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Abstract We consider team-work settings where individual agents incur costs on behalf of
the team. In such settings it is frequently the custom to reimburse agents for the costs they
incur (at least in part) in order to promote fairness. We show, however, that when agents are
self-interested, such reimbursement can result in degradation in efficiency - at times severe
degradation. We thus study the relationship between efficiency and fairness in such settings,
distinguishing between ex-ante and ex-post fairness. First, we analyze reimbursement poli-
cies that reimburse solely based on purchase receipts (as is customary), and show that with
such policies the degradation in both efficiency and fairness can be unbounded. We thus
introduce two other families of reimbursement policies. The first family guarantees opti-
mal efficiency and ex-ante fairness, but not ex-post fairness. The second family improves (at
times) on ex-post fairness, but at the expense of efficiency, thus providing a tradeoff between
the two.

Keywords Multi-Agent Exploration · Joint Exploration · Cooperation · Fairness in MAS ·
Teamwork

1 Introduction

Cooperation and team work are key to many multi-agent systems. Team work has many
advantages, but perhaps the most fundamental is efficiency - operating as a team, agents can

I. Rochlin
School of Computer Science, College of Management, Rishon LeZion 7502501, Israel.
E-mail: igor.rochlin@gmail.com

Y. Aumann
Department of Computer Science, Bar-Ilan University, Ramat-Gan 5290002, Israel.
E-mail: aumann@cs.biu.ac.il

D. Sarne
Department of Computer Science, Bar-Ilan University, Ramat-Gan 5290002, Israel.
E-mail: sarned@cs.biu.ac.il

L. Golosman
Department of Computer Science, Bar-Ilan University, Ramat-Gan 5290002, Israel.
E-mail: golosml@macs.biu.ac.il



2 Igor Rochlin et al.

benefit from the work performed by others, eliminating duplicate work and costs. Thus, a
team of thirsty people in a desert can collectively dig a single well, rather than each digging
its own; a group of medical students can all use the expensive book purchased by one, rather
than each having to purchase it separately; and a team of shopbots can split the search space
among themselves and then share the information, rather than each having to search the
entire space. Thus, working as a team can significantly reduce costs, both collective and
individual. At the same time, while agents - even self-interested agents - frequently accept
that others benefit from their work, they also expect that the distribution of costs among the
team members be “fair”, in the sense that costs incurred are, more or less, evenly distributed
among the team members. Thus, continuing the above example, the student who purchased
the expensive book expects to be reimbursed for her costs. However, these two objectives -
efficiency and fairness - can be at odds, as demonstrated by the following example.

Consider again the expensive book example. Suppose there are twenty medical students,
all of whom require some book, say “The Adult and Pediatric Spine” (ISBN 0781735491).
One copy of the book is sufficient for all students, so only one of them, say Alice, buys the
book. For fairness, the students agree that they will reimburse Alice for their share (1920 ) of
the cost, whatever that will turn out to be. “The Adult and Pediatric Spine” lists for $360,
but can also be found used, with some effort, for less than $70. However, paying only 5%
of the cost (i.e. at most $18), Alice has little incentive to invest the time and effort to get a
better deal, and purchases the book at full price at the university bookshop. The team in total
thus paid $360. If, on the other hand, fairness would not have been required and Alice would
incur the entire cost of the book, she would invest some effort, say worth $20, in getting the
$70 deal, and the total cost would be $90. Thus, the requirement for fairness has reduced
the overall efficiency by a factor of four. In this case, fairness damaged the team as a whole,
but at least benefited Alice. But, there are also cases where insisting on fairness can damage
all. Suppose that there are twenty expensive books to purchase, and each student is tasked
with getting one book. The students also agree to split all costs evenly - based on purchase
receipts - as is customary. As in the previous case, the result is that each student has little
incentive to invest any effort in getting a good deal on its assigned book, and the team ends
up paying full price on all books. If, on the other hand, each student would pay in full for her
assigned book, then they may end up paying different amounts - which could be considered
unfair - but each student would invest the time in getting a good deal, and the resulting cost
would be lower for each and every student.

In this paper we investigate this relationship between efficiency and fairness in settings
such as the above, and develop mechanisms that produce a good tradeoff between the two.

The first necessary step in analyzing the tradeoff between efficiency and fairness is to
get a clear understanding of each of the notions. Efficiency is rather straightforward - it
concerns the overall cost of obtaining the goal and is measured by totaling the costs of all
team members. In the stochastic case - we take the expectation of this total.

Fairness concerns the difference in costs between team members - dissimilar costs are
considered less fair than similar costs.

Accordingly, we measure fairness as the ratio between the cost incurred by the agent
with the lowest cost and that incurred by the agent with the highest cost. In the stochastic
case, it would seem that we can simply compare the expected costs, but this is not entirely
true - as similar expectations need not result in expected similarity. Indeed, even if the ex-
pected costs of all team members are identical, their actual costs may frequently be very
dissimilar. Furthermore, individuals often care more about the actual fairness than about
fairness in expectation. For example, the common practice of splitting costs based on re-
ceipts is specifically aimed at achieving actual fairness. Thus, we distinguish between two
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notions of fairness: ex-ante fairness and ex-post fairness. Ex-ante fairness considers the dif-
ference in the agents’ expected costs, whereas ex-post fairness considers the expected actual
difference in costs. The formal definition of the model, as well as the formal definitions of
efficiency and fairness, are provided in Section 2.

Contributions In this work we consider different possible policies1 for reimbursement among
the agents, and analyze their performance with respect to efficiency and fairness. Our goal
is to develop policies that are both efficient and fair, to the extent possible.

First we consider the common practice of splitting costs based on receipts. We show
that the inefficiency of this policy is unbounded. Furthermore, when taking the search costs
into account, the unfairness of this policy is also unbounded. We thus present alternative
mechanisms which are both fully efficient and fully ex-ante fair. They do not, however, pro-
vide ex-post fairness. Indeed, assuming that the actual cost of search cannot be tracked, full
ex-post fairness cannot be obtained. We show, however, that ex-post unfairness can nonethe-
less be reduced. We present a family of policies that improve ex-post fairness, providing a
tradeoff between ex-post fairness and efficiency. For this family we provide a closed form
solution for the searching agent’s optimal strategy, enabling the system designer to evalu-
ate a wide range of alternative policies. Numerical illustrations are provided throughout the
paper.

2 Model and Performance Measures

For exposition purposes we adopt the product purchase terminology, which is the most nat-
ural domain for our model.

We consider a setting where a team A = {A1, ..., Ak} of self-interested, fully-rational
agents has designated one of its members, called the buyer, to buy a specific product on
behalf of the team. The agent can buy the product from any one of n stores. The price of
the product at each store is assumed to be drawn at random from a common distribution,
characterized by probability distribution function (p.d.f.) f(x), with which all agents are
familiar [51,52,25]. The actual price at each store is known only upon “visiting” the store
(either physically or virtually), a process which is associated with some cost c (e.g. in re-
sources, time, effort), termed search cost. It is assumed that, at any time, the product can be
purchased at any store visited so far, including the one with the lowest price (this is termed
recall [9,31]).

Reimbursement Policy Since the agent is operating on behalf of the entire team, it is reim-
bursed by the other group members, to some extent, according to some pre-defined reim-
bursement policy. The policy states how much money will be paid to the buyer by the other
team members (who share this cost equally among themselves). In determining the reim-
bursement amount, the policy can take into account all available information, both a-priori
and actual. We assume that the buyer can provide evidence, e.g. in the form of a receipt, for
the actual price paid for the product. Actual search costs, on the other hand, are assumed to
be unprovable or otherwise unavailable to the policy.

1 We use the terms policy and mechanism interchangeably.
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Strategy The price distribution and search cost, on the one hand, and the reimbursement
policy, on the other, together determine the optimal strategy for the buyer. The buyer’s strat-
egy is characterized by a stopping rule which determines whether to continue searching, and
incur the associated costs, or to stop searching and purchase at the lowest price found thus
far. The optimal strategy for the agent is the one that minimizes its expected net cost, de-
fined as the expenses incurred along the process (both for searching and for buying) minus
the reimbursement received. Note, that the above characterization of the individual agent’s
problem extends the standard and widely used canonical costly search problem [11,27,24,
32,46] to the setting with reimbursement.

Measures Obviously different reimbursement policies result in different individual search
strategies and consequently different distributions on the total expense and its division among
the group members. For evaluating the different reimbursement policies we consider two
measures of interest: efficiency and fairness.

Efficiency reflects the total net cost incurred by the team as a whole. Note that reimburse-
ment is made internally between team members, so the cost of the team is fully captured by
the buyer’s total expenses for searching and buying (we use the term expense to denote
out-of-pocket payment amounts, while cost denotes net-cost, i.e. expense minus reimburse-
ment). Therefore, we define the efficiency of a given policy as the ratio between the buyer’s
minimal total expense, taken over all possible policies, and the expected total expense of
the given policy. Formally, for a policy P , let expenseP(Buyer) be the expense of the buyer
under this policy. Then, the efficiency of a policy P is defined as:

efficiency(P) =
minQ{E

(
expenseQ(Buyer)

)
}

E (expenseP(Buyer))

(where E is the expectation).
The definition of efficiency has the minimal possible expense, taken over all possible

policies, in the numerator. Fortunately, there is one simple policy where this minimum is
always obtained. Namely, the policy P∅ in which the buyer is not reimbursed at all.

Proposition 1 The policy P∅ guarantees the buyer’s minimal possible expected total ex-
pense, that is,

E
(

expenseP∅(Buyer)
)

= min
Q
{E
(

expenseQ(Buyer)
)
}

Proof By definition, the expense of the buyer under P∅ is also its net cost. By assumption
the buyer employs the strategy that minimizes its net cost. Thus, no strategy can obtain a
lesser net-cost and hence also no lesser expense. ut

Thus, to compute efficiency we use the buyer’s expected expense under P∅, denoted by
expense∅, in the numerator.

Fairness reflects the similarity in costs amongst the team members. Thus, fairness is
measured as the ratio between the cost incurred by the agent with the lowest cost and that
incurred by the agent with the highest cost. As explained in the introduction, we distin-
guish between two types of fairness: ex-ante fairness and ex-post fairness. Ex-ante fairness
reflects the fairness among expected costs, while ex-post fairness reflects the expected fair-
ness among actual costs. Formally, let costP(Ai) be the net cost of agent Ai under policy
P . Then,

Fairnessex-ante(P) =
mini{E

(
costP(Ai)

)
}

maxi{E (costP(Ai))}
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and

Fairnessex-post(P) = E

(
mini{costP(Ai)}
maxi{costP(Ai)}

)
Note that the term in the denominator is always positive (as otherwise the aggregated

expense incurred is negative, which is impossible). It is possible, however, that the nominator
may turn out to be negative under some policy P . This corresponds to a situation where one
of the agents ends up with a negative (either expected or actual) expense and this can happen
only to the buyer (as this is the only agent that gets paid by others). Such a scenario where
the buyer incurs no cost whereas the other agents incur in total more than the total expense
for buying the product, while quite rare, captures the most possible unfairness. Therefore,
we take the net cost of the buyer to be 0 if it gains from the protocol, so all cases of the
latter type will obtain zero fairness according to the ex-ante and ex-post fairness measures.
Therefore both efficiency and fairness range between 0 and 1.

It is notable that a reimbursement rule that guarantees an ex-post fairness of 1 neces-
sarily guarantees also an ex-ante fairness of 1. Nevertheless, for all other cases, the two are
different. We define inefficiency and unfairness as the reciprocal functions of efficiency and
fairness, respectively.

3 Efficient (Optimal) Strategy

The optimal strategy under P∅ can be found in classic economic search theory [31,21,28,
54]. Here, a searcher is facing n opportunities, where each opportunity (or, store) is associ-
ated with a value v which is a priori unknown to it — only the distribution f(y) from which
values are drawn is known. The searcher’s goal is to maximize its expected revenue (or,
depending on the application, minimize its expected expense) while the true value of any
opportunity can be revealed for a cost c. In our model, the buyer’s goal is to minimize its
overall expected expense (the price paid to buy the product plus to costs to use the platform
and query the sellers).

The solution for the problem in its expected-cost-minimization form the buyer sets a
reservation value (i.e., a threshold) r∅, calculated as the solution to the following equation:

c =

∫ r∅

y=−∞
(r∅ − y)f(y)dy (1)

The buyer should check prices in stores (in an arbitrary order, as they are all a priori alike)
and terminate once running into a price lower than the reservation value r∅ (or running out
of stores to check). Intuitively, r∅ is the value where the buyer is precisely indifferent: the
expected marginal benefit from visiting another store exactly equals the cost incurred. It is
notable that the decision rule is myopic, i.e., the value of r∅ does not depend on the number
of stores that can still be potentially explored [31]. The proof for the stationarity of r∅ (based
on [54], however substantially shortened based on the fact the stores available to the buyer
are associated with common probability distribution function and search cost) is given in the
following paragraph.

Since recall is allowed then if the buyer prefers terminating search given the best known
value v and n′ remaining uncertain stores it will also prefer that choice when the best known
value is v′ < v (and n′ remaining uncertain stores). The proof that the value of the reser-
vation value does not depend on the number of remaining uncertain stores is inductive,
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showing that if with any number of remaining uncertain stores greater than n′ the opti-
mal choice is to use reservation value r∅ then so is the case with n′ remaining uncertain
stores. The reservation value when only one uncertain store is available derives from equat-
ing the search cost of that store with the expected improvement obtained by the additional
search, i.e., the search resumes for any v for which c <

∫ v
y=−∞ (v − y)fi(y)dy, resulting

in a reservation value r∅ according to Equation 1. Now assume that the optimal reservation
value to be used with any n′′ > n′ uncertain stores is r∅ and consider the buyer’s decision
regarding cheking one more store, if the best value it obtained so far is x and the number of
uncertain available store is n′′. If x < r∅ and the buyer executes one additional search, then
regardless of the value obtained next the buyer will definitely terminate the search after the
additional search (as it already has a value greater than r∅). This is equivalent to resuming
the search when the best value obtained thus far is x and only one uncertain opportunity is
available. The latter choice however is not optimal according to the assumption that a reser-
vation value r∅ is used for any n′′ > n′ uncertain available stores. Similarly, if x > r∅ and
the buyer chooses to terminate the search, then terminating is dominated by exploring one
more store and then terminating.

In order to compute the buyer’s expected expense when using the above strategy, we
first calculate the expected price at which the product is eventually purchased, denoted EV .
This will also be the basis for the reimbursement policies developed later on. In order to
calculate EV we first calculate the probability that the minimum price obtained throughout
the search, when using the reservation value r∅, is at most x, denoted F̄ (x), calculated
according to:

F̄ (x) =

{
1− (1− F (x))n x > r∅

1−
(

(1− F (r∅))
n + 1−(1−F (r∅))

n

F (r∅)
(F (r∅)−F (x))

)
x ≤ r∅

(2)

The case x > r∅ is calculated using the complementary probability, i.e., the probability
that no value lower than x was found. This requires that all n stores are checked and yield
a price greater than x. Similarly, the case x ≤ r∅ is calculated based on the two possible
scenarios according to which no value lower than x is found. The first is where all n explored
stores result in a price greater than r∅, i.e., with probability (1 − F (r∅))

n. The second is
where the search terminates right after visiting the jth store, upon revealing a price y such
that x < y ≤ r∅ (as otherwise, if y > r∅ the search should resume) and all the former
j − 1 stores checked returned a price greater than r∅ (as otherwise the jth store is not
reached). The probability for this latter case (for all values of j ≤ n) is the geometric series∑n
j=1(F (x)− F (r∅))F (r∅)

j−1 which equals 1−(1−F (r∅))
n

F (r∅)
(F (r∅)−F (x)).

The first derivative of F̄ (x) is the probability distribution function of the minimum price,
which we denote f̄(x). Thus, we obtain that EV , the expected minimum price, is:

EV =

∫ ∞
y=−∞

yf̄(y)dy (3)

Using the above, the buyer’s expected expense under P∅, is given by:

expense∅ = c · 1− (1− F (r∅))
n

F (r∅)
+ EV (4)

where the first term is the expected cost incurred throughout the search, calculated as:
c
∑n
j=1(1 − F (r∅))

j−1 = c1−(1−F (r∅))
n

F (r∅)
, the chance of visiting the jth store is (1 −

F (r∅))
j−1. The second term is the actual price of buying the product.
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Fig. 1 (a) Reservation value as a function of the search cost; (b) Reservation value as a function of the number
of stores, for different search costs; (c) Expected expense as a function of the number of stores, for different
search costs.

Figure 1(a) depicts the expected-expense-minimizing reservation value r∅ of a buyer
as a function of the search cost c. As expected, the value of r∅ increases as c increases
(see Equation 1). It is notable that the value of r∅ does not depend on the number of stores
available to the buyer, n, as explained above. This latter characteristic is illustrated in Figure
1(b), which depicts the expected-expense-minimizing reservation value as a function of the
number of stores available to the buyer, for different search costs. The value of n does,
however, influence the buyer’s expected expense (see Figure 1(c)), such that the buyer’s
expected expense decreases as the number of stores increases (for a fixed c value), since it is
less likely to run into situations where it is optimal to resume search yet no additional stores
are available. The decrease in the expected expense becomes more moderate as the value of
c increases, since the resulting increase in the reservation value used by the buyer suggests
a shorter search process, on average, thus the constraint on the search extent becomes less
influential.

4 Receipt Splitting Policy

When adding a reimbursement policy P , there is no guarantee that the buyer’s optimal
search strategy is reservation-value based. For some reimbursement policies, however, the
strategy is reservation-value based as we now show. Consider the common reimbursement
policy, denoted Psplit, where the agents equally split the product’s cost as indicated by the
receipt, i.e., the buyer is reimbursed for k−1

k of the cost of the product. The buyer’s optimal
strategy for this reimbursement policy is given in the following proposition.

Proposition 2 The buyer’s optimal strategy under Psplit is to use a reservation-value based
strategy where the reservation value r is the solution to:

c =
1

k
·
∫ r

y=−∞
(r − y)f(y)dy (5)

Proof We first prove the reservation-value nature of the optimal strategy for the buyer. Then
we continue with an inductive proof, showing that if the reservation value calculated accord-
ing to (5) is indeed the optimal strategy for any number of remaining stores m′ > m then
this reservation value should also be used when the number of remaining stores is m.

Since recall is allowed along the search process, the buyer’s strategy is a mapping
S(X,m) → {resume, terminate}, where X is the set of prices obtained so far and m
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is the number of potential remaining uncertain stores. Since the buyer is interested merely
in the minimum store price, its strategy is affected only by the minimum value in X, hence
the strategy can be defined in the form S(v,m) → {terminate, resume}, where v is the
minimum value in X. Obviously, if according to the optimal strategy the buyer needs to
resume the search with the pair (v,m), then the same should be true for any (v′,m) with
v′ > v. Similarly, if according to the optimal strategy the search should terminate at pair
(v,m), then the same should hold for any (v′′,m) with v′′ < v. Therefore, for each given
number of remaining uncertain stores m, the optimal search strategy of the buyer can be
characterized by the reservation value rm such that the buyer should resume the search if
the best price obtained so far is above rm and otherwise it should terminate the search.

We now prove by induction on m, that rm = r (of (5)), beginning with the case of
m = 1. If the best price obtained so far by the buyer is v, then exploring the one last store
will incur search cost c and the expected expense of the buyer (excluding the search cost
incurred so far) will be: ∫∞

y=−∞min(v, y)f(y)dy

k
+ c

(where y is the price obtained from the additional store). On the other hand, if the search is
terminated, the expected expense of the buyer is given by:

v

k
(6)

Therefore, the buyer should visit the one last store if and only if:

v

k
>

∫∞
y=−∞min(v, y)f(y)dy

k
+ c

Substituting v ·
∫∞
y=−∞ f(y)dy for v (as

∫∞
y=−∞ f(y)dy = 1), obtains:∫∞

y=−∞ v · f(y)dy

k
>

∫∞
y=−∞min(v, y)f(y)dy

k
+ c

which transforms to: ∫∞
y=−∞ (v −min(v, y))f(y)dy

k
− c > 0 (7)

Since the left-hand-side of (7) is an increasing function of v, the buyer should explore one
last store whenever the value of v is greater than the value of r that satisfies (5). This com-
pletes the proof for m = 1.

Now assume the same r (according to (5)) holds for any m′ > m, for some m, and
consider the buyer’s decision regarding exploring one more store, if the best price it obtained
so far is v and the number of stores that can still be potentially explored is m. If v < r
and the buyer executes one additional search, then regardless of the price obtained next the
buyer will definitely terminate the search after the additional search (as it already has a value
lower than r and according to the induction assumption the optimal strategy thereafter is the
reservation value r). Therefore the expense obtained from one additional search is given by:∫∞

y=−∞ (v −min(v, y))f(y)dy

k
− c
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Alas, since the latter term increases as v increases, and obtains zero for v = r (according to
(5)), then for v < r the term obtains a negative value, hence an additional search cannot be
the preferred choice.

Similarly, consider the case where v > r for m and the buyer chooses to terminate the
search process. We show that terminating is dominated by exploring one more store and
then terminating. This results immediately from m = 1, as we known that for m = 1
and v > r the marginal change in the expected expense, if visiting one store (and then
necessarily terminating) is greater than the cost c. Therefore, the optimal strategy for m is
also a reservation value strategy and the optimal reservation value is calculated, once again,
according to 5. ut

Similar behavior is obtained whenever the reimbursement is determined as any other fraction
of the product’s actual cost. This is, for any α, let Pα be the policy where the buyer is
reimbursed with an α fraction of the product’s actual cost (in particular, Psplit = Pα= k−1

k
).

The buyer’s optimal strategy under Pα is given in the following theorem.

Theorem 1 The buyer’s optimal strategy underPα is to use a reservation-value based strat-
egy where the reservation value r is the solution to:

c = (1− α) ·
∫ r

y=−∞
(r − y)f(y)dy (8)

Proof The proof is identical to the one given for Proposition 2, replacing 1
k by 1−α through-

out. ut

From (5) we obtain that, as expected, the reservation value used by the buyer increases
when the number of agents in the group, k, increases, i.e., it will invest less effort in getting
a good deal whenever splitting the payment for the searched product with more others.
More generally, from (8), as the portion α that the buyer is being reimbursed increases,
the buyer’s reservation value increases. This is because the buyer’s decision is based on
comparing its individual cost of further search with the expected individual saving from
a lesser price. When being reimbursed a greater portion, the marginal saving from each
improvement in price decreases, hence the buyer is more reluctant to resume search. For
k = 1 (or α = 0) the agent’s considerations are the same as with no reimbursement at all,
and indeed Equation 8 is the same as (1). Interestingly, in the specific case of Psplit that is
given by α = k−1

k , the greater the size of the team (k) the lesser the efficiency achieved.
This is because k−1

k increases as k increases, hence in order to keep the equality in (8), we
need to further increase r. Therefore, the buyer becomes reluctant to search further, even in
scenarios where the current known price is substantial.

Using the same analysis methodology given in former paragraphs, the expected expense
of the buyer under the P = α rule, is given by:

E
(

costPα(Buyer)
)

= c
1− (1− F (r))n

F (r)
+ (1− α) · EV (9)

where r is calculated according to (8). The first term in (9) is the expected cost incurred
throughout the search. The second term is the buyer’s share in the product’s price (i.e., after
reimbursed by the group), where EV is calculated according to (3) using the appropriate
reservation value.

The above analysis enables us to illustrate the problematic nature of the common “splitting-
receipts” policy, and more generally Pα policies. These policies result in both non-efficient
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and unfair outcomes. Figure 2 depicts the three performance measures (efficiency, ex-ante
fairness and ex-post fairness) as a function of α for a setting of 5 stores, where product
prices derive from different distribution functions (according to row) and the search cost
is c = 0.02, for different numbers of agents, k. In order to calculate the ex-post fairness,
we first calculated the buyer’s optimal strategy and then used simulations to generate actual
expenses, averaging the resulting ex-post fairness over 1 million runs for each setting. This
procedure of calculating the ex-post fairness based on 1 million runs was used also in all
the other graphs in the paper that depict that measure. As observed in Figure 2 (left column
graphs), efficiency decreases as the percentage of reimbursement increases. Starting from
some very large α value, the buyer’s portion in the product’s actual cost becomes negligi-
ble compared to the search cost incurred (i.e., the search cost becomes the dominant factor
in the buyer’s expected expense, according to Equation 9). In such cases, the buyer would
rather terminate the search process upon checking the first store, regardless of the value
obtained.2 Therefore once α reaches the threshold at which the buyer limits its search to a
single store, the efficiency of the search process remains constant for any greater α value.
We note that the curve is the same for any value of k, since the search is executed by a single
agent (the buyer) and with the Pα policy the other agents’ influence on its strategy is fully
captured by the value of α (unlike with the fairness measure). Furthermore, we observe that
the maximum efficiency is achieved with no reimbursement, i.e., when α = 0, as expected.
The maximum ex-ante fairness (middle column graphs) and the maximum ex-post fairness
(right column graphs) are achieved with some positive reimbursement, however different
than the natural split (marked with dotted vertical lines, each corresponding to a Psplit with
a different number of agents). In fact, the maximum fairness is always achieved with an α
value satisfying α > k−1

k , since otherwise the buyer is not even equally compensated for
the cost of the product itself. Also, as expected, the ex-post fairness does not reach 1, as
this would mean an equal division of the expense in each instance. Finally, we note that as
observed from the figures, the maximal ex-ante and ex-post fairness are achieved at very
similar values of α, regardless of k for all three distributions checked. We discuss this in
more detail later in this section. We emphasize that all the above behaviors discussed for the
ex-post fairness rely on averages (of 1 million runs) hence the actual ex-post in an instance
is likely to be highly influenced by the variance. Indeed, for the million runs we checked (for
each α value checked) the standard deviation (as a percentage of the average value depicted
in the figure) is substantial: ranging from 27% to 120% for the uniform distribution case,
38% to 72% for the exponential case and 2% to 8% for the normal case.

The fact that the Pα reimbursement policy does not guarantee maximum efficiency calls
for an analysis of the tradeoff between efficiency and fairness. Presumably, one might be
willing to compromise the expected efficiency if a greater fairness can be achieved. While
we discuss such tradeoffs in detail in Section 6, we provide a similar illustration for the Pα
policy as illustrated in Figure 3. The figure depicts the maximum efficiency one can possibly
obtain (i.e., over all possible α value) when using thePα reimbursement policy as a function
of the ex-ante fairness (graph (a)); and the ex-post fairness (graph (b)) for a setting of 5 stores
and search cost is c = 0.02, for different number of agents. The product prices derive from
the uniform distribution over (0, 1) throughout, and the standard deviation (as a percentage
of the depicted average value) ranging from 27% to 120% in graph (b). As can be observed
from the figure, given that all other setting parameters equal, an increase in the number of
agents k results in an increase in the maximum achievable efficiency for any requested level

2 To illustrate, consider the case where α→ 1. Here, the expected expense is fully attributed to the search
cost, hence search should be constrained to the minimum possible (one store).
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Fig. 2 The effect of α in the Pα reimbursement policy on: (a) efficiency; (b) ex-ante fairness; and (c) ex-post
fairness for different numbers of agents. The setting used is: n = 5, c = 0.02 and the distribution function
differs between rows.

Fig. 3 The efficiency in the Pα reimbursement policy as function: (a) ex-ante fairness; and (b) ex-post fair-
ness for different number of agents. The setting used is: n = 5, c = 0.02 and f(x) uniformly distributed
between 0 and 1.
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of ex-ante and ex-post fairness. We note that the maximum achievable ex-post fairness in
this setting is less than 0.8 (depending on the number of agents) hence the graphs in part
(b) of the figure terminate towards that value. Overall, we see that the maximum achievable
efficiency decreases as the required ex-post increases. This enables choosing the appropriate
α value to be used, based on the preferences between efficiency and fairness.

All in all, we see that the common Psplit policy is far from being optimal. This is high-
lighted by the following proposition.

Proposition 3 The inefficiency and unfairness in Psplit are unbounded.

Proof We begin with inefficiency. Consider the case where f(x) is uniform between 0 and
1 and the number of stores is infinity (i.e., n =∞). In this case, by (1), the minimum buyer
expense is achieved when the buyer uses reservation value r∅ with:

c =

∫ r∅

y=−∞
(r∅ − y)f(y)dy

and since f(x) is uniform between 0 and 1:

c =

∫ r∅

y=0

(r∅ − y)dy = r2∅ −
r2∅
2

Thus:

r∅ =
√

2 · c (10)

Since the distribution of prices is uniform, we obtain EV = r∅/2 (for any r∅ ≤ 1) and the
expected number of stores visited is 1/r∅. Therefore expense∅ is given by:

expense∅ = r∅/2 + c/r∅

which, after substituting r∅ =
√

2 · c, turns into:

expense∅ = r∅/2 + c/r∅ =
(
√

2 · c)2 + 2c

2
√

2 · c
=
√

2 · c

Similarly, under thePsplit reimbursement policy the buyer’s reservation value rsplit, accord-
ing to (5), is given by:

c =

∫ rsplit
y=−∞ (rsplit − y)f(y)dy

k

and since f(x) is uniform between 0 and 1:

rsplit =
√

2 · k · c (11)

Since we can always find c small enough such that (11) will result in a reservation value
rsplit < 1, we obtain EV = rsplit/2. Thus, the expected expense is given by:

E
(

expensePsplit(Buyer)
)

= rsplit/2 + c/rsplit =
k · c+ c√

2 · k · c
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Distribution
Number of agents Uniform Normal Exponential

2 0.992667 0.999976 0.987531
5 0.998044 0.999988 0.998692

20 0.999964 1 1

Table 1 Spearman’s rank correlation coefficient of the ex-ante and ex-post fairness.

Therefore the inefficiency measure is:

1

efficiency(Psplit)
=

k·c+c√
2·k·c√
2 · c

=
√
k/2 + 1/

√
4k,

hence we can increase the inefficiency indefinitely by increasing k.
Next, we show that the ex-ante unfairness is also unbounded, using the exact same set-

ting as above. For a sufficiently large c value, we obtain r∅ > 1. In this case EV = 1/2,

E
(

costPsplit(Buyer)
)

= 1/(2k) + c

and for Ai 6= Buyer:

E
(

costPsplit(Ai)
)

= 1/(2k).

Therefore the unfairness measure is:

1

Fairnessex-ante(Psplit)
=

1/(2k) + c

1/(2k)
= 1 + 2kc

Therefore, we can increase the ex-ante unfairness indefinitely by increasing k.
Since the ex-ante unfairness is unbounded, then necessarily the ex-post unfairness is

also unbounded. ut

We further studied the similarity between the behavior of the ex-ante and the ex-post
fairness in Pα policy using Spearman’s rank correlation coefficient. For this purpose we
used the settings that were used for Figure 2. The rank correlation coefficient of two vari-
ables measures the extent to which, as one variable increases, the other variable tends to
increase, without requiring that the increase be represented by a linear relationship. Spear-
man’s rank correlation coefficient rank is depicted in Table 1. For each distribution, the rank
correlation coefficient increases with the number of agents and is very close to 1 for all
price distributions and numbers of agents. Recall that the ex-ante fairness can be efficiently
derived using a formula, while the ex-post fairness can only be obtained using extensive
and time-consuming simulations. The high rank correlation coefficients show that indeed,
it is safe to use the ex-ante formula as a prediction of the most fair setting of the policy for
the ex-post fairness. Therefore, using this phenomena, a system designer can determine the
value of α that maximizes the ex-post-fairness using the calculated ex-ante fairness without
any simulation.
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Fig. 4 The ex-post fairness in the Pfixed(ŝ) reimbursement policy as a function of: (a) the search cost, where
the setting used is: n = 5, k = 2; and (b) the number of agents, where the setting used is: n = 5, c = 0.1.
In both cases f(x) is uniformly distributed between 0 and 1.

5 Optimal Ex-ante Fairness and Optimal Efficiency Policies

In this section we present reimbursement policies that guarantee full ex-ante fairness and
complete efficient. We first introduce two reimbursement policies obtaining this goal. Each
policy influences the ex-post fairness differently. Hence, neither dominates the other. These
two policies are then generalized into a single parametrized policy that corresponds to a
class of policies aiming to balance costs in order to achieve better ex-post fairness.

The first policy, Pfixed(s), is characterized by the buyer being paid some fixed amount
s, regardless of the outcome of the search process. In fact, this amount can be paid in ad-
vance, prior to carrying out the search process. The following proposition determines that
the Pfixed(s) is efficient and determines the s which provides full ex-ante fairness.

Proposition 4 For ŝ = expense∅ · (k − 1)/k, the policy Pfixed(ŝ) is fully efficient and fully
ex-ante fair.

Proof Since the buyer is payed a fixed amount, it incurs all expenses beyond this amount.
Therefore, its search optimization problem is identical to minimizing the total expense, i.e.,
identical to the one used with P∅. Hence, by Proposition 1, Pfixed(s) is fully efficient (for
any s). Since the buyer uses the same strategy as with P∅, its expected expense will be
expense∅, and consequently its expected cost is:

E
(

costPfixed(ŝ)(Buyer)
)

= expense∅ − expense∅ ·
(
k − 1

k

)
=

expense∅
k

,

which equals the equal share of each of the other agents in the reimbursement:

E
(

costPfixed(ŝ)(Ai 6= Buyer)
)

=
expense∅ ·

(
k−1
k

)
k − 1

=
expense∅

k

Therefore, the policy Pfixed(ŝ) is fully ex-ante fair. ut



Efficiency and Fairness in Team Search with Self-Interested Agents 15

Figure 4 depicts the ex-post fairness of the Pfixed(ŝ) reimbursement policy as a function
of the search cost for a setting of 5 stores and 2 agents (graph (a)), and the number of
agents for a setting of 5 stores with a search cost of c = 0.1 (graph (b)). The product prices
derive from the uniform distribution over (0, 1) throughout, and the standard deviation (as
a percentage of the depicted average value) decreases from 96% to 23% in graph (a) and
increases from 79% to 129% in graph (b). As observed from graph (a), the increase in search
cost results in an increase in ex-post fairness. This behavior is explained by the fact that an
increase in the search cost results in an increase in the reservation value and hence a decrease
in the expected number of checked stores. Therefore, the variance in the search expenses of
the buyer decreases and consequently the ex-post fairness increases. With regards to the
number of agents (graph (b)), this number does not influence the calculation of the expected
expense expense∅. On the other hand, an increase in the number of agents results in an
increase in the fixed payment ŝ to the buyer (according to Proposition 4) and at the same
time a decrease in the expense of each non-buying agent Ai. Thus, the fixed expenses of all
agents decrease, while the variable expense of the buyer remains unchanged. Thus, ex-post
fairness decreases.

The policyPfixed(s) is characterized by a fixed cost for the non-searching team members
and a variable cost for the buyer (due to its variable search and purchase expenses). Indeed,
in this case the uncertainty associated with the search rests solely with the buyer. In an
attempt to obtain more balance, we introduce a second policy, denoted Pbonus(b). Under
Pbonus(b) the reimbursement is composed of two parts:

– Sharing: the buyer gets (k − 1)/k of the actual amount paid for the product.
– Bonus: an amount b is added if the actual price paid for the product is no more than the

reservation price r∅, as determined in (1).

The following proposition shows that by choosing b appropriately we can guarantee full
efficiency and fairness.

Proposition 5 Setting b̂ = c(k−1)
F (r∅)·k provides thatPbonus(b̂) is fully efficient and fully ex-ante

fair.

Proof In order to prove efficiency, we prove that the buyer’s strategy in this case is reserva-
tion value based, and the optimal reservation value, denoted rbonus, satisfies rbonus = r∅
according to (1). The proof that the buyer’s strategy is reservation value is the same as in the
proof given for Proposition 2. Hence we only need to prove that the same reservation value is
used for any number of remaining stores and that this reservation value is calculated accord-
ing to (1). The proof of this part follows the methodology used in the proof of Proposition
2, this time, however, taking into consideration the expected bonus-based reimbursement.

Beginning with the case ofm = 1, the expected cost (excluding the search cost incurred
so far) from resuming the search, in case the best price so far is v ≥ r∅, is given by:∫∞

y=−∞min(v, y)f(y)dy

k
− b̂ · F (r∅) + c

On the other hand, if the search is terminated, the expected expense of the buyer is given by:

v

k
(12)

Therefore, the buyer should visit the one last store if and only if:

v

k
>

∫∞
y=−∞min(v, y)f(y)dy

k
− b̂ · F (r∅) + c
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Substituting v ·
∫∞
y=−∞ f(y)dy for v (as

∫∞
y=−∞ f(y)dy = 1), obtains:∫∞

y=−∞ v · f(y)dy

k
>

∫∞
y=−∞min(v, y)f(y)dy

k
− b̂ · F (r∅) + c

which transforms to: ∫ v
y=−∞ (v − y)f(y)dy

k
+ b̂ · F (r∅) > c (13)

Substituting b̂ = c(k−1)
F (r∅)·k results in:∫ v

y=−∞ (v − y)f(y)dy

k
+
c(k − 1)F (r∅)

F (r∅)k
> c (14)

Thus (14) can be represented as:∫ v

y=−∞
(v − y)f(y)dy + c(k − 1) > ck

or ∫ v

y=−∞
(v − y)f(y)dy > c

which is identical to Equation 1.
When the best price so far is v < r∅, further search is necessarily not beneficial, as:∫ v

y=−∞
(v − y)f(y)dy <

∫ r∅

y=−∞
(r∅ − y)f(y)dy = c

according to (1). Hence the reservation value rbonus for the case ofm = 1 will be calculated
according to (1), i.e., rbonus = r∅. From this point, we can apply the same inductive proof
used for Proposition 2 to prove that the same rbonus holds for any number of remaining
stores m > 1. Therefore, by Proposition 1, Pbonus(b̂) is fully efficient.

In order to prove that Pbonus(b̂) is fully ex-ante fair, we follow the methodology used in
the proof of Proposition 4. The expected buyer’s expense in this case is given by:

E
(

costPbonus(b̂)(Buyer)
)

= c · 1− (1− F (r∅))
n

F (r∅)
+

∫∞
y=−∞yf̄(y)dy

k
− b̂ · F̄ (r∅)

Now, substituting b = c(k−1)
F (r∅)·k and F̄ (r∅) = 1− (1− F (r∅))

n (according to (2)) obtains:

E
(

costPbonus(b̂)(Buyer)
)

= c · 1− (1− F (r∅))
n

F (r∅)
+

∫∞
y=−∞yf̄(y)dy

k
−

− (k − 1)

k
· c · 1− (1− F (r∅))

n

F (r∅)
=

expense∅
k

where the last equality is based on the fact that expense∅ = c·1−(1−F (r∅))
n

F (r∅)
+
∫∞
y=−∞ yf̄(y)dy

(according to (4)). The expected expense of any of the remaining agents is:

E
(

costPbonus(b̂)(Ai)
)

=

∫∞
y=−∞yf̄(y)dy

k
+
b̂ · F̄ (r∅)

k − 1
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Fig. 5 The ex-post fairness in the Pbonus(b̂) reimbursement policy as a function: (a) the search cost, where
the setting used is: n = 5, k = 2; and (b) number of agents, where the setting used is: n = 5, c = 0.1. In
both cases f(x) is uniformly distributed between 0 and 1.

and, once again, after substituting F̄ (r∅) = 1 − (1 − F (r∅))
n (based on (2)) and b =

c(k−1)
F (r∅)·k , we obtain:

E
(

costPbonus(b̂)(Ai)
)

=

∫∞
y=−∞yf̄(y)dy

k
+
c · (1− (1− F (r∅))

n)

F (r∅) · k
=

expense∅
k

.

Hence, the expected expense of all agents is equal. ut

Figure 5 depicts the ex-post fairness in the Pbonus(b̂) reimbursement policy as a function
of the search cost (graph (a)) and the number of agents (graph (b)) (for the same settings used
in Figure 4). The product prices derive from the uniform distribution over (0, 1) throughout,
and the standard deviation (as a percentage of the depicted average value) decreases from
61% to 11% in graph (a) and increases from 48% to 81% in graph (b). As observed from
the figure, the ex-post fairness increases as the search cost increases, and decreases as the
number of agents increases. The explanations of these phenomena are similar to those given
when analyzing Figure 4.

One inherent shortcoming of the Pbonus(b) policy is that the buyer is being reimbursed
for the search cost portion of its expense only in cases where it has actually managed to
find a price below the reservation value. This means that in some cases the buyer will be
reimbursed only (k − 1)/k of the receipt amount, while in others it will be reimbursed
substantially more than what it has actually spent (to compensate for all the times it has
not been reimbursed for its search cost). For example, consider the case of two agents and
only one store that can be checked, where there is a probability of 0.5 for a price 0 and a
probability 0.5 for a price 1000. The search cost is c = 500. In this example, in half of the
cases the buyer’s cost will be 1000 and the other agent’s cost will be 500. In the remaining
cases, the buyer’s cost will be 0 and the other agent’s cost will be 500. Both cases are highly
unequal and thus highly ex-post unfair.

In order to achieve a more balanced reimbursement for the costs of the buyer, we intro-
duce a third policy,Pcombined(s, b, β), according to which some portion of the reimbursement
is fixed (as in the first policy), and some portion is given based on success (as in the second
policy). Specifically, under Pcombined(s, b, β), the buyer is reimbursed:
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– Fixed: a fixed amount of s.
– Sharing: the buyer gets a β fraction of the actual amount paid for the product.
– Bonus: an amount b is added if the actual price paid for the good is no more than the

reservation price r∅, as determined in (1).

The following proposition provides the proper choices of s and b (given β) that guarantee
full efficiency and ex-ante fairness.

Proposition 6 For every β, setting:

ŝ = c · 1− (1− F (r∅))
n

F (r∅)
+ (1− β) ·

∫ ∞
y=−∞
yf̄(y)dy − b · F̄ (r∅)−

expense∅
k

(15)

and
b̂ =

c · β
F (r∅)

(16)

the policy Pcombined(ŝ, b̂, β) is fully efficient and fully ex-ante fair.

Proof This proof follows the proof given for Proposition 5 except that the calculation of the
expected expense now takes into consideration the additional reimbursement components,
therefore we only include the differences. In order to prove efficiency, we prove that the
buyer’s strategy in this case is reservation value based, and the optimal reservation value,
denoted rcombined, satisfies rcombined = r∅ according to (1). The expected cost (excluding
the search cost incurred so far) from resuming the search, in case the best price so far is
v ≥ r∅, is given by:

(1− β)

∫ ∞
y=−∞

min(v, y)f(y)dy − b̂ · F (r∅)− ŝ+ c

On the other hand, if the search is terminated, the expected expense of the buyer is given by:

(1− β) · v − ŝ

Therefore, the buyer should visit the one last store if and only if:

(1− β) · v − ŝ > (1− β)

∫ ∞
y=−∞

min(v, y)f(y)dy − b̂ · F (r∅)− ŝ+ c

which transforms to:

(1− β)

∫ v

y=−∞
(v − y)f(y)dy + b̂ · F (r∅) > c (17)

Substituting b̂ = c·β
F (r∅)

results in:

(1− β)

∫ v

y=−∞
(v − y)f(y)dy +

c · β · F (r∅)

F (r∅)
> c (18)

which after some basic mathematical manipulations transforms into:∫ v

y=−∞
(v − y)f(y)dy > c

which is identical to Equation 1.
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When the best price so far is v < r∅, further search is necessarily not beneficial, as:∫ v

y=−∞
(v − y)f(y)dy <

∫ r∅

y=−∞
(r∅ − y)f(y)dy = c

according to (1). Hence the reservation value used by the buyer, rcombined, satisfies rcombined =
r∅ and maximum efficiency is achieved.

In order to prove full ex-ante fairness, we formulate the expected cost of the buyer:

E
(

costPcombined(ŝ,b̂,β)(Buyer)
)

= c · 1− (1− F (r∅))
n

F (r∅)
+ (1− β) ·

∫ ∞
y=−∞

yf̄(y)dy − b̂ · F̄ (r∅)− ŝ

(19)

where the first term is the expected cost incurred throughout the search, calculated as:

c
n∑
j=1

(1− F (r∅))
j−1 = c

1− (1− F (r∅))
n

F (r∅)
,

since the chance of visiting the jth store is (1−F (r∅))
j−1. The second term is the (1− β)

fraction of the actual price paid for the product by buyer. The third term is the bonus b̂
received if the actual price paid is not greater than the reservation price r∅. The last term is
the fixed amount ŝ that is paid to the buyer regardless of the outcome of the search process.

After substituting ŝ, according to (15), in (19), we obtain:

E
(

costPcombined(ŝ,b̂,β)(Buyer)
)

=
expense∅

k
.

The expected expense of any of the remaining agents is:

E
(

costPcombined(ŝ,b̂,β)(Ai 6= Buyer)
)

=
β ·
∫∞
y=−∞yf̄(y)dy

k − 1
+
b̂ · F̄ (r∅)

k − 1
+

ŝ

k − 1
(20)

which after substituting ŝ, according to (15), becomes:

E
(

costPcombined(ŝ,b̂,β)(Ai 6= Buyer)
)

=
1

k − 1
·
(∫ ∞

y=−∞
yf̄(y)dy + c · 1− (1− F (r∅))

n

F (r∅)
−

expense∅
k

)
However, from (3) and (4) we known that expense∅ =

∫∞
y=−∞yf̄(y)dy+ c · 1−(1−F (r∅))

n

F (r∅)
,

therefore:

E
(

costPcombined(ŝ,b̂,β)(Ai 6= Buyer)
)

=
expense∅ −

expense∅
k

k − 1
=

expense∅
k

hence achieving full ex-ante fairness. ut

We note that the first two policies given in this section are specific cases of the third.
The first uses β = 0 and reimburses the agent regardless of “success”. The second uses
β = (k − 1)/k and reimburses the agent only upon “success”.3

3 In this case b̂ = c·β
F (r∅)

=
c·(k−1)
k·F (r∅)

which is equal to the bonus specified in Proposition 5 and the

substitution of β = k−1
k

and b̂ = c·(k−1)
k·F (r∅)

results in ŝ = 0.
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Fig. 6 The effect of the percentage β out of the purchase price in the reimbursement of the non-searching
agents on ex-post fairness for different: (a) search costs, where the setting used is: n = 5, k = 2; (b) number
of stores, where the setting used is: c = 0.01, k = 2; and (c) number of agents, where the setting used is:
c = 0.01, n = 5. In all three cases f(x) is uniformly distributed between 0 and 1.

Figure 6 depicts the results of ex-post fairness achieved with the generalized policy
described above, as a function of the value β used, for several different search costs c in a
setting with two agents and 5 stores (graph (a)); for several different numbers of stores n
in a setting with two agents and a search cost of 0.01 (graph (b)); and for several different
numbers of agents k, in a setting with 5 stores and a search cost c = 0.01 (graph (c)). The
vertical dotted lines represent the two specific variants of the policy for which β = k−1

k , i.e.,
the pure bonus equivalent policy, and β = 0, i.e., the pure fixed payment policy. In all three
graphs, prices of the product derive from the uniform distribution function over (0, 1), and
the standard deviation (as a percentage of the depicted average value) ranging from 13%
to 118% in graph (a), from 55% to 118% in graph (b), and from 73% to 115% in graph
(c). As observed from the figure, while the specific case where β = k−1

k yields for some
settings the maximum ex-post efficiency, in others, the maximum is achieved using different
β values. We note that the low efficiency achieved for relatively high and low β values is
explained in this example by the fact that these are associated with substantial pre-payments,
either positive (for β = 0) or negative (for β = 1), hence in many cases (specific instances
played) one of the agents incurs a “negative” cost (meaning that the agent “gains” from the
policy), in which case the fairness is by definition 0.

6 Trading Efficiency for Fairness

Since the buyer can supply evidence only for the actual expense of purchase (i.e., the receipt
amount), fully ex-post fairness cannot be achieved. This is because, given the probabilistic
nature of the search, each receipt amount can be associated with a range of possible accumu-
lated search cost. Therefore, a reimbursement policy that relies only on the receipt amount
as a decision parameter will necessarily fail to result in an identical cost for the buyer and
the remaining of the agents for at least one possible outcome of accumulated search cost.

An improvement in the ex-post fairness can be achieved if one is willing to compro-
mise on efficiency. In this section we present a family of policies that can improve ex-post
fairness, but may degrade the efficiency, thus presenting a tradeoff between efficiency and
ex-post fairness.

The first challenge in the design and analysis of reimbursement rules with no maximum
efficiency guarantee is the determination of the optimal search strategy for the buyer. With
general reimbursement rules, the buyer’s optimal strategy may be complex. Luckily, the
following theorem establishes that for a large family of natural reimbursement policies the
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buyer’s optimal search strategy is reservation-value based, and shows how this reservation
value can be calculated.

Theorem 2 For a function g : R→ R, let Pfunction(g) be the reimbursement policy wherein
the buyer is reimbursed g(x) upon presenting a purchase receipt of x. Provided that dg(x)/
dx ≤ 1, i.e., the lower the price found the greater the absolute reimbursement received, the
buyer’s optimal search strategy is reservation value based, wherein the optimal reservation
value r satisfies:

c =

∫ r

y=−∞
(r − g(r)− (y − g(y)))f(y)dy (21)

Proof This proof generally resembles the one given for Proposition 2. Thus we include
only the differences. First, we prove the optimality of a reservation value strategy for this
case. The searcher’s overall expense is divided into the expense it incurs for purchasing
the product and the accumulated expense due to the search. Given the reimbursement policy
Pfunction(g), the portion of the cost associated with purchasing the product becomes x−g(x).
Since dg(x)/dx ≤ 1 then d(x − g(x))/dx ≥ 0. Therefore, given that the best price so far
is x̂, the searcher’s benefit from improving the price to any value x < x̂ increases as x̂
increases. Hence if it is optimal to resume the search given that the best price so far is x̂,
then it is also optimal when the best price is any x > x̂. Thus, the optimal strategy is
reservation value based.

The remainder of the proof remains unchanged except for substituting the benefit∫ r
y=−∞(r − y)f(y)dy

k

with ∫ r

y=−∞
(r − g(r))− (y − g(y)))f(y)dy

whenever applicable. ut

Based on the above, we can formulate the expected cost of the buyer, when using the
reservation value r:

E
(

costP(Buyer)
)

= c · 1− (1− F (r))n

F (r)
+

∫ ∞
y=−∞

(y − g(y))f̄(y)dy

where the first term is the expected cost incurred by the search and the second term is the
net payment for the product (i.e., excluding the reimbursement received).

Any remaining agent Ai will incur a cost of:

E
(

costP(Ai 6= Buyer)
)

=
1

k
·
∫ ∞
y=−∞

g(y)f̄(y)dy

Theorem 2 allows us to define and analyze a large set of reimbursement policies - in-
cluding ones with less than full efficiency - and choose the one exhibiting the most preferred
performance tradeoffs. It is interesting to note that all of the policies presented in the pre-
vious section (Pfixed(·),Pbonus(·) and Pcombined(·, ·, ·)) are special cases of the Pfunction(g)
family:

(a) for Pfixed(ŝ), g(y) = ŝ.
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Fig. 7 Trading Efficiency with Fairness: (a) efficiency; (b) ex-post fairness; and (c) ex-ante fairness; using
non-efficiency-maximizing policies using g(x) according to (22) withw = 0.25 andw = 1.25; and the best
(i.e., the one associated with the best ex-post fairness) β-based efficiency-maximizing policy. The setting
used is: n = 5 and f(x) = 1, ∀0 ≤ x ≤ 1, otherwise f(x) = 0 and the number of agents (k) differs
between rows.

(b) forPbonus(b̂), g(y) = (k−1)y
k +b̂·1(y < rbonus) where ·1(y < rbonus) is the indicator

function that returns 1 if y < rbonus and 0 otherwise.
(c) for Pcombined(ŝ, b̂, β), g(y) = βy + ŝ+ b̂ · 1(y < rbonus).

Figure 7 depicts performance (efficiency, ex-ante and ex-post fairness) achieved by a
policy Pfunction(g) for which:

g(x) =
(k − 1)x

k
+

w

k − 1
·
∣∣∣E (costPsplit(Buyer)

)
− E

(
costPsplit(Ai 6= Buyer)

)∣∣∣ (22)

where (k−1)x
k covers the product’s cost and the second element approximates the search

cost using a coefficient w multiplied by average difference in the expected cost of the buyer
and a non-searching agent Ai 6= Buyer. Specifically, the figure depicts the efficiency and
fairness measures for two cases differing by the value assigned to the coefficient w {w =
0.25, w = 1.25}. In addition, we provide in each graph, as a reference, the performance
of the fully efficient and fully ex-ante fair policy Pcombined(s, b, β) such that for each cost c
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we take the β value that results in the maximum ex-post fairness for this class of policies
and s and b are computed according to Proposition 6. Each row of graphs corresponds to a
different number of agents k. As can be observed from the figure, the new reimbursement
rules improve the ex-post fairness for a substantial portion of the settings (graph (b)). This,
however, comes at the expense of the efficiency measure (graph (a)). Therefore the system
designer should consider the tradeoff between the two and choose accordingly.

7 Related Work

Historically, efficiency has been the main objective of teamwork and multi-agent systems
[53,7,9,20,48,42]. Recently, as agents frequently represent human individuals, the impor-
tance of fairness, as an independent goal, has gained recognition within the MAS literature
(see [14,10], and in particular the review given in [15]). Many works use the “cake cutting”
setting as a model for considering fairness in multi-agent systems. The cake cutting model,
introduced in [50], postulates a continuously-divisible good (a.k.a. “the cake”) to be divided
among a group of agents. Different agents may place different values on the different pieces
of the cake, and the goal is to divide the cake among the agents in a fair way - under some
suitable definition of fairness (see [6,37], and [34] for a recent survey). For the cake cutting
model, the tension between fairness and efficiency has been studied through the notion of
the “price of fairness”, which is defined as the ratio between the maximal possible social
welfare if no fairness is required and maximal possible welfare when fairness is also re-
quired (this is analogous to our notion of inefficiency). It has been established that the price
of fairness in cake cutting can be, at times, unbounded, depending on the exact model and
the fairness criteria [8,1]. Accordingly, an important line of research has been in devising
algorithms that provide fairness, while optimizing welfare [12,2,5,33]. The cake cutting lit-
erature assumes, for the most part, a non-transferable utility setting, wherein agents cannot
pay each other.

Other works consider mediated negotiation procedures that support negotiating agents
in reaching Pareto efficient and fair agreements, e.g., in bilateral multi-issue negotiation [29]
and computational models, which allow agents to find the most desirable solution according
to certain definitions of fairness or optimality [17].

While the definition of fairness in the above body of literature is mostly similar to the
goal our research attempts to achieve, our work studies the problem of a team search, where
fairness does not depend on the way resources are allocated, but rather on the amount of
effort an agent will invest in the search process. The analysis we provide relies heavily
on understanding the optimal search strategy that will be used by an agent under different
reimbursement policies, and the resulting effect over the fairness achieved. To the best of
our knowledge, no prior work has considered this important problem.

Costly search of the kind used in this paper is a prevalent theme in MAS [21,24,47,
27,23,16]. The idea is that agents need to consume some of their resources in order to dis-
ambiguate the uncertainty associated with the different alternatives and options available to
them. In some sense, the basic sequential search model can be seen as part of the field of
planning under uncertainty, hence it is related to Markov Decision Processes (MDP) [3,35]
and decentralized Markov Decision Processes [4], as the goal is to maximize the expected
cumulative reward, which is also the objective in costly search. However, the analysis pro-
vided by “search theory” using threshold-based solutions, whenever proved to be optimal,
is simpler and can be derived with a substantially lesser complexity compared to solving
MDPs. Alongside models of a single agent search, several models of group or team search
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have been introduced [43,40,22,49]. Most of the work in this area has focused on a repre-
sentative agent, operating on behalf of the team [48,20,30,9,7,45]. However, these assumed
that the designated agent is fully cooperative and as such focused on maximizing efficiency,
i.e., attempted to extract an optimal search strategy [39,41,44]. As such, fairness was not a
consideration in these works at all.

Fairness is a major topic of interest in the economics literature, which is out of the scope
of this paper to review (see [13,18,26,36,19]). In the economic-search literature, however,
we are not aware of consideration of fairness.

8 Conclusion

In this work we considered efficiency and fairness in team search, and the possible tradeoffs
between the two. We distinguished between two separate notions of fairness - ex-ante and
ex-post. The first measures the similarity between the expected costs, while the second mea-
sures the expected similarity in actual costs. We believe this is an important distinction, as
humans frequently care more about ex-post fairness while ex-ante fairness is algorithmically
easier to obtain.

We consider the case where a single buyer needs to purchase a good on behalf of the
entire team, and analyze the efficiency and fairness resulting from different reimbursement
policies. We show that the common policy of splitting costs based on purchase receipts - pri-
marily aimed at ex-post fairness - may result in severe degradation in efficiency. Neverthe-
less, using this policy we can reach a very high precision of ex-post fairness without the need
for simulation (using the calculated ex-ante fairness). We thus present two alternative fam-
ilies of reimbursement policies. The one family guarantees full efficiency and full ex-ante
fairness, but may lack in ex-post fairness. This family uses a mix of fixed sum and receipt
sharing reimbursement, together with a possible bonus if a certain price level is achieved. By
choosing the right parameters for each of these three types of reimbursement we can strike
the proper balance - incentivising the buyer to search for a good price, while also maintain-
ing fairness. The second family of policies allows more complex reimbursement policies,
including variable percentage sharing of the purchase price and multiple bonus levels. With
these types of policies, we can further improve ex-post fairness, at times at the expense of
efficiency. Thus, we allow the MAS designer to trade efficiency for fairness, as appropriate
for each setting.

This work considered a concrete MAS setting where fairness is a frequent requirement
in practice. We demonstrated the substantial impact that fairness can have on efficiency, and
the intricate tradeoffs and relationships between the two. We believe that such tradeoffs may
also arise in many other MAS settings, and should be acknowledged and analyzed. On a
more general level, we believe that as MAS systems become more integrated with human
interaction, fairness should become a more central and driving notion in the planning of
such systems. Humans are very sensitive to fairness, and failing to take it into account may
result in poor performance of such systems in practice.

In many settings the different team members will be heterogeneous in their search com-
petence. For example, it is possible that one agent is better at searching online stores, while
the other is better in searching physical stores. In such cases, the two agents will differ in
their search costs and possibly also the price distribution from which they sample. In such
settings, both the expected expense and the fairness measures may greatly depend on the
choice of which agent is assigned as the buyer. As long as there is just one object to be pur-
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chased, this should not be a problem, since the system designer can calculate the efficiency
and fairness obtained with each possible buyer, and choose the option that best fits its needs.

When multiple goods need to be purchased, the problem becomes more complex. In-
deed, with multiple goods, even the homogenous setting may exhibit counter-intuitive be-
havior. Consider, for example, ten homogenous agents in need of ten different, but isomor-
phic, goods (isomorphic in the sense that all goods share the same price distribution). The
intuitive fair task allocation is that each agent be assigned one of the goods. This indeed
provides ex-ante fairness. However, it may perform poorly on ex-post fairness, as, in ac-
tuality, the search costs, as well as the purchase prices for the different goods, may differ
substantially. If, additionally, the agents split the purchase costs based on receipts, the re-
sulting strategy becomes highly inefficient. A much better task allocation for this case is that
all goods be purchased by one agent, who will be reimbursed using the policies discussed
in this paper. Under this task allocation, the aggregation of the risks at a single agent results
in lesser variance, and hence higher expected ex-post fairness. The question of fairness in
task allocation with multiple goods is thus an interesting research question, which we defer
to future research.
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