

i (V IS
i )) vi0 ≤ x ≤ V IS

i

1 otherwise
(10)

The case where x < vi0 is trivial, as vi0 is a lower bound for the best value the agent ends up with.
The case where x ≤ V IS

i is satisfied either if Ai’s best value is less than x (in which case it will take
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part in the ISP since x ≤ V IS
i ), i.e., with a probability of F return

i (x), or if the agent will not take part
in the ISP, i.e., with a probability of 1−F return

i (V IS
i ). The case where x > V IS

i is straightforward —
since agent Ai will take part in the ISP only if its best value will be lower than V IS

i , the probability
of obtaining a value v (where x > V IS

i ) from it is 1.
Using F return′

i (x), we can calculate the function F̄i(x) (a modification of (3)):

F̄i(x) =
∏

Aj∈K∧j 6=i

(pjF
return′
j (x) + (1− pj)) (11)

The probability distribution function f̄i(x) is the first derivative of F̄i(x) as before. Similarly, the
probability distribution function f return

i (x) is the first derivative of F return
i (x).

We now turn to calculating the expected cost incurred throughout the IGP carried out by agent
Ai, denoted ECi. In order to calculate ECi we use ECi(v, j) to denote the expected cost of
agent Ai, when in state (v, j), where v is the best value obtained after gathering information on j
opportunities. The value of ECi(v, j) can be calculated recursively according to:

ECi(v, j) =

{
0 ri(j) ≤ v < V IS

i ∨ rresume
i ≤ v ∨ j = ni

ci +
∫∞
y=−∞ECi(max(vi0, y, v), j + 1)fi(y)dy otherwise

(12)

The first case is where the agent unavoidably terminates its IGP (according to Theorem 2). The
second case is where, the IGP resumes, hence the expected cost is given recursively based on the
new state (max(v, y), j + 1) the agent will be in after gathering information on one additional
opportunity. This allows us to calculate ECi(x), as: ECi(x) = ECc

i (−∞, 0).
These enable us to calculate the expected benefit of agent Ai when the other agents use the set

of strategies {(pi, (ri(1), .., ri(ni)), r
resume
i )|1 ≤ i ≤ k∧ i 6= j}. If agent Ai will choose to engage

in IGP then its expected benefit, EBi(IGP ), is given by:

EBi(IGP ) = −ECi +

∫ ∞
y=V IS

i

max(vi0, y)f return
i (y)dy (13)

+

∫ V IS
i

y=−∞
f return
i (y)

∫ ∞
x=−∞

max(vi0, y, x)f̄i(x)dxdy

which is similar to (4), except that the differentiation between the second and third terms on the
right is according to V IS

i rather than P IS
i .

When the agent opts not to gather information at all, its expected benefit, EBi(¬IGP ), is
simply the expected value of the maximum value returned by the other agents taking part in the ISP:

EBi(¬IGP ) =

∫ ∞
y=−∞

max(y, vi0)f̄i(y)dy (14)

The equilibrium stability conditions remain as in Section 3.1, replacing the calculation of EBi(IGP )
and EBi(¬IGP ) with (13) and (14). As with the former method, there is no guarantee that an equi-
librium will actually exist (either pure or mixed) and that if one exists there will be no other equi-
libria. Also, as with the method presented above, the analysis of the Threshold restricted method
generalizes the analysis of the standard cooperative information gathering model in the sense that
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Figure 3: Threshold restricted information sharing - effect of V IS on the individual expected ben-
efit, for different information gathering costs, c, in a setting: k = 2 and n = 1.

the latter is a specific case where the threshold set for taking part in the ISP is V IS
i →∞ ∀i. Simi-

larly, when V IS
i → −∞ ∀i, the solution obtained is the same as the one known for the single-agent

information gathering problem (McMillan & Rothschild, 1994).

Figure 3 illustrates the agents’ individual expected benefit as a function of the thresholds V IS
i

used, for different information gathering costs (c). The setting used is the homogeneous setting
described at the beginning of the section, with the parameters c = 0.4 and n = 1. The values V IS

i

were similar for all agents (i.e., V IS
i = V IS ∀i). As depicted in the figure, the maximum expected

individual benefit is obtained when the value of the threshold for excluding agents from the ISP
is, in some cases, substantially small, leaving many favorable findings outside the ISP. The typical
pattern exhibited in the figure is similar to the one depicted in Figure 1: an increase and then a
decrease in the expected individual benefit as the threshold V IS increases. This is explained by the
fact that when V IS = 0 each agent actually executes an individual IGP without sharing information
with others. As V IS increases, the agent relies more on the information gathered by the other agents
and the same considerations explained in 3.1 regarding the tradeoff between the negative effect over
pi and ri and the positive effect over the chance of actually taking part in the ISP hold.

3.3 Cost Filtered Information Sharing

This method introduces a cost cIS an agent incurs if it chooses to take part in the ISP. For example,
in our travel agents running example this is equivalent to having all agents that are interested in
taking part in the ISP present some evidence of donating a fixed amount of money to some charity,
as a prerequisite for accessing the designated secured server that is used for sharing. Unlike the two
prior methods, here the agents get to decide whether to opt-out of information sharing; hence it does
not require any enforcement whatsoever. It does require, however, a means for introducing a cost
for the ISP, e.g., through a donation or by setting a meeting place for sharing information such that
each participant will need to spend time and money for getting there.
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It is assumed that all agents are a priori acquainted with the ISP participation costs of all agents.
The introduction of such a cost (that is not eventually returned to the agents) requires an appropriate
balance in the form of some compensation to the agents for taking part in the ISP. Without such
compensation, no agent will be willing to take part in the ISP, as proven in the following proposition.

Proposition 1. If the agents incur some cost when taking part in the ISP, then in the absence of
some compensation for taking part in the ISP, none of the agents will take part in the ISP.

Proof. Consider the highest value v that if known to any of the agents, after completing their in-
dividual IGP, warrants the participation of the agent in the ISP. We show that in the absence of an
appropriate compensation for the agent, such a value v cannot hold — since none of the other agents
will contribute a value greater than v to the ISP, the agent that found v will not gain anything from
the ISP however it will incur a cost; consequently it will choose not to take part in the ISP.

One option to compensate the agents for taking part in the ISP is to offer the agent with the best
value that takes part in the ISP a compensation B. The amount B can be collected from the agents
(e.g., in equal shares) prior to the IGP, such that once collected it is considered a “sunk cost” and the
agents’ strategies become affected only by the chance of receiving the bonus B. The structure of
the best response strategy of any individual agent in this case, given the strategy of others, is given
in Theorem 3.

Theorem 3. Given the probability distribution function of the maximal value obtained by all other
agents that take part in the ISP, f̄i(x), agent Ai’s optimal individual information gathering strategy
can be described by the pair (ri, R

IS
i ), where RIS

i is the set of intervals such that for any x ∈
RIS

i ∧ x ≥ vi0:

cIS ≤
∫ ∞
y=x

(y − x)f̄i(y)dy + B ·
∫ x

y=−∞
f̄i(y)dy (15)

and is to set a value ri ≥ vi0, where ri is the solution to:

ci =

∫ ∞
y=ri

(EBi(y)− EBi(ri))fi(y)dy (16)

where EBi(v) is given by:

EBi(v) =


v v /∈ RIS

i

−cIS + B ·
∫ v
y=−∞ f̄i(y)dy otherwise

+
∫∞
y=−∞max(vi0, y, v)f̄i(y)dy

(17)

The agent should resume its individual IGP as long as the value found so far is below ri, and
otherwise it should terminate its IGP. Upon terminating the IGP (or obtaining the value of all
opportunities) the agent should participate in the ISP if the best value it has found in its individual
IGP is in one of the intervals of the set RIS

i and otherwise it should opt out of taking part in the ISP.

Proof. The set RIS
i as defined in (15) contains all the values v for which the expected benefit from

taking part in the ISP - calculated as the potential value improvement,
( ∫∞

y=x(y − x)f̄i(y)dy
)

plus
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the expected compensation B ·
∫ x
y=−∞ f̄i(y)dy, both independent of the reservation value ri used

by the agent - is greater than the cost cIS incurred. The remainder of the proof, concerning the
optimality of a reservation-value-based strategy and the correctness of (16) is the same as the one
provided for Theorem 1, differing only in the way the expected benefit if information gathering is
resumed is calculated.

The solution of a set of equations consisting of (16)-(17) for each agent will provide a set of
pure equilibria of the form {(ri, RIS

i )|1 ≤ i ≤ k}, if any exist. For the same considerations given
in Section 3.1, a mixed equilibrium for this case will be of the form {(pi, ri, RIS

i )|1 ≤ i ≤ k}.
The equilibrium analysis of the Cost filtered information sharing follows the analysis given

for the previous methods, therefore we provide only the differences. The calculation of F return
i (x)

remains as in (2). The probability distribution function f return
i (x) is the first order derivative of

F return
i (x). The function F return′

i (x), is now calculated as a modification of (10):

F return′
i (x) = F return

i (x) +

∫
y≥x∧y/∈RIS

i

f return
i (y)dy

and consequently the function F̄i(x) is given by:

F̄i(x) =
∏

Aj∈K∧j 6=i

(pjF
return′
j (x) + (1− pj))

The probability distribution function f̄i(x) is the first order derivative of F̄i(x) as before.
These enable us to calculate the expected benefit of agent Ai when the other agents use the set

of strategies {(pj , rj , RIS
j )|1 ≤ j ≤ k ∧ i 6= j}. If agent Ai will choose to engage in IGP then its

expected benefit, EBi(IGP ), is given by:

EBi(IGP )=−ci
1−Fi(ri)

ni

1− Fi(ri)
+

∫ ∞
y=−∞
EBi(max(y, vi0))f

return
i (y)dy (18)

The first term is the expected cost incurred throughout the IGP carried out by Ai, calculated as:
ci
∑ni

j=1(Fi(ri))
j−1 = ci

1−Fi(ri)
ni

1−Fi(ri)
, as the number of opportunities on which information is gath-

ered is a geometric random variable bounded by ni, with a 1 − Fi(ri) success probability. The
second term is the expected benefit from executing its IGP. When the agent opts not to gather in-
formation at all, its expected benefit, EBi(¬IGP ), is simply the maximum between the expected
value of the maximum value returned by the other agents and vi0, if the agent will choose to take
part in the ISP:

EBi(¬IGP ) = EBi(v
i
0) (19)

The equilibrium stability conditions remain as in Section 3.1, replacing the calculation of EBi(IGP )
and EBi(¬IGP ) with (18) and (19). As with the former methods, there is no guarantee that an
equilibrium will actually exist (either pure or mixed) and that if one exists there will be no other
equilibria. Also, as with the methods presented above, the analysis of the cost filtered method gen-
eralizes the analysis of the standard cooperative information gathering model in the sense that the
latter is a specific case where cIS = B = 0. Similarly, when B = 0 the solution obtained is the

17



ROCHLIN & SARNE

Figure 4: Cost filtered information sharing - effect of cIS on the individual expected benefit, for
different information gathering costs, c in a setting: k = 2, n = 3 and B = 0.04.

same as the one known for the single-agent information gathering problem (regardless of the value
of cIS , based on Proposition 1).

Figure 4 illustrates the agents’ individual expected benefit as a function of the cost cIS used, for
different information gathering costs (c). The setting used is the homogeneous setting described at
the beginning of the section, using the parameters k = 2, n = 3 and B = 0.04. As illustrated in
the figure, the maximum expected individual benefit is obtained when a substantial cost is incurred
for taking part in the ISP. The typical pattern exhibited in the figure is similar to the one depicted in
Figures 1 and 3, and explained by similar considerations.

3.4 Random Finding Sharing

In this method each agent Ai, after it has completed its individual IGP, is allowed to take part in the
ISP, however it is restricted to disclose only one of the values it has come across in its IGP, which
is randomly selected. The downside of such a restriction is obvious - in most cases the agents will
not benefit from the best individual findings but rather become exposed to a small, not necessarily
optimal, subset of the information gathered. Still, as we demonstrate in the following paragraphs,
for some settings the individual performance improves. In our travel agents running example the
implementation of the method is quite straight forward and relies, as before, on having the agents
send their findings to a designated secured server used for sharing. The only difference, however,
is that the server will pick only a single random finding of each agent and will discard the rest of
the findings. Here, again, no enforcement is necessary since no individual agent can benefit from
disclosing more information than it is required to disclose.

The structure of the best response strategy of any individual agent in this case, given the strategy
of others, is given in Theorem 4.

Theorem 4. Given the probability distribution function of the maximal value obtained in the ISP
based on the reports of all other agents, denoted f̄i(x), agent Ai’s optimal individual information
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gathering strategy is to follow a reservation value ri ≥ vi0, where ri is the solution to:

ci =

∫ ∞
y=ri

fi(y)

∫ ∞
x=−∞

(max(y, x)−max(ri, x))f̄i(x)dxdy (20)

The agent should always choose to gather information on an additional opportunity (if one is still
available) if the best value obtained so far is below ri and otherwise it should proceed to ISP.

Proof. The proof is similar to the one given for Theorem 1, differing only in the way the expected
benefit if gathering information on an additional opportunity is calculated.

The solution of a set of k equations of type (20), one for each agent, will provide a set of pure
equilibria of the form {ri|1 ≤ i ≤ k} if any exist. For the same considerations given in Section 3.1,
a mixed equilibrium for this case will be of the form {(pi, ri)|1 ≤ i ≤ k}.

The equilibrium analysis for this method follows the one given in 3.1, except that F return′
i (x)

is used as in 3.2. The function F return
i (x) is given by (2). The probability distribution function

f return
i (x) is the first order derivative of F return

i (x). In order to formulate F return′
i (x) we use a some-

what different state definition for F return′
i (x, v, j, l). A state (v, j, l) is now defined according to the

number of values that are below x obtained by agent Ai after gathering information on j opportuni-
ties, denoted l, and the best value obtained so far (including vi0), v. The function F return′

i (x, v, j, l)
can be calculated recursively according to:

F return′
i (x, v, j, l) =


0 x < vi0
l
j v ≥ ri ∨ ni = j∫ x

y=−∞ F return′
i (x,max(y, v), j+1, l+1)fi(y)dy otherwise

+
∫∞
y=x F

return′
i (x,max(y, v), j+1, l)fi(y)dy

(21)

The case where x < vi0 is trivial, as vi0 is a lower bound for the best value the agent ends up with.
The second case in (21) is straightforward — when the best value obtained so far is v ≥ ri, or when
there are no additional opportunities (ni = j), the agent necessarily terminates its IGP (according
to Theorem 4). In such cases, if l values of the total j values are below x, then the probability that
Ai will return a value below x is l

j . In all other cases, the IGP will resume; hence the probability is
given recursively based on the new state (x,max(y, v), j + 1, l + 1) in case the new value obtained
is y ≤ x and (x,max(y, v), j + 1, l) otherwise.

Thus, we can now formulate F return′
i (x):

F return′
i (x) = F return′

i (x,−∞, 0, 0) (22)

and consequently F̄i(x) is given by (11) and the probability distribution function f̄i(x) is the first
order derivative of F̄i(x) as before.

These enable us to calculate the expected benefit of agent Ai when the other agents use the set of
strategies {(pj , rj)|1 ≤ j ≤ k ∧ i 6= j}. If agent Ai will choose to engage in IGP then its expected
benefit, EBi(IGP ), is given by:

EBi(IGP ) =− ci
1− Fi(ri)

ni

1− Fi(ri)
+

∫ ∞
y=−∞

f return
i (y)

∫ ∞
x=−∞

max(vi0, y, x)f̄i(x)dxdy (23)
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Figure 5: Random finding sharing and Standard information sharing (according to (Rochlin et al.,
2014)) as a function of: (a) information gathering costs, c, in a setting: k = 5 and n = 3;
and (b) number of agents, k, in a setting: c = 0.1 and n = 3.

When the agent opts not to gather information at all, its expected benefit, EBi(¬IGP ), is
simply the expected value of the maximum value returned by the other agents:

EBi(¬IGP ) =

∫ ∞
x=−∞

max(vi0, x)f̄i(x)dx (24)

The equilibrium stability conditions remain as in Section 3.1, replacing the calculation of EBi(IGP )
and EBi(¬IGP ) with (23) and (24). As with the former method, there is no guarantee that an
equilibrium will actually exist (either pure or mixed) and that if one exists there will be no other
equilibria.

Figure 5 depicts the agents’ individual expected benefit as a function of information gathering
costs c (left graph) and the number of agents k (right graph). The setting used is the homogeneous
setting described in the beginning of the section, with the parameters k = 5 and n = 3 (Figure 5(a))
and c = 0.1 and n = 3 (Figure 5(b)). Each graph depicts the performance both with Random finding
sharing and the standard non-restricted sharing method (according to (Rochlin et al., 2014)). The
figure shows that the random finding sharing strategy dominates the standard information sharing
strategy, as far as the expected individual benefit is concerned.

3.5 Subgroup Restricted Information Sharing

In this method the agents are divided into sub groups that share their findings separately, i.e., each
agent executes its individual IGP separately and at the end each subgroup will carry out a separate
ISP. Formally, consider the case where the |K| agents are divided into w subgroups {K1, · · · ,Kw}
(
⋂w

j=1Kj = ∅ and
⋃w

j=1Kj = K). In our travel agents running example this can be done by
providing each sub-group a designated server that will serve only the subgroup members or, in
physical environments, setting different meeting places for sharing the information after the group
has been partitioned into sub-groups.
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Figure 6: Subgroup restricted information sharing - individual expected benefit as a function of the
number of subgroups, w, in a setting: c = 0.45, k = 20 and n = 10.

The best response strategy of any individual agent Aj
i of subgroup Kj = {Aj

1, . . . A
j
|kj |} ⊆ K

as well as the equilibrium analysis within the subgroup level are the same as given by (Rochlin
et al., 2014), as all agents within the subgroup fully share their findings. The optimal strategy can
thus be obtained by checking the expected benefit of all possible divisions of K into subgroups and
selecting the partition associated with the highest expected benefit. The computational complexity
of evaluating all subgroups is combinatorial in the number of agents. Although the focus of the
paper is not on the computational aspects but rather on analyzing the structure of the equilibrium
cooperative strategies, we note that in most ISP settings the computational complexity becomes a
non-issue since the number of agents taking part in the ISP is relatively small.

We note that this method results in a similar performance as in (Rochlin et al., 2014) when the
number of subgroups is w = 1 (i.e., all k agents will take part in the ISP as one group). Similarly,
when the number of subgroups is w = |K| (i.e., each subgroup contains only one agent) the so-
lution obtained is the same as the one known for the single-agent information gathering problem
(McMillan & Rothschild, 1994).

Figure 6 illustrates the agents’ individual expected benefit as a function of the number of sub-
groups used (w). The setting used is the homogeneous setting described in the beginning of the
section, using the parameters k = 20, n = 10 and c = 0.45. The graph uses partitioning into equal-
size subgroups, i.e., w obtains the values {1, 2, 4, 5, 10}. As depicted in the figure, the maximum
expected individual benefit is obtained in this example when the number of subgroups is w = 2.

4. Related Work

The model analyzed in this paper is based on two important concepts: multi-agent cooperation and
costly information gathering. Multi-agent cooperation has been shown to be widely effective for
better achieving agents’ individual goals (Stone & Kraus, 2010) or improve their performance mea-
sures (Kraus, Shehory, & Taase, 2003; Dutta & Sen, 2003), especially when there are differences
in the agents’ capabilities, knowledge and resources or when an agent is incapable of completing
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a task by itself (Stone & Kraus, 2010; Saad, Han, Debbah, & Hjorungnes, 2009; Conitzer, 2012;
Breban & Vassileva, 2001). It is also the main driving force behind many coalition formation mod-
els in the area of cooperative game theory and MAS (Shehory & Kraus, 1998). Yet, the majority
of cooperation and coalition formation MAS-related research tends to focus on the way coalitions
are formed and consequently concerns issues such as the optimal division of agents into disjoint
exhaustive coalitions, division of coalition payoffs and enforcement methods for interaction pro-
tocols. While coalition formation and coordination models can be widely found in the electronic
market domain, most work in this domain emphasizes mechanisms for forming cooperation for the
purpose of aggregating demands in order to obtain volume discounts (Tsvetovat, Sycara, Chen, &
Ying, 2000; Yamamoto & Sycara, 2001; Sarne & Kraus, 2003). Several authors have considered
the problem of determining the strategy of a group once formed (Ito, Ochi, & Shintani, 2002; Sarne,
Manisterski, & Kraus, 2010; Rochlin & Sarne, 2014b; Rochlin, Sarne, & Zussman, 2011), however
their focus was mostly on fully-cooperative agents. None of these works considered the cooperation
problem of a group of self-interested agents in costly exploration settings where findings can benefit
all agents.

Group-based cooperation of self-interested agents can also be found in public goods games and
allocation games in general (Aumann, 1998; Nagel & Tang, 1998; McKelvey & Palfrey, 1992;
de Jong et al., 2008; de Jong & Tuyls, 2011). Common to these games is that according to their
equilibrium each agent individually should opt out of the cooperation as soon as possible or invest
the minimum allowed. Therefore the research on cooperation in this domain is mostly studied for
repeated games (Selten & Stoecker, 1986) or settings with bounded-rational participants (e.g., peo-
ple) for which cooperation to some extent is commonly exhibited. Much effort has been placed on
developing reciprocity-based mechanisms, e.g., tit-for-tat (Axelrod, 1984) that facilitate cooperation
even when agents find it momentarily beneficial to act selfishly. This way, long-term considerations
override short-term greedy behavior. Many have extended the basic mechanism to support various
variants of the model, such as asymmetric costs, heterogeneously repeating instances and other fac-
tors (Sen, 1996). Few works has dealt with inducing cooperation in non-repeated settings showing
that rewards are somewhat less effective than sanctions in enforcing cooperation (Walker & Hallo-
ran, 2004). The main difference between public goods games and our work is that in our case the
“public goods” are in fact information that can lead to better economic decisions. Obtaining more
information requires carrying out an active sequential information gathering process. Therefore, in
our settings there is much room for individual information gathering, to some extent, even if all
the others are “free riders”. Moreover, with the simplistic settings used in public goods games the
issue of information sharing and the ways it is carried out (when considering self-interested agents)
becomes irrelevant.

The second concept upon which this paper relies, i.e., costly information gathering, is of great
importance when there is no central source that can supply an agent full immediate reliable informa-
tion on the environment and the state of the other agents (Sarne & Aumann, 2014). In general, the
introduction of information gathering costs into MAS models leads to a more realistic description of
these environments. This is because agents are typically required to invest/consume some of their
resources in order to obtain information concerning opportunities available in their environment
(Bakos, 1997; Sarne & Kraus, 2008; Kephart & Greenwald, 2002; Rochlin, Sarne, & Laifenfeld,
2012; Rochlin, Sarne, & Zussman, 2013; Manisterski, Sarne, & Kraus, 2008).

Optimal strategies for settings where individuals need to search for an applicable opportunity
when information gathering is costly have been widely studied (Grosfeld-Nir, Sarne, & Spiegler,
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2009; Elmalech, Sarne, & Grosz, 2015; Elmalech & Sarne, 2012), prompting several literature re-
views (Smith, 2011; McMillan & Rothschild, 1994; Morgan & Manning, 1985). These models,
which are often termed “costly search” models or “economic search” models have been developed
to the point where their total contribution is referred to as “search theory”. Over the years, many
information gathering model variants have been considered, focusing on different aspects of the
model, such as the decision horizon (finite versus infinite) (Lippman & McCall, 1976), the pres-
ence of the recall option (McMillan & Rothschild, 1994), the option to disambiguate noisy signals
(Chhabra, Das, & Sarne, 2014a; Alkoby, Sarne, & Das, 2015; Chhabra, Das, & Sarne, 2014b), the
distribution of values and the extent to which findings remain valid along the process (Landsberger
& Peled, 1977). In particular, these models have been integrated in the study of strategic infor-
mation platforms (Hajaj, Hazon, Sarne, & Elmalech, 2013; Sarne, 2013; Hajaj & Sarne, 2014).
Another strand of search-based models is two-sided search (Sarne & Arponen, 2007; Hendrix &
Sarne, 2007) that deals with the distributed (search-based) formation of pairwise (or general size)
partnerships (Nahum, Sarne, Das, & Shehory, 2015). While the analysis of such models derive
from equilibrium considerations, these are very different from our model as they do not reflect any
cooperative aspect.

Many cooperative information gathering models have been studied, extending the theories to
multi-agent (or multi-goal) environments (Sarne & Kraus, 2005). Examples include, among others,
an attempt to purchase several commodities while facing imperfect information concerning prices
or operating several robots in order to evaluate opportunities in different locations. These works
differ from ours either in that they consider fully cooperative agents that attempt to maximize the
overall utility (Sarne et al., 2010; Gatti, 1999; Burdett & Malueg, 1981; Carlson & McAfee, 1984),
and thus lack any equilibrium considerations, or they assume that any agent’s IGP is constrained
by the findings of the other agents, rather than augmented/improved by such findings as in our case
(Rochlin & Sarne, 2013). Consequently they constitute substantially different equilibrium strate-
gies. Models that do consider cooperative information gathering, which rely on assumptions similar
to ours (e.g., (Rochlin et al., 2014; Hazon et al., 2013)), focus primarily on the extraction of the
equilibrium strategies and investigate the influence of the different model parameters on the agents’
performance in equilibrium. None of these works, however, suggested methods for improving co-
operative information gathering in such settings, of the kind that we suggest and analyze in this
paper.

More broadly, our problem can be seen as part of the field of planning under uncertainty, hence it
is related to Markov decision processes (MDP) (Bellman, 1957; Puterman, 1994) and decentralized
Markov decision processes (Bernstein, Givan, Immerman, & Zilberstein, 2002). In these models the
goal is to maximize the expected cumulative reward, which is also the objective in our case. Alas, the
use of MDPs in our case is complicated by the continuous nature of the value probability distribution
functions. More importantly, our analysis and proofs result in threshold-based (or interval-based)
solutions which are both simpler in terms of strategy and state representation and can be derived
with a substantially lesser complexity compared to solving via MDPs.

Finally, we note that the non-intuitive findings whereby methods that essentially limit infor-
mation sharing and cooperation actually have a positive impact in the self-interested case follows,
in spirit, earlier results in other settings. In particular, ones in which it has been shown that so-
called “inefficiencies” can increase market performance, under certain circumstances. For example,
Masters (Masters, 1999) shows that an increase in minimum wage, which is often considered in-
efficiency in economics, can have positive employment effects. In transportation economics (e.g.,
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congestion games) equilibrium is frequently not the overall optimum. In such cases, it has been
shown that taxation can change the equilibrium to a more desirable one (Penn, Polukarov, & Ten-
nenholtz, 2009b, 2009a; Fotakis, Karakostas, & Kolliopoulos, 2010). Similarly, taxes can facilitate
more desirable equilibria in Boolean games (Endriss, Kraus, Lang, & Wooldridge, 2011) and in
centralized matching schemes (Anshelevich, Das, & Naamad, 2013). In this work we show that
a somewhat similar phenomenon also occurs in the context of cooperative information gathering,
though the model and analysis are, of course, totally different from the above mentioned.

5. Discussion and Conclusions

As demonstrated in Section 3, each of the five methods proposed and analyzed in this paper can
substantially increase the benefit self-interested agents achieve through information sharing when
gathering information cooperatively. Each of the five methods is based on a different restriction
made on the agents’ ability or willingness to take part in the ISP. Intuitively such restrictions may
seem to have a negative effect on performance. Yet, since each agent gains less from the information
sharing itself, it has a greater incentive to invest more resources in individual information gathering,
hence overall performance improves.

The results suggest important inputs for the designers of markets and systems where cooperative
information gathering is applicable, by enabling them to predict the strategies that will be used and
the resulting system performance. These primarily facilitate the proper design of the system and
the determination of what elements should and should not be included in such systems in order
to achieve specific goals and promote certain behavior. In particular, the introduction of some
seemingly non-beneficial elements may actually be productive. We note that the paper generally
does not attempt to find the “optimal” parameter values for each method (e.g., probability, group
partitioning, threshold and cost of taking part in the information sharing, or the payment received
if the agent is associated with the “best” value), since the concept of optimality in this sense is not
properly defined. Indeed in settings where there is an equilibrium solution that is preferred by all
agents (e.g., in the examples given in the former sections, where all agents are homogeneous) the
choice of parameter values is clear. Nevertheless in general, it is possible that a certain value will
be preferred by one of the agents whereas others will prefer another. In the latter case it is the role
of the system designer to decide on these parameters based on her goals.

There are numerous extensions of the model that can be considered. Some of them are straight-
forward and require minor changes in the analysis. For example, if agents are buyers and each of
them is interested in more than a single unit of the product they are searching for, the only change
required in the individual strategy equations is multiplication of the expense of purchasing the item
by the number of items in which the agent is interested. Another example is the composition of
several methods. For example, in the case of Subgroup restricted information sharing, each of the
subgroups can adopt any of the other four methods in the subgroup level. Other extensions, while
of much interest, are more complex to analyze. For example, consider a model where the agents
can continuously share their findings along their individual IGPs. In this case, as discussed in Sec-
tion 1, it is essential to first define the method that will provide an incentive for agents to share
their findings despite the negative influence it will have in terms of discouraging others from further
information gathering.
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Appendix A. Proof of Theorem 1

Proof. We first prove the reservation-value nature of the optimal strategy. Then we continue with an
inductive proof, to show that the reservation value used by each agent will remain stationary along
its IGP and can be calculated according to Equation 1.

In the absence of any other new information along the IGP, each agent’s strategy will be the
mapping of S(~x, j)→ {terminate, resume}, where ~x is the set of values obtained so far (includ-
ing vi0) and j is the number of opportunities on which information has already been gathered. Since
the agent is interested merely in the maximum opportunity value, its strategy is affected only by
the maximum value in ~x, hence the strategy can be defined as S(v, j) → {terminate, resume},
where v is the maximum value in ~x. Obviously, if according to the optimal strategy the agent needs
to resume IGP upon reaching state (v, j) then the same should be true for any state (v′, j) where
v′ < v. Similarly, if according to the optimal strategy the exploration should terminate at state (v, j)
then the same should hold for any state (v′′, j) where v′′ > v. Therefore, for each given number
of opportunities for which information has been gathered, j, the optimal individual IGP strategy of
agent Ai can be characterized by the reservation value rji such that the agent should resume IGP if
the best value obtained so far is below rji and otherwise terminate the IGP.

We begin with the case of j = ni − 1. If the best value obtained thus far by agent Ai is v then
gathering information on one last opportunity, according to this strategy, will incur a cost ci and the
expected value the agents will obtain will be:

P IS
i ·

∫ ∞
y=−∞

fi(y)

∫ ∞
z=−∞

(max(y, v, z)f̄i(z))dzdy

+ (1− P IS
i ) ·

∫ ∞
y=−∞

max(y, v)fi(y)dy

The first term relates to the case where agent Ai will participate in the ISP, with a probability of
P IS
i , whereas the second term relates to the case where it will be required to opt out from the ISP,

i.e., with a probability of 1− P IS
i (where y is the new value that will be obtained by the agent and

z is the best value that will obtained from the other agents’ IGP).

On the other hand, terminating the IGP at this point will result in a benefit:

P IS
i ·

∫ ∞
z=−∞

max(v, z)f̄i(z)dz + (1− P IS
i ) · v
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Therefore, the agent should gather information on the last opportunity if and only if:

P IS
i ·

∫ ∞
z=−∞

max(v, z)f̄i(z)dz + (1− P IS
i ) · v < (25)

P IS
i ·

∫ ∞
y=−∞

fi(y)

∫ ∞
z=−∞

(max(y, v, z)f̄i(z))dzdy

+ (1− P IS
i ) ·

∫ ∞
y=−∞

max(y, v)fi(y)dy − ci

The left hand side of the equation captures the expected benefit if the individual IGP is terminated
and the right hand side captures the expected benefit if information is gathered for the last oppor-
tunity. Both terms distinguish between the case where agent Ai participates in the ISP i.e., with
a probability of P IS

i , and when it is not allowed to. Using simple mathematical manipulations
obtains:

0 < P IS
i ·

∫ ∞
y=v

fi(y)

∫ ∞
z=−∞

(max(y, z)−max(v, z)f̄i(z))dzdy (26)

+ (1− P IS
i ) ·

∫ ∞
y=v

(y − v)fi(y)dy − ci

The value v for which (26) becomes an equality is in fact the value of ri according to (1). There-
fore, since the right hand side of (26) is a decreasing function of v, then the agents should gather
information on the last opportunity whenever the value of v is less than the value of r according to
(1). This establishes the first part of the proof.

Now assume the same ri (according to (1)) holds for any j′ > j, for some j, and consider
the agents’ decision regarding gathering information on one more opportunity, if the best value
obtained thus far is v and the number of opportunities for which the values were already obtained is
j. If v > ri ≥ vi0 and the agent gathers information on one additional opportunity, then regardless
of the value obtained next it will definitely terminate its individual IGP thereafter (as it already has
a value greater than ri and according to the induction assumption the optimal strategy thereafter is
the reservation value ri). Therefore the benefit obtained from further information gathering is given
by:

P IS
i ·

∫ ∞
y=−∞

fi(y)

∫ ∞
z=−∞

(max(y, z)−max(v, z)f̄i(z))dzdy

+ (1− P IS
i ) ·

∫ ∞
y=−∞

(y − v)fi(y)dy − ci

Alas, since the latter term decreases as v increases, and obtains zero for v = ri (according to (1)),
then since v > ri ≥ vi0 the term obtains a negative value, hence additional information gathering
cannot be the preferred choice.

Similarly, consider the case where vi0 ≤ v < ri for j and the agent chooses not to gather ad-
ditional information. Here the expected benefit from resuming information gathering is necessarily
greater than if resuming in state (v, j′ > j). However, according to the induction assumption the
agent should resume information gathering in state (v, j′ > j), leading to a contradiction. There-
fore, the optimal strategy for j is also a reservation value strategy and the optimal reservation value
is calculated, once again, according to (1).
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Figure 7: Enforced probabilistic information sharing - effect of PH on the individual expected
benefit, for different: (a) numbers of agents, k, in a setting: c = 0.35 and n = 5; and (b)
information gathering costs, c, in a setting: k = 15 and n = 4.

Appendix B. Partially Limiting Information Sharing

Consider the case where each agent Ai, after it has completed its individual IGP, shares its own
findings however can only obtain the information of others with a probability of PH

i , which is
a priori assigned. The structure of the best response strategy of any individual agent in this case,
given the strategy of others, is identical to the one given in Theorem 1, replacing P IS

i with PH
i .

Similarly the rest of the analysis given above hold for this case, except for the calculation of F̄i(x),
which is now given by:

F̄i(x) =
∏

Aj∈K∧j 6=i

(pjF
return
j (x) + (1− pj)) (27)

Figure 7 depicts the agents’ individual expected benefit as a function of the probability PH
i

used, for different group sizes (k) and information gathering costs (c) using the same setting used
in Figure 1. A comparison of Figures 1 and 7 reveals that in this case the partial limitation over the
information sharing dominates the enforced probabilistic information sharing strategy, as far as the
expected individual benefit is concerned. Nonetheless, this is certainly not a general result.

Appendix C. Proof of Theorem 2

Proof. The proof generally resembles the one given for Theorem 1. If the best value agent Ai has
found so far (including vi0) is v > V IS

i it is not allowed to take part in the ISP. If j = ni − 1
then resuming the IGP will result in expected benefit −ci +

∫∞
y=−∞(max(y, v)fi(y))dy whereas

terminating the IGP will guarantee v. The agent should explore further for any v for which the first

27



ROCHLIN & SARNE

term is greater than the latter, which can be represented, after some mathematical manipulations, as:

ci <

∫ ∞
y=v

(y − v)fi(y))dy

which is equivalent to any value v greater than rresume
i according to 6.8

The remainder of the proof which deals with showing the reservation-value nature of the optimal
strategy and that if v > V IS

i the reservation value used by each agent remains stationary along its
IGP is the same as in Theorem 1.

Now consider the case where the best value agent Ai has found so far is vi0 ≤ v ≤ V IS
i and the

number of opportunities on which information has already been gathered is j. Resuming the IGP
will result in:

− ci +

∫ V IS
i

y=−∞
fi(y)

∫ ∞
z=−∞

(max(y, v, z)f̄i(z))dzdy +

∫ ∞
y=V IS

i

EBj+1
i (y)fi(y)dy

where EBj+1
i (y) is the expected benefit of agent Ai, given the best value it has obtained thus far, y

(including vi0), and the number of opportunities on which information has already been gathered, j.
The term EBj

i (v) is calculated recursively according to (8). If there are no remaining opportunities
(j > n) or the best value found is v ≥ rresume

i the expected benefit is simply v. Otherwise, the
IGP resumes (incurring a cost ci) with the revised best value (max(y, v)), however with j + 1
opportunities on which information has already been gathered, i.e., with an expected benefit of
EBj+1

i (max(y, v)). On the other hand, terminating the IGP at this point will result in the expected
benefit: ∫ ∞

z=−∞
max(v, z)f̄i(z)dz,

Therefore, the agent should explore further for any v for which the first term is greater than the
second, which after some mathematical manipulations becomes:

ci <

∫ V IS
i

y=v
fi(y)

∫ ∞
z=−∞

(max(y, z)−max(v, z))f̄i(z)dzdy

+

∫ ∞
y=V IS

i

fi(y)

∫ ∞
z=−∞

(EBj+1
i (y)−max(v, z))f̄i(z)dzdy

which is equivalent to any value greater than ri(j) according to 7. The reason a different threshold
is used for different j values is that the calculation of the threshold depends among others on the
expected benefit in case the value to be obtained is v > V IS

i , in which case the expected benefit
depends on the number of remaining opportunities.

8. If the value of rresume
i resulting from ci =

∫∞
y=v

(y − v)fi(y))dy is lower than V IS
i , the agent will inevitably

terminate the IGP (as v > rresume
i ) hence any value rresume

i ≤ V IS
i can be used, in particular rresume

i = V IS
i as

in the theorem.
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